Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Aim

The purpose of this study was to investigate the molecular interactions between urea and dextran.

Background

The molecular interaction was examined using an ultrasonic method.

Objective

The objective of the study was to use measurable data such as density, viscosity, and ultrasonic velocity to determine the thermoacoustical parameters. The kind and intensity of polymer molecular interactions as a function of temperature and concentration at various frequencies have been extensively assessed using the ultrasonic approach. The viscosity (η), density (d), and ultrasonic speed (U) of polymer dextran and aqueous 6(M) urea were measured throughout a temperature range of 303 K to 323 K at 5 K intervals.

Methods

A specific gravity bottle, an Ostwald viscometer, and an ultrasonic interferometer were used to determine the density, viscosity, and ultrasonic velocity, respectively.

Results

The obtained thermo acoustic parameter suggests the presence of a molecular interaction in the investigated solution.

Conclusion

Solute-solvent interactions make up the bulk of interactions. The dynamics of molecular interactions change with frequency, resulting in less favorable and less efficient interactions at higher frequencies. The analysis revealed that changes in frequency and temperature produce specific differences in acoustic parameters.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356334681241126062641
2025-01-10
2025-10-21
Loading full text...

Full text loading...

References

  1. MahapatraA.P. SamalR.K. SamalR.N. RoyG.S. Evaluation of thermo‐viscosity parameters of dextran in polar and nonpolar solvent.J. Appl. Polym. Sci.200181244045210.1002/app.1456
    [Google Scholar]
  2. DasN. Kumar PraharajM. PandaS. Exploring ultrasonic wave transmission in liquids and liquid mixtures: A comprehensive overview.J. Mol. Liq.202440312484110.1016/j.molliq.2024.124841
    [Google Scholar]
  3. PandaR. PandaS. BiswalS.K. A review of ultrasonic wave propagation through liquid solutions.Curr. Microw. Chem.202411121510.2174/0122133356288437240131061541
    [Google Scholar]
  4. PandaS. MahapatraA.P. Ultrasonic investigation of aqueous dextran at different temperatures and frequencies.World J. Pharm. Life Sci.20184127682
    [Google Scholar]
  5. NithiyananthamS. PalaniappanL. Ultrasonic studies of dextrin in aqueous media at 298 K.Asian J. Chem.20102275419
    [Google Scholar]
  6. NithiyananthamS. PalaniappanL. Ultrasonic study on some monosaccharides in aqueous media at 298.15K.Arab. J. Chem.201251253010.1016/j.arabjc.2010.07.018
    [Google Scholar]
  7. JyothirmaiG. NayeemS.M. KhanI. AnjaneyuluC. Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate).J. Therm. Anal. Calorim.2018132169370710.1007/s10973‑017‑6926‑8
    [Google Scholar]
  8. BeebiS. NayeemS.M. RambabuC. Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15).K. J. Therm. Anal. Calorim.201913563387339910.1007/s10973‑018‑7574‑3
    [Google Scholar]
  9. PandaS. Thermoacoustical parameters of dextran polymer in sodium hydroxide solutions.Songklanakarin J. Sci. Technol.202244411251130
    [Google Scholar]
  10. GereczeN.G. Ultrasonic studies in solutions of dextran and d-glucose.Acta Acust. United Acust.1975323201206
    [Google Scholar]
  11. PawarN.R. ChimankarO.P. BhandakkarV.D. PadoleN.N. Study of binary mixtures of acrylonitrile with methanol at different frequencies.J. Pure Appl. Ultrason20123449
    [Google Scholar]
  12. TabhaneP.V. ChimankarO.P. TabhaneV.A. Phase separation studies in polyvinyl chloride-polyvinyl acetate blend by ultrasonic technique.J. Chem. Pharm. Res.20124630513056
    [Google Scholar]
  13. BhandakkarV.D. ChimankarO.P. PawarN.R. Ultrasonic study of molecular interactions in some bio-liquids.J. Chem. Pharm. Res.201024873877
    [Google Scholar]
