Current Medicinal Chemistry - Volume 32, Issue 9, 2025
Volume 32, Issue 9, 2025
-
-
Ranunculin, Protoanemonin, and Anemonin: Pharmacological and Chemical Perspectives
More LessAuthors: Betelhem Sirak, Misgana Aragaw and Solomon TadesseRanunculin, a glucoside, serves as a chemotaxonomic marker in Ranunculaceae plants. When these plants are damaged, an enzyme β−glucosidase triggers the conversion of ranunculin into protoanemonin through hydrolysis. Subsequently, protoanemonin undergoes cyclodimerization to form anemonin. The inherent instability of ranunculin and the rapid dimerization of protoanemonin render them unsuitable for use in biological assays. Conversely, anemonin stands out as the optimal molecule for bioassays and demonstrates diverse biological properties, including anti-inflammatory, anti-infective, and anti-oxidant effects. Among these, anemonin exhibits the greatest promise in addressing arthritis, cerebral ischemia, and ulcerative colitis. Its potential medical uses are enhanced by its capacity to inhibit nitric oxide synthesis and successfully counteract lipopolysaccharide-induced inflammation. This review describes the chemistry and biological properties of anemonin and its precursors, including discussions on extraction, isolation, synthesis, and investigations into bioactivity and pharmacokinetics.
-
-
-
Mitochondrial Unfolded Protein Response (mtUPR) and Diseases
More LessMitochondria are the energy factories of cells, and their functions are closely related to cell homeostasis. The mitochondrial unfolded protein response (mtUPR) is a newly discovered mechanism for regulating mitochondrial homeostasis. When unfolded/misfolded proteins accumulate in mitochondria, the mitochondria release signals that regulate the transcription of certain proteins in the nucleus, thereby inducing the correct folding or degradation of proteins in mitochondria. Many studies have also shown that an abnormality of mtUPR is closely related to the occurrence and development of diseases. Here, we summarized the pathways regulating mtUPR signaling and reviewed the research progress on mtUPR in diseases. Finally, we summarized the currently identified agonists and inhibitors of the mtUPR and discussed the potential of the mtUPR as a therapeutic target for diseases.
-
-
-
Perineuronal Nets: From Structure to Neurological Disorders
More LessAuthors: Xianghe Li, Nuojin Li, Pingping Zhao, Dongyan Ren, Bin Luo and Tian ZhouPerineuronal nets (PNN) is condensed extracellular matrix (ECM) in the central nervous system (CNS), which surrounds cell soma, axon initial segments, and synapses. In the brain, most neurons surrounded by PNN are interneurons, especially the parvalbumin-expressing interneurons (PVI). The formation of PNN is involved in the PVI maturation as well as the onset and closure of critical periods for developmental plasticity end. Dysfunction of PVI can lead to some neurological disorders, such as schizophrenia, bipolar depression, and Alzheimer's disease. Similarly, PNN assembling abnormalities are often observed in human patients and animal disease models. PNN is thought to have a neuroprotective effect and interact with signaling molecules to regulate synaptic plasticity and neuronal activity. In this review, we provide an overview of the composition, structure, and functions of PNN. In addition, we highlight abnormal changes in PNN components in pathological conditions. Understanding the roles of different components of PNN will bring us a new perspective on brain plasticity and neurological disorders.
-
-
-
Protective Effects of Curcumin against Alcoholic Fatty Liver
More LessAlcoholism is a global health concern. Due to its role as the principal site of ethanol metabolism, the liver endures the most significant amount of tissue damage from heavy drinking. Numerous liver lesions can result from chronic and heavy alcohol use, including steatosis, hepatitis, and fibrosis/cirrhosis. Fatty liver is caused by a redox shift from the oxidized to the reduced form of nicotinamide adenine dinucleotide (NAD+) caused by the ethanol oxidation reaction. The other molecular mechanisms related to the progression of alcohol-induced liver injury are increasing sterol regulatory element-binding protein-1 (SREBP-1) and decreasing PPAR-α activity, cell signaling pathway impairment, reactive oxygen species (ROS) accumulation, and lipid peroxidation. Curcuma longa L. rhizomes contain a substance called curcumin, which is naturally yellow in color and is also known as turmeric yellow. Curcumin has powerful biological and pharmacological properties, including antioxidant, anti-inflammatory, antifungal, antibacterial, antitumor, and anticancer effects. It's been employed as a hepatoprotective substance. Current studies have demonstrated the ability of curcumin to prevent the activation of NF-κB in Kupffer cells via endotoxins, to suppress the expression of various cytokines, chemokines, cyclooxygenase-2 (COX-2), and iNOS, as well as to modulate immune responses. The present study has shown the vital role of curcumin in a variety of hepatotoxic procedures, and summarizes those effects, focusing on the molecular insights they provide.
