Current Medicinal Chemistry - Volume 30, Issue 3, 2023
Volume 30, Issue 3, 2023
-
-
Nanotechnology: A Promising Targeted Drug Delivery System for Brain Tumours and Alzheimer's Disease
Authors: Aziz Unnisa, Nigel H. Greig and Mohammad A. KamalNanotechnology is the process of modulating shape and size at the nanoscale to design and manufacture structures, devices, and systems. Nanotechnology's prospective breakthroughs are incredible, and some cannot even be comprehended right now. The blood-brain barrier, which is a prominent physiological barrier in the brain, limits the adequate elimination of malignant cells by changing the concentration of therapeutic agents at the target tissue. Nanotechnology has sparked interest in recent years as a way to solve these issues and improve drug delivery. Inorganic and organic nanomaterials have been found to be beneficial for bioimaging approaches and controlled drug delivery systems. Brain cancer (BC) and Alzheimer’s disease (AD) are two of the prominent disorders of the brain. Even though the pathophysiology and pathways for both disorders are different, nanotechnology with common features can deliver drugs over the BBB, advancing the treatment of both disorders. This innovative technology could provide a foundation for combining diagnostics, treatments, and delivery of targeted drugs to the tumour site, further supervising the response and designing and delivering materials by employing atomic and molecular elements. There is currently limited treatment for Alzheimer's disease, and reversing further progression is difficult. Recently, various nanocarriers have been investigated to improve the bioavailability and efficacy of many AD treatment drugs. Nanotechnology-assisted drugs can penetrate the BBB and reach the target tissue. However, further research is required in this field to ensure the safety and efficacy of drug-loaded nanoparticles. The application of nanotechnology in the diagnosis and treatment of brain tumours and Alzheimer's disease is briefly discussed in this review.
-
-
-
Nanoinformatics and Personalized Medicine: An Advanced Cumulative Approach for Cancer Management
Authors: Fariya Khan, Salman Akhtar and Mohammad A. KamalBackground: Even though the battle against one of the deadliest diseases, cancer, has advanced remarkably in the last few decades and the survival rate has improved significantly; the search for an ultimate cure remains a utopia. Nanoinformatics, which is bioinformatics coupled with nanotechnology, endows many novel research opportunities in the preclinical and clinical development of personalized nanosized drug carriers in cancer therapy. Personalized nanomedicines serve as a promising treatment option for cancer owing to their noninvasiveness and their novel approach. Explicitly, the field of personalized medicine is expected to have an enormous impact soon because of its many advantages, namely its versatility to adapt a drug to a cohort of patients. Objective: The current review explains the application of this newly emerging field called nanoinformatics to the field of precision medicine. This review also recapitulates how nanoinformatics could hasten the development of personalized nanomedicine for cancer, which is undoubtedly the need of the hour. Conclusion: This approach has been facilitated by a humongous impending field named Nanoinformatics. These breakthroughs and advances have provided insight into the future of personalized medicine. Imperatively, they have been enabling landmark research to merge all advances, creating nanosized particles that contain drugs targeting cell surface receptors and other potent molecules designed to kill cancerous cells. Nanoparticle- based medicine has been developing and has become a center of attention in recent years, focusing primely on proficient delivery systems for various chemotherapy drugs.
