Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Background

Resveratrol is a polyphenolic compound found in plants such as , L. and . It has unique functions and biological activities. It has important physiological effects such as anti-cancer, anti-bacterial, lipid-lowering, and prevention of cardiovascular and cerebrovascular diseases. At present, resveratrol is a new type of medicinal and healthcare-active substance, with the potential to develop into a new anti-cancer drug and a new ingredient for healthcare products.

Objective

The purpose of this study is to seek the optimal extraction process for resveratrol from the root of L.

Methods

The microwave-assisted extraction method (MAE) was used to extract resveratrol from the root of L. and orthogonal experiments were conducted to optimize the extraction process. The results of the microwave-assisted extraction, ultrasonic extraction, and their combined use methods were compared with those of the conventional heating reflux method. At the same time, the extraction data of four plants, including , L., . and Blueberry, were compared.

Results

Under the optimized microwave-assisted extraction conditions, the best process conditions for the root of L were a solid-liquid ratio of 1:20 (g/mL), at a microwave power of 600W, affording an extraction rate as high as 2.7130 (mg/g), within an extraction time of 10 minutes. It is higher than the extraction rate of 2.2911 (mg/g) obtained by the conventional heating reflux method.

Conclusion

This study indicates that microwave-assisted extraction is an efficient method with a high extraction rate of resveratrol during short extraction time. It is a green and environmentally friendly extraction technique, and it is recommended for the extraction of active substances such as resveratrol from plants.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356340478250313022323
2025-03-24
2025-09-27
Loading full text...

Full text loading...

