Current Medicinal Chemistry - Volume 30, Issue 40, 2023
Volume 30, Issue 40, 2023
-
-
Hydrogen Sulfide (H2S): As a Potent Modulator and Therapeutic Prodrug in Cancer
Authors: Pawan Faris, Sharon Negri, Delia Faris, Francesca Scolari, Daniela Montagna and Francesco MocciaHydrogen sulfide (H2S) is an endogenous gaseous molecule present in all living organisms that has been traditionally studied for its toxicity. Interestingly, increased understanding of H2S effects in organ physiology has recently shown its relevance as a signalling molecule, with potentially important implications in variety of clinical disorders, including cancer. H2S is primarily produced in mammalian cells under various enzymatic pathways are target of intense research biological mechanisms, and therapeutic effects of H2S. Herein, we describe the physiological and biochemical properties of H2S, the enzymatic pathways leading to its endogenous production and its catabolic routes. In addition, we discuss the role of currently known H2S-releasing agents, or H2S donors, including their potential as therapeutic tools. Then we illustrate the mechanisms known to support the pleiotropic effects of H2S, with a particular focus on persulfhydration, which plays a key role in H2S-mediating signalling pathways. We then address the paradoxical role played by H2S in tumour biology and discuss the potential of exploiting H2S levels as novel cancer biomarkers and diagnostic tools. Finally, we describe the most recent preclinical applications focused on assessing the anti-cancer impact of most common H2S-releasing compounds. While the evidence in favour of H2S as an alternative cancer therapy in the field of translational medicine is yet to be clearly provided, application of H2S is emerging as a potent anticancer therapy in preclinical trails.
-
-
-
GPCR Allostery: A View from Computational Biology
Authors: Mengrong Li, Yiqiong Bao, Miaomiao Li and Jingjing GuoG protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface proteins that mediate cell signaling and regulate virtually various aspects of physiological and pathological processes, therefore serving as a rich source of drug targets. As intrinsically allosteric proteins, numerous functions of GPCRs are regulated via allostery, whereby allosteric modulators binding at a distal site regulate the function of the typical orthosteric site. However, only a few GPCR allosteric ligands have been presently approved as drugs due to the high dynamic structures of GPCRs. Fortunately, the rapid development of computational biology sheds light on understanding the mechanism of GPCR allosteric ligands, which is critical for the discovery of new therapeutic agents. Here, we present a comprehensive overview of the currently available resources and approaches in computational biology related to G protein-coupled receptor allostery and their conformational dynamics. In addition, current limitations and major challenges in the field are also discussed accordingly.
-
-
-
Understanding the Potential Function of Perivascular Adipose Tissue in Abdominal Aortic Aneurysms: Current Research Status and Future Expectation
Authors: Xi-Yan Liu, Tao Wen, Ze-Fan Wu, Nian-Hua Deng, Hui-Ting Liu, Zhong Ren, Wen-Hao Xiong and Zhi-Sheng JiangAn abdominal aortic aneurysm (AAA) is a progressive dilatation of the vascular wall occurring below the aortic fissure, preferably occurring below the renal artery. The molecular mechanism of AAA has not yet been elucidated. In the past few decades, research on abdominal aortic aneurysm has been mainly focused on the vessel wall, and it is generally accepted that inflammation and middle layer fracture of the vessel wall is the core steps in the development of AAA. However, perivascular adipose tissue plays a non-negligible role in the occurrence and development of AAA. The position of PVAT plays a supporting and protective role on the vascular wall, but the particularity of the location makes it not only have the physiological function of visceral fat; but also can regulate the vascular function by secreting a large number of adipokines and cytokines. An abdominal aortic aneurysm is getting higher and higher, with a vascular rupture, low rescue success rate, and extremely high lethality rate. At present, there is no drug to control the progression or reverse abdominal aortic aneurysm. Therefore, it is critical to deeply explore the mechanism of abdominal aortic aneurysms and find new therapeutic ways to inhibit abdominal aortic aneurysm formation and disease progression. An abdominal aortic aneurysm is mainly characterized by inflammation of the vessel wall and matrix metalloprotein degradation. In this review, we mainly focus on the cytokines released by the perivascular adipose tissue, summarize the mechanisms involved in the regulation of abdominal aortic aneurysms, and provide new research directions for studying abdominal aortic aneurysms.