  14. PandaS. MahapatraA.P. Study of acoustical parameters of dextran in 2 (M) glycine using ultrasonic technique at different frequencies.J. Pure Appl. Ultrasonic2017398387
    [Google Scholar]
  15. LagemannR.T. DunbarW.S. Relationships between the velocity of sound and other physical properties of liquids.J. Phys. Chem.194549542843610.1021/j150443a003
    [Google Scholar]
  16. SarkarA. SinhaB. Solution thermodynamics of aqueous nicotinic acid solutions in presence of tetrabutylammonium hydrogen sulphate.J. Serb. Chem. Soc.20137881225124010.2298/JSC111212027S
    [Google Scholar]
  17. PalaniR. GeethaA. SwaraR.K. Ultrasonic studies on molecular interaction and physico-chemical behaviour of some divalent transition metal sulphates in aqueous propylene glycol at 303.15 K.Rasayan J. Chem.200923602608
    [Google Scholar]
  18. PrasadN. Excess free volume and internal pressure of binary solutions of N, N–dimethyl aniline and halomethanes.Virtual2003112530
    [Google Scholar]
  19. PalA. KumarH. KumarB. GabaR. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures.J. Mol. Liq.201318727828610.1016/j.molliq.2013.08.009
    [Google Scholar]
  20. PandaS. MahapatraA.P. Molecular interaction of dextran with urea through ultrasonic technique.Clay Res.20193813542
    [Google Scholar]
  21. SastryN.V. GeorgeJ. Thermophysical properties of nonelectrolyte mixtures. Densities, viscosities, and sound speeds of binary mixtures of methyl methacrylate+ branched alcohols (propan-2-ol, 2-methylpropan-1-ol, butan-2-ol, and 2-methylpropan-2-ol) at T= 298.15 and 308.15 K.Int. J. Thermophys.20032441089110410.1023/A:1025061103289
    [Google Scholar]
  22. AliA. AkhtarY. HyderS. Ultrasonic and volumetric studies of glycine in aqueous electrolytic solutions.J. Pure Appl. Ultrason.20032511318
    [Google Scholar]
  23. PalaniR. BalakrishnanS. Acoustical properties of ternary mixtures of 1-alkanols in di-isopropyl ether and 2,2,2-trifluoroethanol mixed solvent.Indian J. Pure Appl. Phy.2010489644650
    [Google Scholar]
  24. MehraR. MalavB.B. Ultrasonic, volumetric and viscometric studies of lactose in mixed solvent of DMF–H2O at 298, 308 and 318 K.Arab. J. Chem.201710S1894S190010.1016/j.arabjc.2013.07.018
    [Google Scholar]
  25. RajuluA. Ultrasonic attenuation in aqueous dispersion of polytetrafluoroethylene.Indian J. Chem. Technol.1994
    [Google Scholar]
  26. PandaS. Molecular interaction of polymer dextran in sodium hydroxide through evaluation of thermo acoustic parameters.Indian J. Pharm. Educ. Res.202054363063610.5530/ijper.54.3.112
    [Google Scholar]
  27. JeanesA. HaynesW.C. Characterization and classification of dextrans from ninety-six strains of bacteria.J. Am. Chem. Soc.1954765041505210.1021/ja01649a011
    [Google Scholar]
  28. ArondL.H. FrankH.P. Molecular weight distribution and molecular size of a native dextran.J. Phys. Chem.1954581195395710.1021/j150521a006
    [Google Scholar]
  29. ArmstrongJ.K. WenbyR.B. MeiselmanH.J. FisherT.C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation.Biophys. J.20048764259427010.1529/biophysj.104.047746 15361408
    [Google Scholar]
  30. PribushA. Zilberman-KravitsD. MeyersteinN. The mechanism of the dextran-induced red blood cell aggregation.Eur. Biophys. J.2007362859410.1007/s00249‑006‑0107‑1 17091267
    [Google Scholar]
  31. BarshteinG. TamirI. YedgarS. Red blood cell rouleaux formation in dextran solution: Dependence on polymer conformation.Eur. Biophys. J.199827217718110.1007/s002490050124 9530828
    [Google Scholar]
  32. GilE.C. ColarteA.I. El GhzaouiA. DurandD. DelarbreJ.L. BatailleB. A sugar cane native dextran as an innovative functional excipient for the development of pharmaceutical tablets.Eur. J. Pharm. Biopharm.200868231932910.1016/j.ejpb.2007.04.015 17540546
    [Google Scholar]
  33. PandaS. MahapatraA.P. Variation of acoustical parameters of dextran in 2(M) glycine with temperature and concentrations.Int. J. Chem. Phys. Sci.2016551522