References

  1. SaidulS. DasS. HodaM. Evaluation of nonconventional extraction methods of resveratrol from various plant sources - A Brief Review.Curr. Green Chem.202310213114210.2174/2213346110666230517114652
    [Google Scholar]
  2. MengX.H. Study on the extraction of resveratrol from peanut red coat by ultrasonic-microwave assisted enzyme method.Grain Processing20244924853
    [Google Scholar]
  3. PengK.X. ZhengY.H. ChenX.M. Research progress of mulberry active ingredients and their usage in modern food development.J. Huaiyin Inst. Technol.20213005914
    [Google Scholar]
  4. WangN. NingC.C. ZhaoN.Y. LiN. LiJ.W. ZhengY.R. ZhaoZ. YuQ.Y. Study on ultrasonic-microwave synergistic extraction of resveratrol from peanut sprouts and its antioxidant activity.J. Peanut Sci.202251023948
    [Google Scholar]
  5. MaM-X. QinN. MinQ. HuW.X. Resveratrol and polydatin by microwave-ultrasound extraction and determination by HPLC.CIESC J.201970S1124129
    [Google Scholar]
  6. XieH.J. ZhaoJ. WangS. KongL. LiX. AgaE. Gong GaL.Z. YeB.G. PH-sensitive BSA-modified resveratrol micelles targeting macrophages alleviate symptoms of rheumatoid arthritis.Int. Immunopharmacol.202413611232411232410.1016/j.intimp.2024.112324 38820967
    [Google Scholar]
  7. SinghK. GuptaJ.K. KumarS. The pharmacological potential of resveratrol in reducing soft tissue damage in osteoarthritis patients.Curr. Rheumatol. Rev.2024201273810.2174/1573397119666230911113134 37694798
    [Google Scholar]
  8. YangJ. LinJ.Q. ZhangW.D. ShenM.Y. WangY.X. XieJ.H. Resveratrol‐loaded PH ‐responsive Mesona chinensis polysaccharides‐zein nanoparticles for effective treatment of ulcerative colitis.J. Sci. Food Agric.202410473992400310.1002/jsfa.13282 38323719
    [Google Scholar]
  9. EsfahaniS.K. DehghaniS. HosseinzadehH. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. An exosomal approach for oral delivery of resveratrol: Implications for inflammatory bowel disease treatment in rat model.Life Sci.202434612263810.1016/j.lfs.2024.122638 38614294
    [Google Scholar]
  10. RossS.M. Resveratrol: The anti-inflammatory effects of a phytochemical compound on pneumonia, respiratory syncytial virus, and severe acute respiratory syndrome (SARS-CoV-2).Holist. Nurs. Pract.202337211011210.1097/HNP.0000000000000576 36790424
    [Google Scholar]
  11. ZeiniS. DavoodianN. KazemiH. Shareghi BrojeniM. GhaniE. Arab FirouzjaeiM. AtashabparvarA. Resveratrol prevents cognitive impairment and hippocampal inflammatory response induced by lipopolysaccharide in a mouse model of chronic neuroinflammation.Physiol. Behav.202427811450810.1016/j.physbeh.2024.114508 38460779
    [Google Scholar]
  12. GodosJ. RomanoG.L. GozzoL. LaudaniS. PaladinoN. AzpírozD.I. LópezM.N.M. GiampieriF. QuilesJ.L. BattinoM. GalvanoF. DragoF. GrossoG. Resveratrol and vascular health: Evidence from clinical studies and mechanisms of actions related to its metabolites produced by gut microbiota.Front. Pharmacol.202415136894910.3389/fphar.2024.1368949 38562461
    [Google Scholar]
  13. HuangZ.W. LiS. ZhongL.S. SuY. LiM.H. WangX.H. WangZ.X. WangZ.P. YeC.F. RenZ. WangX. ZengQ. ZhengK. WangY.F. Effect of resveratrol on herpesvirus encephalitis: Evidences for its mechanisms of action.Phytomedicine202412715547610.1016/j.phymed.2024.155476 38430586
    [Google Scholar]
  14. LuF. WangJ. SongM. DaiX.J. The inhibitory effect of resveratrol from Reynoutria japonica on MNV-1, a human norovirus surrogate.Food Environ. Virol.202416224125210.1007/s12560‑024‑09592‑5 38570420
    [Google Scholar]
  15. FeiY-Q. ZhangS-B. HanS-Y. QiuB. LuY-M. HuangW-X. LiF. ChenD.Y. Berglund, Björn.; H, X.; Li, L.J.; Yao, M.F. The role of dihydroresveratrol in enhancing the synergistic effect of Ligilactobacillus salivarius Li01 and resveratrol in Ameliorating Colitis in mice.Res.2022421422910.34133/2022/9863845