-
-
-
Pharmacological Activities of Turmerones
More LessTurmerones are major bioactive compounds of Curcuma species with several beneficial pharmacological activities. In addition, various in vivo and in vitro studies noted that turmerones could affect different cytokines, metabolic pathways, and targets. Turmerones will have the potential to be a candidate agent to lessen many pathological and immunological conditions as a result of these pharmacological activities. In this review, we provided information about the pharmacological actions of turmerones using search engines such as PubMed, Google Scholar, Scopus, and Web of Science.
-
-
-
Metformin Effects on SHIP2, AMPKs and Gut Microbiota: Recent Updates on Pharmacology
More LessIntroductionMetformin, a biguanide on the WHO’s list of essential medicines has a long history of 50 years or more in treating hyperglycemia, and its therapeutic saga continues beyond diabetes treatment. Glucoregulatory actions are central to the physiological effects of metformin; surprisingly, the precise mechanism with which metformin regulates glucose metabolism is not thoroughly understood yet.
MethodsThe main aim of this review is to explore the recent implications of metformin in hepatic gluconeogenesis, AMPKs, and SHIP2 and subsequently to elucidate the metformin action across intestine and gut microbiota. We have searched PubMed, Google scholar, Medline, eMedicine, National Library of Medicine (NLM), clinicaltrials.gov (registry), and ReleMed for the implications of metformin with its updated role in AMPKs, SHIP2, and hepatic gluoconeogenesis, and gut microbiota. In this review, we have described the efficacy of metformin as a drug repurposing strategy in modulating the role of AMPKs lysosomal-AMPKs, and also, the controversies associated with metformin.
ResultsResearch suggests that biguanide exhibits hormetic effects depending on the concentrations used (micromolar to millimolar). The primary mechanism attributed to metformin action is the inhibition of mitochondrial complex I, and subsequent reduction of cellular energy state, as observed with increased AMP or ADP ratio, thereby metformin can also activate the cellular energy sensor AMPK to inhibit hepatic gluconeogenesis. However, new mechanistic models have been proposed lately to explain the pleiotropic actions of metformin; at low dose, metformin can activate lysosomal-AMPK via the AXIN-LKB1 pathway. Conversely, in an AMPK-independent mechanism, metformin-induced elevation of AMP suppresses adenylate cyclase and glucagon-activated cAMP production to inhibit hepatic glucose output by glucagon. Metformin inhibits mitochondrial glycerophosphate dehydrogenase; mGPDH, and increases the cytosolic NADH/NAD+, affecting the availability of lactate and glycerol for gluconeogenesis. Metformin can inhibit Src homology 2 domain-containing inositol 5-phosphatase 2; SHIP2 to increase the insulin sensitivity and glucose uptake by peripheral tissues. In addition, new exciting mechanisms suggest the role of metformin in promoting beneficial gut microbiome and gut health. Metformin regulates duodenal AMPK activation, incretin harmone secretion and bile acid homeostasis to improve intestinal glucose absorption and utilization.
ConclusionThe proper understanding of the key regulators of metformin actions is of utmost importance to enhance its pleotropic benefits on diabetes and beyond.
-
-
-
Evidence for the Involvement of Gene Regulation of Inflammatory Molecules in the Accumulation of Intracellular Cholesterol: The Mechanism of Foam Cell Formation in Atherosclerosis
More LessBackgroundThe relationship between the cellular pro-inflammatory response and intracellular lipid accumulation in atherosclerosis is not sufficiently studied. Transcriptomic analysis is one way to establish such a relationship. Previously, we identified 10 potential key genes (IL-15, CXCL8, PERK, IL-7, IL-7R, DUSP1, TIGIT, F2RL1, TSPYL2, and ANXA1) involved in cholesterol accumulation in macrophages. It should be noted that all these genes do not directly participate in cholesterol metabolism, but encode molecules related to inflammation.