-
-
-
Labelling Matrix Metalloproteinases
Authors: Run-Fu Zhang, Bing Zhang, Wang Chang-Jiang and Jing-Yi JinMatrix metalloproteinases (MMPs) are a family of zinc-containing proteases that participate in many physiological and pathological processes in vivo. Recently, the MMP network has been established according to a deeper understanding of its functions. Some MMPs have been also regarded as biomarkers of various diseases, including inflammation, nerve diseases, and cancers. MMP labelling has been thus paid more attention in recent decades. Accordingly, both reagents and technologies for MMP labelling have been rapidly developed. Here we summarize the recent development of some MMP labelling methods. This review was identified through keyword (MMPs; labelling; etc.) searches in the ScienceDirect database, Scifinder, Web of Science, and PubMed for which typical cases were used for an inductive overview. In spite of the advances in MMP labelling, selective labelling of a specific MMP is still an open issue. We hope that this article can be helpful in developing specific MMP labelling methods in future.
-
-
-
A Review on the Natural Components Applied as Lead Compounds for Potential Multi-target Anti-AD Theranostic Agents
Authors: Xiaodi Kou, Xuli Shi, Zi Pang, Aihong Yang, Rui Shen and Lihua ZhaoAlzheimer's disease (AD) is a neurodegenerative disease that seriously affects the health and quality of life of the elderly. Its pathogenesis is very complex and there is still a lack of effective clinical drugs to treat or control the development of AD. Studies have shown that β-amyloid (Aβ) deposition, tau protein hyperphosphorylation, reduced levels of brain cholinergic transmitters, and oxidative stress are the main causes of AD. Furthermore, recent studies showed that metal dyshomeostasis could relate to all the above pathogenesis of AD and was a key factor in the development of AD. Natural compounds and their derivatives have multi-target therapeutic effects on AD, and they also have the advantages of low toxicity, and low cost, which are important directions for anti- AD drugs. Meanwhile, early detection may play an important role in preventing the development of AD. The concept of “theranostic agent” combining molecular imaging probes and therapeutic drugs has emerged in recent years. Fluorescence imaging has been widely studied and applied because of its non-invasive, high resolution, high sensitivity, rapid imaging, and low cost. However, at present, most of the research methods in this field use individual therapeutic or diagnostic reagents, which is not conducive to exploring the optimal treatment time window and drug efficacy. Therefore, this work reviewed the natural compounds and their derivatives which all have been studied for both the in vitro and in vivo therapeutic and diagnostic anti-AD activities. At last, structure and activity relationship (SAR) was discussed and potential AD theranostic natural agents were put forwarded to provide a more detailed theoretical basis for the further development of drugs with diagnostic and therapeutic effects in AD.
-
-
-
YF343, A Novel Histone Deacetylase Inhibitor, Combined with CQ to Inhibit- Autophagy, Contributes to Increased Apoptosis in Triple- Negative Breast Cancer
Authors: Na Liu, Tingting Luo, Jing Zhang, Li-na Han, Wen-qi Duan, Wen-xia Lu, Huiran Qiu, Yan Lin, Yong-mei Wu, Hua Zhang, Fei-fei Yang and Di GeBackground: Compounds that target tumor epigenetic events are likely to constitute a prominent strategy for anticancer treatment. Histone deacetylase inhibitors (HDACis) have been developed as prospective candidates in anticancer drug development, and currently, many of them are under clinical investigation. We assessed the anticancer efficacy of a now hydroxamate-based HDACi, YF-343, in triple-negative breast cancer development and studied its potential mechanisms. Methods: YF-343 was estimated as a novel HDACi by the HDACi drug screening kit. The biological effects of YF-343 in a panel of breast cancer cell lines were analyzed by Western blot and flow cytometry. YF-343 exhibited notable cytotoxicity, promoted apoptosis, and induced cell cycle arrest. Furthermore, it also induced autophagy, which plays a pro-survival role in breast cancer cells. Results: The combination of YF-343 with an autophagy inhibitor chloroquine (CQ) significantly suppressed breast tumor progression as compared to the YF-343 treatment alone both in vitro and in vivo. Mechanistically, the molecular mechanism of YF-343 on autophagy was elucidated by gene chip expression profiles, qPCR analysis, luciferase reporter gene assay, chromatin immunoprecipitation assays, immunohistochemical analysis, and other methods. E2F7, a transcription factor, promoted the expression of ATG2A via binding to the ATG2A promoter region and then induced autophagy in triple-negative breast cancer cells treated with YF-343. Conclusion: Our studies have illustrated the mechanisms for potential action of YF-343 on tumor growth in breast cancer models with pro-survival autophagy. The combination therapy of YF-343 and CQ maybe a promising strategy for breast cancer therapy.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