    [Google Scholar]
  16. KumarS. ChangY.C. LaiK.H. HwangT.L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis.Curr. Med. Chem.202128193773378610.2174/1875533XMTEwrMDQh5 32957870
    [Google Scholar]
  17. LuJ.X. WangW. ZhangQ.W. GuoZ.Y. JinZ. TangY.Z. Design, synthesis and evaluation of antioxidant and anti-inflammatory activities of novel resveratrol derivatives as potential multifunctional drugs.Eur. J. Med. Chem.202426611614811616010.1016/j.ejmech.2024.116148 38237344
    [Google Scholar]
  18. Grujić-MilanovićJ. JaćevićV. MiloradovićZ. JovovićD. MilosavljevićI. MilanovićS.D. Mihailović-StanojevićN. Resveratrol protects cardiac tissue in experimental malignant hypertension due to antioxidant, anti-inflammatory, and anti-apoptotic properties.Int. J. Mol. Sci.20212295006500610.3390/ijms22095006 34066865
    [Google Scholar]
  19. SupatC. DmitryB. YassinM-Z. MahsaH.E. Hepatoprotective and therapeutic effects of resveratrol: A focus on anti-inflammatory and antioxidative activities.Fundam. Clin. Pharmacol.202136346848510.1111/fcp.12746
    [Google Scholar]
  20. ChaiwatM. JinSuk, K.; SoHyeon, B. Use of germination to enhance resveratrol content and its anti-inflammatory activity in lipopolysaccharide-stimulated RAW264.7 cells.Molecules2023281328134898
    [Google Scholar]
  21. UrihoA. TangX. LeG. YangS. HarimanaY. IshimweS.P. LuY.P. ZhangK. MaS. MuhozaB. Effects of resveratrol on mitochondrial biogenesis and physiological diseases.Ad. Trad. Med.202121111410.1007/s13596‑020‑00492‑0
    [Google Scholar]
  22. van BrummelenR. van BrummelenA.C. The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 – A formulator’s perspective.Biomed. Pharmacother.202214811276710.1016/j.biopha.2022.112767 35240527
    [Google Scholar]
  23. KoçT.Y. DoğanS. KaradayiM. Potential using of resveratrol and its derivatives in medicine.Eurasian J. Med.202456213614110.5152/eurasianjmed.2024.24392 39128040
    [Google Scholar]
  24. TopkoskaM. MiloshevskaM. PiponskiM. SlaveskaS.I. NakovN. BrezovskaK. AcevskaJ. Greenness assessment and validation of HPLC method for simultaneous determination of resveratrol and vitamin E in dietary supplements.J. AOAC Int.20231313110.1093/JAOACINT/QSAD131
    [Google Scholar]
  25. MittalS. AliJ. BabootaS. DoE Engineered development and validation of an RP-HPLC method for simultaneous estimation of temozolomide and resveratrol in nanostructured lipid carrier.J. AOAC Int.202210551258126710.1093/jaoacint/qsac045 35441690
    [Google Scholar]
  26. LiM. LiP. TangR.X. LuH. Resveratrol and its derivates improve inflammatory bowel disease by targeting gut microbiota and inflammatory signaling pathways.Food Sci. Hum. Wellness2022111223110.1016/j.fshw.2021.07.003
    [Google Scholar]
  27. SuryantoroS.D. IwanoskiG. SutantoH. MahdiB.A. Resveratrol in renal health: Bridging therapeutic gaps from acute kidney injury to chronic disease prevention.J. Physiol.2024602102165216710.1113/JP286658 38662688
    [Google Scholar]
  28. MurciaM.A. Martínez-ToméM. Antioxidant activity of resveratrol compared with common food additives.J. Food Prot.200164337938410.4315/0362‑028X‑64.3.379 11252483
    [Google Scholar]
  29. BrinkeA.S.T. Janssens-BckerC. KerscherM. Skin anti-aging benefits of a 2% resveratrol emulsion.J. Cosmet. Dermatol. Sci. Appl.202111215516810.4236/jcdsa.2021.112015
    [Google Scholar]
  30. KosovićE. TopiařM. CuřínováP. SajfrtováM. Stability testing of resveratrol and viniferin obtained from Vitis vinifera L. by various extraction methods considering the industrial viewpoint.Sci. Rep.2020101556410.1038/s41598‑020‑62603‑w 32221407