MethodsIn this study, we conducted a knock-down of the 10 identified key genes using siRNA to determine their possible role in cholesterol accumulation in macrophages. To assess cholesterol accumulation, human monocyte-derived macrophages (MDM) were incubated with atherogenic LDL from patients with atherosclerosis. Cholesterol content was assessed by the enzymatic method. Differentially expressed genes were identified with DESeq2 analysis. Master genes were determined by the functional analysis.
ResultsWe found that only 5 out of 10 genes (IL-15, PERK, IL-7, IL-7R, ANXA1) can affect intracellular lipid accumulation. Knock-down of the IL-15, PERK, and ANXA1 genes prevented lipid accumulation, while knock-down of the IL-7 and IL-7R genes led to increased intracellular lipid accumulation during incubation of MDM with atherogenic LDL. Seventeen overexpressed genes and 189 underexpressed genes were obtained in the DGE analysis, which allowed us to discover 20 upregulated and 86 downregulated metabolic pathways, a number of which are associated with chronic inflammation and insulin signaling. We also elucidated 13 master regulators of cholesterol accumulation that are immune response-associated genes.
ConclusionThus, it was discovered that 5 inflammation-related master regulators may be involved in lipid accumulation in macrophages. Therefore, the pro-inflammatory response of macrophages may trigger foam cell formation rather than the other way around, where intracellular lipid accumulation causes an inflammatory response, as previously assumed.
-
-
-
Anti-migratory Properties of Cryoprotective Isoliquiritigenin-zein Phosphatidylcholine Nanoparticles Prevent Triple-negative Breast Cancer through PI3K-mTOR and MMP2/9 Pathways
More LessAuthors: Cong Xu, Cheng Zhang, Kumar Ganesan, Chen Qui, Hailin Tang, Fei Gao, Qingqing Liu, Jianming Wu, Yue Sui, Peng Li, Jinming Zhang and Jianping ChenIntroductionTriple-negative breast cancer (TNBC), an aggressive type of breast cancer, remains difficult to treat. Isoliquiritigenin (ISL) is a bioactive compound that is insoluble in water and exhibits significant anti-TNBC activity.
MethodsWe previously prepared oral aqueous ISL@ZLH NPs; however, they were less stable in a freezing environment. Hence, the present study aimed to improve the stability of ISL@ZLH NPs using cryoprotectants that can withstand long storage times and are effective in TNBC treatment by creating an efficient oral drug delivery system. Freeze-dried ISL@ZLH NP powder was prepared by solvent evaporation, followed by the addition of trehalose and sucrose. The freeze-dried ISL@ZLH NP pow was optimized and characterized. The anti-TNBC efficacy and pharmacokinetics of the ISL@ZLH NP-pow were examined in plasma and organs, compared with those of aqueous ISL@ZLH NPs.
ResultsThe ideal particle size of the ISL@ZLH NP pow was 118 nm, which was not filtered out by the glomerulus and allowed the drug to be delivered to the lesions more effectively. Cellular uptake and biodistribution of the ISL@ZLH NP-pow in vivo and in vitro showed prolonged storage in the organs. In addition, cryopreserved ISL@ZLH NP-treated tumors showed significant anti-proliferative and anti-migratory effects through the downregulation of the PI3K-Akt-mToR and MMP2/9 signaling pathways.
ConclusionThese results suggest that oral ingestion of cryopreserved ISL@ZLH NP has the potential for long-term storage and can be employed as a clinical therapeutic approach to treat TNBC.
-
-
-
Synthesis of Bis-thiazoles Tethered 1,4-Dihydropyridine and Pyridine Linkers via Simple Oxidation and their Molecular Docking as VEGFR-TK Inhibitors
More LessAimIn this study, a neoteric and expedient oxidation method is applied for a variety of Hantzsch 1,4-dihydropyridine derivatives such as 1,4-dihydro-2,6-dimethyl-3,5-diacetylpyridine, 3,5-bis-hydrazono--2,6-dimethyl-1,4-dihydropyridine, and 3,5-bis-thiazoly-2,6-dimethyl-1,4-dihydro pyridines.