    [Google Scholar]
  34. PatnaikP. ChakrabortyN. KaurP. JuglanK.C. KumarH. Thermodynamic and acoustic investigation of d-panthenol in homologous series of polyethylene glycol at different temperatures.Advances in Functional and Smart Materials.SingaporeSpringer202340342410.1007/978‑981‑19‑4147‑4_41
    [Google Scholar]
  35. AliK.F. HummadiH.H. a study of some physical properties for B12 in aqueous solution at four temperatures.Al-Nahrain J. Sci.20071011317
    [Google Scholar]
  36. AwasthiA. AwasthiA. Intermolecular interactions in formamide+2-alkoxyethanols: Viscometric study.Thermochim. Acta2012537576410.1016/j.tca.2012.03.001
    [Google Scholar]
  37. PandaS. Acoustical analysis of dextran+urea: Insights into molecular interactions.Recent Innov. Chem. Eng.2024171445410.2174/0124055204271465231204112233
    [Google Scholar]
  38. BrowneJ.E. Review of the acoustic impedance mismatch technique for ultrasonic measurements.Ultrasonics200341528729310.1016/S0041‑624X(03)00166‑4
    [Google Scholar]
  39. ColeK.S. ColeR.H. Dispersion and absorption in dielectrics I. Alternating current characteristics.J. Chem. Phys.19419434135110.1063/1.1750906
    [Google Scholar]
  40. JacobsonB. Intermolecular free lengths in liquids.Acta Chem. Scand.1952691485149810.3891/acta.chem.scand.06‑1485
    [Google Scholar]
  41. CallenH.B. The application of Gibbs free energy to thermodynamic systems.J. Chem. Phys.1948161839510.1063/1.1746576
    [Google Scholar]
  42. PandaS. MahapatraA.P. Ultrasonic study of acoustical parameters of dextran solution with 1 (N) NaOH at different temperatures and concentrations.J. Pure Appl. Ultrasonic201840100105
    [Google Scholar]
  43. ChandrasekaranJ.H.R. NithiyananthamS. Study of water and water–ethanol solutions of potassium salts through ultrasonic and spectroscopic approach.Chemistry Africa2022551397141510.1007/s42250‑022‑00412‑6
    [Google Scholar]
  44. MagazùS. MigliardoP. MusolinoA.M. SciortinoM.T. α, α-trehalose− water solutions. 1. Hydration phenomena and anomalies in the acoustic properties.J. Phys. Chem. B1997101132348235110.1021/jp961139s
    [Google Scholar]
  45. PavaiR.E. RenukaS. VasantharaniL.B.P. Study of molecular interactions among esters, toluene and aniline using ultrasonic technique.J. Exp. Sci.2010162124
    [Google Scholar]
  46. ParveenS. ShuklaD. SinghS. SinghK.P. GuptaM. ShuklaJ.P. Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures.Appl. Acoust.200970350751310.1016/j.apacoust.2008.05.008
    [Google Scholar]
  47. PandaS. MahapatraA.P. Acoustic and ultrasonic studies of dextran in 2 (M) glycine-variation with frequencies and concentrations.Int. J. Pure Appl. Phys.20161217179
    [Google Scholar]
  48. ReddyS. SkM.N. RajuK.T.S.S. The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium ethylsulfate+ 2-ethoxyethanol from density, speed of sound and refractive index measurements.J. Mol. Liq.2016218839410.1016/j.molliq.2016.01.096
    [Google Scholar]
  49. AkhtarY. Study of solute-solute and solute-solvent interaction of glycerin and dextrose in buffer solutions at different temperature by using volumetric and acoustic methods.Chem. Sci. Int. J.20161721710.9734/CSJI/2016/28872
    [Google Scholar]
  50. MirikarS. PawarP.P. BichileG.K. Studies of acoustic and thermodynamic properties of Glycine in double distilled water at different temperatures.J. Chem.201135306310
    [Google Scholar]
  51. PandaS. Molecular interaction of dextran and sodium hydroxide through ultrasonic investigation.JOTCSA202411413691376
    [Google Scholar]
  52. KaurM. PathaniaV. VermaniB.K. AnandV. GillD.S. Ultrasonic velocity and thermoacoustic parameters for Copper(I) nitrates in dimethylsulfoxide with pyridine as a co-solvent at 298 K.Curr. Phys. Chem.202212213615810.2174/1877946812666220331122201
    [Google Scholar]