    [Google Scholar]
  31. BiswasR. SarkarA. AlamM. RoyM. Mahdi HasanM.M. Microwave and ultrasound-assisted extraction of bioactive compounds from Papaya: A sustainable green process.Ultrason. Sonochem.202310110667710.1016/j.ultsonch.2023.106677 37939528
    [Google Scholar]
  32. SetyaningsihW. Guamán-BalcázarM.C. OktavianiN.M.D. PalmaM. Response surface methodology optimization for analytical microwave-assisted extraction of resveratrol from functional marmalade and cookies.Foods202312223310.3390/foods12020233 36673325
    [Google Scholar]
  33. ZhongW.T. YangC.M. ZhangY.Z. YangD.S. Effects of different deproteinization methods on the antioxidant activity of polysaccharides from flos sophorae immaturus obtained by ultrasonic microwave synergistic extraction.Agronomy (Basel)202212112740274010.3390/agronomy12112740
    [Google Scholar]
  34. JiangY.L. ZhangP. Study on ultrasonic-microwave combined extraction of purple sweet potato anthocyanins and their stability.Packaging and Food Machinery202341054045
    [Google Scholar]
  35. ZhangX.Y. WangJ.H. SunW.W. ZhangX.H. LiX.A. LiF.J. Optimization of ultrasonic-microwave synergistic extraction of apple pomace polyphenols and its performance evaluation.Food Sci. Tech.20224711185191
    [Google Scholar]
  36. FuP-L. QiuM-H. FengS. LiY-J. Research on the extraction and purification method of resveratrol from polygonum cuspidatum by enzymatic hydrolysis and ultrasonic combination.China Food202322154157
    [Google Scholar]
  37. VoT.P. HoT.A.T. HaN.M.H. NguyenM.T. ChungM.M. NguyenH.N. NguyenD.Q. Recovering bioactive compounds from yacon (Smallanthus sonchifolius) using the ultrasonic-microwave-assisted extraction technique.App. Food Res.20244210045110.1016/j.afres.2024.100451
    [Google Scholar]
  38. NikoomaneshN. ZandiM. GanjlooA. Development of ohmic-assisted green extraction technique with ultrasonic and microwave pretreatments: Burdock (Arctium lappa L.) root extract.Chem. Eng. Process. - Process Intensif202419910974910.1016/j.cep.2024.109749
    [Google Scholar]
  39. ZhangQ. TianZ.M. WangJ.Z. Optimization of the intermittent ultrasonic-assisted enzymatic extraction process of resveratrol from grape pomace.Food and Machinery2022388174181
    [Google Scholar]
  40. WuP.C. PuY.F. DuX.Y. WangH.J. WangL.L. Subcritical water extraction of resveratrol from peanut sprouts and its study on enzyme activity inhibition.China Food Additives.202334026168
    [Google Scholar]
  41. XuS.L. LuoH.Y. ChenH.W. GuoJ.B. YuB.L. ZhangH. LiW.T. ChenW.G. ZhouX.J. HuangL. LiuN. LeiY. LiaoB. JiangH.F. Optimization of extraction of total trans ‐resveratrol from peanut seeds and its determination by HPLC.J. Sep. Sci.20204361024103110.1002/jssc.201900915 31916409
    [Google Scholar]
  42. YuY.H. YueX.W. BaoH.W. HouX.Y. XuY. Simultaneous determination of seven components in the stem of ivy by HPLC.Chin. Med. Mat.2021440614471450
    [Google Scholar]
  43. Pinilla-PeñalverE. García-BéjarB. ContentoA.M. RíosA. Graphene quantum dots an efficient nanomaterial for enhancing the photostability of trans-resveratrol in food samples.Food Chem.202238613276610.1016/j.foodchem.2022.132766 35349896
    [Google Scholar]
  44. SarkarS. Microwave-assisted green synthetic approach towards water dispersible luminescent PVP-coated Tb3+ and Ce3+/Tb3+-doped KZnF3 nanocrystals.Curr. Microw. Chem.2024111303610.2174/0122133356290796240307104427
    [Google Scholar]
  45. Cerón-CamachoR. Recent advances in using microwaves to prepare chemicals at the industrial level.Curr. Microw. Chem.2024111586010.2174/0122133356293561240212114651
    [Google Scholar]