MethodsThis simple oxidation is based upon the in situ generation of nitrous acid from an aqueous sodium nitrite and acetic acid mixture and could be used to downgrade costs, sustain resources, and minimize chemical wastes. Also, a molecular modeling strategy was used to study the mechanism of action for various derivatives of bis-hydrazinylidene-thiazole as the protein Vascular Endothelial Growth Factor Receptor Tyrosine Kinase (VEGFR TK) inhibitor through evaluating their binding scores and modes compared with Sorafenib as a reference standard.
ResultsThe results revealed that the interaction of hydrazinylidene and thiazole as an anticancer Tyrosine Kinase inhibitor has been improved.
ConclusionAdditionally, the compounds exhibiting the highest activity were assessed for their potential anticancer effects against HepG-2, MCF-7, and WI-38 cells, and the outcomes demonstrated encouraging activity against cancer.
-
-
-
Time Course of Biochemical and Metabolic Parameters During and After COVID-19
More LessBackgroundLong COVID is characterized by the persistence of symptoms among individuals who are infected with the SARS-CoV-2 virus. The enduring impact of these long-term effects on the health and well-being of those affected cannot be denied.
Methods470 patients with SARS-CoV-2 were consecutively recruited in this longitudinal study. The participants were entered into moderate, severe, and critical groups. 235 out of 470 participants were female. The levels of fasting blood sugar (FBS), alanine transaminase (SGPT), aspartate aminotransferase (SGOT), alkaline phosphatase (ALP), creatinine (Cr), urea, uric acid (UA), and total protein (TP) were measured during hospitalization and again at one and three months after infection. The levels of Zn and hemoglobin A1c (HbA1c) were also measured only during hospitalization.
ResultsCOVID-19 severity was associated with high levels of glucose, urea, Cr, ALT, AST, ALP, and HbA1c, and low levels of Zn, UA, and TP. There were significant sex differences for these markers at all three-time points. Glucose, urea, Cr, ALT, AST, and ALP all decreased three months after infection, whereas the levels of UA and TP returned towards normal.
ConclusionCOVID-19 infection affects the levels of multiple biochemical factors in a gender-dependent manner. The biochemical changes become more tangible with increasing disease severity, and several of these predict mortality. Levels begin to return to normal after the acute phase of the disease, but in some individuals, at three months, several markers were still not within the normal range. Whether the trajectory of these changes can predict long COVID requires further testing.
-
-
-
Exploring the Therapeutic Potential of Coumarin-thiazolotriazole Pharmacophores for SARS-CoV-2 Spike Protein through In-vitro and In-silico Evaluation
More LessIntroductionThe pandemic caused by SARS-CoV-2 significantly impacted human life around the globe. Numerous unexpected modifications of the SARS-CoV-2 genome have resulted in the emergence of new types and have caused great concern globally.
MethodsInhibitory effects of bioactive phytochemicals derived from natural and synthetic sources are promising for pathogenic viruses. In vitro and in silico techniques were used in the current study to identify novel inhibitors of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles against the SARS-CoV-2 spike protein.
ResultsInterestingly, all the tested molecules demonstrated substantial inhibition of spike protein with 91.81-57.90% inhibition. The spike protein was remarkably inhibited by compounds 6k (91.83%), 6j (89.75%), 6m (87.69%),6i (86.60%), 6l (85.40%), 6h (84.70%), 6l (84.70%), 6g (83.40%), 6b (82.60%), 6f (81.90%), while compounds 6d 6a, 6c, and 6e exhibited significant activity against spike protein with 79.60%, 77.10%, 75.30%, and 57.90% inhibition, respectively. The binding mechanism of these novel inhibitors with spike protein was deduced in silico, which reflects that the active molecules firmly bind with the receptor binding domain (RBD) of spike protein, thereby inhibiting its function.
ConclusionThe combined in vitro and in silico investigations unfold the therapeutic potential of coumarin-thiazolotriazole scaffolds in the treatment of SARS-CoV-2 infection.