  53. GodhaniD.R. DobariyaP.B. SanghaniA.M. MehtaJ.P. Thermodynamic properties of binary mixtures of 1,3,4-oxadiazole derivative with chloroform, N, N -dimethyl formamide at 303, 308 and 313 K and atmospheric pressure.Arab. J. Chem.201710S422S43010.1016/j.arabjc.2012.10.002
    [Google Scholar]
  54. PadmanabanR. VenkatramananK. Arumugam, R. A study on the acoustic and rheological properties of polystyrene in different solvents.Int. J. Curr. Res. Rev.201810219910210.31782/IJCRR.2018.99102
    [Google Scholar]
  55. PaulrajP. ThangamG.J.R. RexcelineA.M.L. LancyS.I.S. PandeyK.K. JawaharlalP. Investigation of excess thermo‐acoustic behavior of binary liquid mixture with various temperatures using ultrasonic technique.Macromol. Symp.20244131230004710.1002/masy.202300047
    [Google Scholar]
  56. PandaS. MahapatraA.P. Study of acoustic and thermodynamic properties of aqueous solution of dextran at different concentration and temperature through ltrasonic technique international journal of science and research (IJSR).Int. Symp. Ultrasonics.201522503508
    [Google Scholar]
  57. SemwalH.K. BhattS.C. SemwalB.S. Acoustical study of binary liquid mixture of acetic acid & Isopropyl sulphide.J. Pure Appl. Ultrason.2003251612
    [Google Scholar]
  58. PriyaC.S. NithyaS. VelrajG. KanappanA.N. Molecular interactions studies in liquid mixture using ultrasonic technique.J. Adv. Sci. Technol.2010185974
    [Google Scholar]
  59. GopalA.M. PoongodiJ. Study of thermodynamic properties in binary liquid mixtures through ultrasonic measurement.J. Pure Appl2017122
    [Google Scholar]
  60. Abdel JabbarN.M. MjalliF.S. Ultrasonic study of binary aqueous mixtures of three common eutectic solvents.Phys. Chem. Liquids201957111810.1080/00319104.2017.1385075
    [Google Scholar]
  61. PandaS. Thermoacoustical analysis of polymer dextran at different frequencies.Bulgar. J. Phys.2022492136144
    [Google Scholar]
  62. RajagopalK. EdwinG.S. Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures.J. Chem. Thermodyn.201143685286710.1016/j.jct.2011.01.004
    [Google Scholar]
  63. ChakrabortyN. ThakurP. JuglanK.C. Thermodynamic investigation of glycol ethers in aqueous sugar alcohol at multiple temperatures. E3S Web.Conf.20234530105110.1051/e3sconf/202345301051
    [Google Scholar]
  64. RathiM. Exploring molecular interactions of sucrose in aqueous potassium clavulanate solutions at different temperatures: Volumetric and acoustic approaches.Multiscale Multidiscip. Model. Exp. Des.2024727172730
    [Google Scholar]
  65. PunithaS. UvaraniR. PanneerselvamA. NithiyananthamS. Physico-chemical studies on some saccharides in aqueous cellulose solutions at different temperatures – Acoustical and FTIR analysis.J. Saudi Chem. Soc.201418565766510.1016/j.jscs.2014.01.008
    [Google Scholar]
  66. PandaS. MahapatraA.P. Intermolecular interaction of dextran with urea.Int. J. Innov. Technol. Explor. Eng.201981174274810.35940/ijitee.K1445.0981119
    [Google Scholar]
  67. SumathiT. AnandhiS. ultrasonic studies on some electrolytes in n, n, imethylformamide+ water mixtures at 303K.Int. J. Phys. Appl. Sci201528720
    [Google Scholar]
  68. SharmaA.K. SharmaR. GangwalA. Ultrasonic studies and acoustic parameters of complexes containing copper surfactants with 2-amino-6-methyl benzo-thiazole.Curr. Phys. Chem.20198322222910.2174/1573412914666181003151414
    [Google Scholar]
  69. NayakS. PanigrahiR. DasB.R. Acoustic study of butylated hydroxy toluene (BHT) in ethanol by ultrasonic technique.Adv. Sci. Lett.201622230130410.1166/asl.2016.6840
    [Google Scholar]
  70. BhandakkarV. BhatV. ChimankarO. AsoleA. Thermo acoustical study of Tetrahydrofuran with ethanol using ultrasonic technique at 323K.Adv. Appl. Sci. Res.201458085
    [Google Scholar]
  71. PandaS. Molecular interaction of novel polymer dextran with 1 (N) sodium hydroxide solution: Ultrasonic studies.Asia-Pac. J. Sci. Technol.20222761710.14456/apst.2022.85
    [Google Scholar]