  46. TörökB. MooneyT. IlamanovaM. Microwave-assisted flow chemistry for green synthesis and other applications.Curr. Microw. Chem.202292656910.2174/2213335610666221208163107
    [Google Scholar]
  47. KamannaK. BadigerK.B. KhataviS.Y. Microwave-accelerated facile synthesis of pyrano[2,3-d]pyrimidine derivatives via one-pot strategy executed by agro-waste extract as a greener solvent media.Curr. Microw. Chem.202292788910.2174/2213335609666220518100728
    [Google Scholar]
  48. KumarD. KaratiD. MahadikK.R. Microwave-assisted synthetic scheme of novel schiff base congeners of pyrimidine nuclei by using water as solvent: A green approach to synthesis.Curr. Microw. Chem.2022913910.2174/2213335609666220414141731
    [Google Scholar]
  49. HedayatiS. TarahiM. BaeghbaliV. TahsiriZ. HashempurM.H. Mint (Mentha spp.) essential oil extraction: From conventional to emerging technologies.Phytochem. Rev.202412210.1007/S11101‑024‑10020‑6
    [Google Scholar]
  50. AydınC. EserF. Impact of ohmic heating extraction on the bioactive components of parsley: Comparison with conventional and green extraction techniques.J. Food Meas. Charact.20241897575758410.1007/s11694‑024‑02749‑7
    [Google Scholar]
  51. KaurS. SinghV. ChopraH.K. PanesarP.S. Extraction and characterization of phenolic compounds from mandarin peels using conventional and green techniques: A comparative study.Discover Food2024416010.1007/s44187‑024‑00139‑y
    [Google Scholar]
  52. IbáñezE. CifuentesA. Green extraction techniques and SDGs challenges.Trends Analyt. Chem.202417511773010.1016/j.trac.2024.117730
    [Google Scholar]
  53. LiaoY.H. HongT. HuangK.M. Microwave chemical dynamics.Eng. Sci. Tech.20245602100107
    [Google Scholar]
  54. SunS.M. TengC. XuJ.X. Microwave thermal effect in Diels-Alder reaction of furan and maleimide.Curr. Microw. Chem.202071677310.2174/2213335607666200101093318
    [Google Scholar]
  55. PandaR. PandaS. BiswalS.K. A review of ultrasonic wave propagation through liquid solutions.Curr. Microw. Chem.202411121510.2174/0122133356288437240131061541
    [Google Scholar]
  56. LiX.H. XuJ.X. Effects of the microwave power on the microwave assisted esterification.Curr. Microw. Chem.20174215816210.2174/2213335603666160906151018
    [Google Scholar]
  57. ShiY. LiS.Q. LuY. ZhaoZ.Z. LiP.F. XuJ.X. Microwave-assisted organic acid–base-co-catalyzed tandem Meinwald rearrangement and annulation of styrylepoxides.Chem. Commun. (Camb.)202056142131213410.1039/C9CC09262E 31970365
    [Google Scholar]
  58. Al-HarrasiA. AvulaS.K. RehmanN.U. CsukR. DasB. Microwave-assisted: An efficient aqueous suzuki-miyaura cross- coupling reaction of the substituted 1H-1,2,3-triazoles.Curr. Microw. Chem.202292909810.2174/2213335609666220516112247
    [Google Scholar]
  59. LuoY. FuZ.C. FuX.Y. DuC.L. XuJ.X. Microwave-assisted periselective annulation of triarylphosphenes with aldehydes and ketones.Org. Biomol. Chem.202018469526953710.1039/D0OB02011G 33191424
    [Google Scholar]
  60. ChenX.P. LeiY. FuD. XuJ.X. Microwave-accelerated and efficient synthesis of structurally diverse N -(2,2-diphenylvinyl)-β-oxoamides.Org. Biomol. Chem.202119357678768910.1039/D1OB01359A 34524331
    [Google Scholar]
  61. WangJ.Y. FuD. XuJ.X. Microwave-assisted safe and efficient synthesis of α-ketothioesters from acetylenic sulfones and DMSO.J. Sulfur Chem.202344223224710.1080/17415993.2022.2137414
    [Google Scholar]
  62. NamballaM. AdimulapuA. JesudasanR.E. QbD assisted optimization of microwave-assisted synthesis of polyacrylamide grafted tragacanth: Characterization and instrumental analysis.Curr. Microw. Chem.2024111162910.2174/0122133356284914231231103738
    [Google Scholar]