-
-
-
Therapeutic Potential of Traditional Oriental Medicines in Targeting Tau Pathology: Insights from Cell-free and Cell-based Screening
More LessAuthors: Hyun Ha Park, Byeong-Hyeon Kim, Seol Hwa Leem, Yong Ho Park, Hyunju Chung, Doo-Han Yoo, Insu Park, Yunkwon Nam, Sujin Kim, Soo Jung Shin and Minho MoonBackgroundTraditional Oriental Medicines (TOMs) formulated using a variety of medicinal plants have a low risk of side effects. In previous studies, five TOMs, namely Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, Palmijihwanghwan, and Jowiseungchungtang have been commonly used to treat patients with Alzheimer’s disease (AD). However, only a few studies have investigated the effects of these five TOMs on tau pathology.
ObjectiveThis study aimed to examine the effect of five TOMs on various tau pathologies, including post-translational modifications, aggregation and deposition, tau-induced neurotoxicity, and tau-induced neuroinflammation.
MethodsImmunocytochemistry was used to investigate the hyperphosphorylation of tau induced by okadaic acid. In addition, the thioflavin T assay was used to assess the effects of the TOMs on the inhibition of tau K18 aggregation and the dissociation of tau K18 aggregates. Moreover, a water-soluble tetrazolium-1 assay and a quantitative reverse transcription polymerase chain reaction were used to evaluate the effects of the TOMs on tau-induced neurotoxicity and inflammatory cytokines in HT22 and BV2 cells, respectively.
ResultsThe five TOMs investigated in this study significantly reduced okadaic acid-induced tau hyperphosphorylation. Hwanglyeonhaedoktang inhibited the aggregation of tau and promoted the dissociation of tau aggregates. Dangguijakyaksan and Hwanglyeonhaedoktang attenuated tau-induced neurotoxicity in HT22 cells. In addition, Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, and Palmijihwanghwan reduced tau-induced pro-inflammatory cytokine levels in BV2 cells.
ConclusionOur results suggest that five TOMs are potential therapeutic candidates for tau pathology. In particular, Hwanglyeonhaedoktang showed the greatest efficacy among the five TOMs in cell-free and cell-based screening approaches. These findings suggest that Hwanglyeonhaedoktang is suitable for treating AD patients with tau pathology.
-
-
-
L-ascorbate Alleviates Chronic Obstructive Pulmonary Disease through the EGF/PI3K/AKT Signaling Axis
More LessAuthors: Ji Yao, Li Zhang, Zezhi Zhou, Jiqiang Liu, Jie Cheng, Fan Long and Ting YuanBackgroundThe molecular mechanism of L-ascorbate (Vitamin C) in the treatment of Chronic Obstructive Pulmonary Disease (COPD) has not been fully explained. In this study, we aimed to explore the potential signaling pathways of L-ascorbate in the treatment of COPD.
MethodsThe non-targeted metabolomics method was used to analyze the differential metabolites in the blood of healthy subjects and COPD patients. The COPD rat model was established by exposing them to Cigarette Smoke (CS). Network pharmacology, molecular docking, and molecular dynamics simulation analyses were performed to analyze the regulatory pathways of the differential metabolites.
ResultsA non-targeted metabolomics analysis revealed metabolic disorders and significantly reduced levels of L-ascorbate in COPD patients compared with healthy subjects. The L-ascorbate intervention reduced lung inflammation and histological damage in COPD rat models. Network pharmacology analysis revealed 280 common targets between L-ascorbate (drug) and COPD (disease), of which seven core targets were MMP3, MME, PCNA, GCLC, SOD2, EDN1, and EGF. According to molecular docking prediction, L-ascorbate had the highest affinity with EGF. Molecular dynamics simulation indicated relatively stable EGF and L-ascorbate complexes. The PI3K/AKT signaling pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analysis. In vivo and in vitro experiments confirmed that L-ascorbate affected COPD by regulating the EGF/PI3K/AKT pathway.
ConclusionIn summary, based on network pharmacology and molecular docking analyses, this study revealed that L-ascorbate affects COPD development by regulating the PI3K/AKT signaling pathway through EGF and thus contributes to the understanding and clinical application of L-ascorbate in the treatment of COPD.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month