  72. KalimullaT. BabuS. DasD. GowrisankarM. RaoK.G. Ultrasonic investigations in binary liquid mixtures of 2-methylcyclohexanone with formamide, n-methylformamide and n, n-dimethylformamide at different temperatures.J. Pharm. Sci. Res.201911726452655
    [Google Scholar]
  73. SharmaD.K. AgarwalS. PandeyE. Ultrasonic study of molecular interaction in binary liquid mixtures of ethyl acetate with alcohols at 303.15 K. J. Pure Appl.Ultrason20222836
    [Google Scholar]
  74. ShebaS.G.S. PriakumariR.O. Ultrasonic investigation of molecular interaction in binary liquid mixture of Polyethylene Glycol with ethanol.Int. J. Chem. Mol. Eng.201482156160
    [Google Scholar]
  75. PandaS. MahapatraA.P. Molecular interaction studies of aqueous Dextran solution through ultrasonic measurement at 313 K with different concentration and frequency.Arch. Phys. Res.201561612
    [Google Scholar]
  76. ZolkifleeN.F. AffandiM.M.R.M.M. MajeedA.B.A. Molecular dynamics and related solution chemistry of lovastatin in aqueous solution of arginine: Viscometric analysis.J. Mol. Liq.201927938639110.1016/j.molliq.2019.01.102
    [Google Scholar]
  77. DashU.N. RoyG.S. TalukdarM. MoharathaD. Acoustic and viscosity studies of alkali metals and ammonium halides in aqueous dextran solutions at four different temperatures.Indian J. Pure Appl. Phy.201048651657
    [Google Scholar]
  78. RajathiK. AskarS.J. RajendranA. Ultrasonic study of molecular dynamics in some binary mixtures.J. Chem. Pharm. Res.201135348358
    [Google Scholar]
  79. TiwariS. KusmariyaB.S. TiwariA. PathakV. MishraA.P. Acoustical and viscometric studies of buspirone hydrochloride with cobalt(II) and copper(II) ions in aqueous medium.J. Taibah Univ. Sci.201711110110910.1016/j.jtusci.2015.10.012
    [Google Scholar]
  80. MeshramB. AgrawalP. ChandakH. ChapkeU. A study of acoustical behaviour of paracetamol in 70% methanol at various temperature.Int. J. Emerg. Technol. Comput. Appl. Sci.20135369373
    [Google Scholar]
  81. NainA.K. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of formamide with ethanol, 1-propanol, 1,2-ethanediol and 1,2-propanediol at different temperatures.J. Mol. Liq.20081401-310811610.1016/j.molliq.2008.01.016
    [Google Scholar]
  82. GopalA.M. LancyA.I.S. PandeyK.K. FernandoJ. Evaluation of sound velocity and molar refraction in binary liquid mixtures through ultrasonic measurement.Macromol. Symp.202340712200006
    [Google Scholar]
  83. PandaS. Acoustic and thermodynamics study of aqueous dextran: An ultrasonic analysis.Rom. J. Biophys.202333310511710.59277/RJB.2023.3.02
    [Google Scholar]
  84. PandiyanV. OswalS.L. VasantharaniP. Thermodynamic and acoustic properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline or N,N-diethylaniline at 303.15, 313.15 and 323.15K.Thermochim. Acta20115181-2364610.1016/j.tca.2011.02.004
    [Google Scholar]
  85. ThirumaranS. GeorgeD. Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures.J. Eng. Appl. Sci.200944111
    [Google Scholar]
  86. PrakashO. SinhaS. Ultrasonic studies in binary mixtures of tetrahydrofuran with formamide, methyl formamide, dimethyl formamide and 2-methyl pyridine.Acta Acust. United Acust.1984544223225
    [Google Scholar]
  87. SehgalC.M. PorterB.R. GreenleafJ.F. Ultrasonic nonlinear parameters and sound speed of alcohol–water mixtures.J. Acoust. Soc. Am.198679256657010.1121/1.393548 3950207
    [Google Scholar]
  88. PandaS. Ultrasonic investigation of dextran with glycine at different temperatures and frequencies.Indian J. Nat. Sci.202010591843618441
    [Google Scholar]
  89. PandaR. PandaS. BiswalS.K. Acoustic behavior of electrolytes in aqueous dimethyl sulphoxide as a solvent at different temperatures.J. Therm. Anal. Calorim.2024149104839485310.1007/s10973‑024‑13031‑9
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356334681241126062641
Loading
/content/journals/cmic/10.2174/0122133356334681241126062641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test