-
-
-
Curcumin Nanofibers: A Novel Approach to Enhance the Anticancer Potential and Bioavailability of Curcuminoids
Development of novel treatment methods for cancer is needed given the limitations of current treatment methods, including side effects and chemotherapeutic resistance, which may provide new hope to cancer patients. Cancer is the second leading cause of global mortality. Curcumin, the active ingredient of turmeric, has been used since ancient times for various therapeutic purposes. Several studies have identified its activity against cancer. Despite the established anticancer activity of curcumin, its low aqueous solubility and bioavailability are barriers to its effectiveness. In an attempt to solve this problem, many studies have formulated curcumin nanofiber preparations using a variety of methods. Electrospinning is a simple and affordable method for the production of nanofibers. Studies have shown increased curcumin bioavailability in nanofibers resulting from their high surface/volume ratio and porosity. We have undertaken a detailed review of studies on the anticancer effects of curcumin nanofibers. Curcumin acts by inhibiting various biological cancer pathways, including NF-ΚB, mTOR, complex I, cytokines, expression of p-p65, Ki67, and angiogenesis-associated genes. It also induces apoptosis through activation of caspase pathways and ROS production in cancer cells. Curcumin-loaded PLA50/PVP50/Cur15 nanofibers were investigated in breast cancer, one of the most studied cancers, and was shown to have significant effects on the widely used HeLa-cell line. Most of the studies undertaken have been performed in cell lines in vitro, while relatively few animal studies have been reported. More preclinical and clinical studies are needed to evaluate the anticancer activity of curcumin nanofibers. Amongst studies undertaken, a variety of curcumin nanofibers of various formulations have been shown to suppress a variety of cancer types. Overall, curcumin nanofibers have been found to be more efficient than free curcumin. Thus, curcumin nanofibers have been observed to improvise cancer treatment, offering great potential for effective cancer management. Further studies, both in vitro and in vivo, involving curcumin nanofibers have the potential to benefit cancer management.
-
-
-
Nanoparticle Mediated Gene Therapy: A Trailblazer Armament to Fight CNS Disorders
Authors: Annu, Saleha Rehman, Bushra Nabi, Ali Sartaj, Shadab Md, PK Sahoo, Sanjula Baboota and Javed AliCentral nervous system (CNS) disorders account for boundless socioeconomic burdens with devastating effects among the population, especially the elderly. The major symptoms of these disorders are neurodegeneration, neuroinflammation, and cognitive dysfunction caused by inherited genetic mutations or by genetic and epigenetic changes due to injury, environmental factors, and disease-related events. Currently available clinical treatments for CNS diseases, i.e., Alzheimer’s disease, Parkinson’s disease, stroke, and brain tumor, have significant side effects and are largely unable to halt the clinical progression. So gene therapy displays a new paradigm in the treatment of these disorders with some modalities, varying from the suppression of endogenous genes to the expression of exogenous genes. Both viral and non-viral vectors are commonly used for gene therapy. Viral vectors are quite effective but associated with severe side effects, like immunogenicity and carcinogenicity, and poor target cell specificity. Thus, non-viral vectors, mainly nanotherapeutics like nanoparticles (NPs), turn out to be a realistic approach in gene therapy, achieving higher efficacy. NPs demonstrate a new avenue in pharmacotherapy for the delivery of drugs or genes to their selective cells or tissue, thus providing concentrated and constant drug delivery to targeted tissues, minimizing systemic toxicity and side effects. The current review will emphasize the role of NPs in mediating gene therapy for CNS disorders treatment. Moreover, the challenges and perspectives of NPs in gene therapy will be summarized.
-
-
-
Gold Nanoparticles in Triple-Negative Breast Cancer Therapeutics
Authors: Zakia Akter, Fabiha Z. Khan and Md. Asaduzzaman KhanBackground: Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells. Methods: Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria “gold nanoparticles and triple-negative breast cancer” and “gold nanoparticles and cancer”. Though we reviewed many old papers, the most cited papers were from the last ten years. Results: Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics. Conclusion: This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.
-
-
-
Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
-
-
-
The Fractal Viewpoint of Tumors and Nanoparticles
Even though the promising therapies against cancer are rapidly improved, the oncology patients population has seen exponential growth, placing cancer in 5th place among the ten deadliest diseases. Efficient drug delivery systems must overcome multiple barriers and maximize drug delivery to the target tumors, simultaneously limiting side effects. Since the first observation of the quantum tunneling phenomenon, many multidisciplinary studies have offered quantum-inspired solutions to optimized tumor mapping and efficient nanodrug design. The property of a wave function to propagate through a potential barrier offer the capability of obtaining 3D surface profiles using imaging of individual atoms on the surface of a material. The application of quantum tunneling on a scanning tunneling microscope offers an exact surface roughness mapping of tumors and pharmaceutical particles. Critical elements to cancer nanotherapeutics apply the fractal theory and calculate the fractal dimension for efficient tumor surface imaging at the atomic level. This review study presents the latest biological approaches to cancer management based on fractal geometry.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