  63. KumarD. KaratiD. MahadikK.R. Microwave assisted synthesis of a novel schiff base scaffolds of pyrazole nuclei: Green synthetic method.Curr. Microw. Chem.2022929910410.2174/2213335609666220820153559
    [Google Scholar]
  64. BansodeD. GoelT. JainN.V. Conventional vs. microwave-assisted synthesis: A comparative study on the synthesis of tri-substituted imidazoles.Curr. Microw. Chem.20229210510810.2174/2213335610666230105154742
    [Google Scholar]
  65. KarmakarR. MukhopadhyayC. L-proline catalyzed organic reactions via microwave-activation.Curr. Microw. Chem.2023101264210.2174/2213335610666230330164520
    [Google Scholar]
  66. PankrushinaN.A. KorotkikhM.O. MikheevA.N. Effect of microwave radiation on the solvent-free synthesis of phthaloylamino acids.Curr. Microw. Chem.2023101606510.2174/2213335610666230523114340
    [Google Scholar]
  67. KambojM. BajpaiS. PandeyG. YadavM. BanikB.K. Microwave-assisted synthesis of biologically relevant six-membered N-heterocycles.Curr. Microw. Chem.202310212213410.2174/0122133356268693231114052121
    [Google Scholar]
  68. MukhiaM. PradhanK. BiswasK. Microwave-assisted solid phase synthesis of different peptide bonds: Recent advancements.Curr. Microw. Chem.202310215517910.2174/0122133356271504231020050826
    [Google Scholar]
  69. ZhuH. XingY. AkanO.D. YangT. Ultrafine comminution-assisted ultrasonic-microwave synergistic extraction of Pueraria mirifica (Kudzu flower and root) flavonoids.Heliyon2023911e2113710.1016/j.heliyon.2023.e21137 37920497
    [Google Scholar]
  70. LiX.H. XuJ.X. Identification of microwave selective heating effort in an intermolecular reaction with Hammett linear relationship as a molecular level probe.Curr. Microw. Chem.201744339346
    [Google Scholar]
  71. LiS. ChenX. XuJ. Microwave-assisted copper-catalyzed stereoselective ring expansion of three-membered heterocycles with α-diazo-β-dicarbonyl compounds.Tetrahedron201874141613162010.1016/j.tet.2018.01.014
    [Google Scholar]
  72. MalaT. SadiqM.B. AnalA.K. Comparative extraction of bromelain and bioactive peptides from pineapple byproducts by ultrasonic‐ and microwave‐assisted extractions.J. Food Process Eng.2021446e1370910.1111/jfpe.13709
    [Google Scholar]
  73. AryaP. KumarP. Comparison of ultrasound and microwave assisted extraction of diosgenin from Trigonella foenum graceum seed.Ultrason. Sonochem.20217410557210.1016/j.ultsonch.2021.105572 33933831
    [Google Scholar]
  74. SuttiarpornP. SeangwattanaT. SrisuratT. KongitthinonK. ChumnanvejN. LuangkaminS. Enhanced extraction of clove essential oil by ultrasound and microwave assisted hydrodistillation and their comparison in antioxidant activity.Curr. Res. Green Sus. Chem.2024810041110.1016/j.crgsc.2024.100411
    [Google Scholar]
  75. ManvarP. KatariyaD. VyasA. BhanderiP. KhuntR. Microwave assisted groebke-blackburn-bienayme multicomponent reaction to synthesis of Imidazo[1,2-a]pyridine-furan hybrids as possible therapeutic option for leukemia, colon cancer and prostate cancer.Curr. Microw. Chem.2024111375010.2174/0122133356294226240228103251
    [Google Scholar]
  76. MajhiS. MitraP. MondalP.K. Green synthesis of thiazoles and thiadiazoles having anticancer activities under microwave irradiation.Curr. Microw. Chem.2024112749410.2174/0122133356325646240715074628
    [Google Scholar]
  77. SridharS.K. BhavaniP.D. NoothiS. GajulaL.R. GoudanavarP. GowthamiB. NaveenN.R. Microwave revolution: Transforming biomedical synthesis for tissue engineering advancements.Curr. Microw. Chem.20241129511510.2174/0122133356321729240715094501
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356340478250313022323
Loading
/content/journals/cmic/10.2174/0122133356340478250313022323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test