Current Medicinal Chemistry - Volume 30, Issue 22, 2023
Volume 30, Issue 22, 2023
-
-
Therapeutic Potential of Genistein: Preclinical Studies, Clinical Evidence, and Nanotechnology Application
Authors: Ana J. Coutinho, Marina Pinheiro, Ana R. Neves and Madalena M.M. PintoGenistein (4’,5,7-trihydroxyisoflavone) is a natural plant-derived phytoestrogen that can be found, for example, in soybean seeds. Genistein is present mainly in the human diet and is a common precursor in the antimicrobial phytoalexins biosynthesis and phytoanticipins in vegetables. The interest in genistein has increased due to its pharmacological effects, including anti-cancer activity, neuroprotective effects, cardiovascular protection, anti-inflammatory effects, antioxidant activity, and prevention of obesity. The most challenging issue for improving genistein is its low oral bioavailability, which has led to many animal and human pharmacokinetic studies and numerous clinical trials. Several drug delivery systems have been developed to protect and stabilize genistein to overcome the challenge of low bioavailability. This work concerns a revision of the literature reporting nano and microformulations for genistein encapsulation, including lipid nanoparticles, liposomes, tocotrienol-rich nanoemulsions, polymeric nanoparticles, dextran complexes, chitosan complexes, and Fe3O4 nanoparticles with carboxymethylated chitosan. Regarding the enormous potential of genistein, several clinical trials and marketed formulations can be found in the market.
-
-
-
The Structure-property Relationships of Clinically Approved Protein Kinase Inhibitors
By Kihang ChoiBackground: Protein kinase inhibitors have become one of the most successful classes of small-molecule drugs during the last decades. In modern drug discovery, considering ‘drug-like’ physicochemical and pharmacokinetic properties as early as possible in drug design is widely acknowledged as an important strategy to reduce drug attrition rates. Methods: In this review, clinically approved 25 protein kinase inhibitors and their key analogues reported in medicinal chemistry literature were compared for their biological, physicochemical, and pharmacokinetic properties. Although there is no common trajectory to follow through complex drug discovery campaigns, knowledge of the structure-activity relationship obtained from the successful lead optimization studies might be extended to other drug design efforts. Results: Among more than 70 protein kinase inhibitors clinically approved around the world, the structure–activity relationships of 25 inhibitors and their key analogues are compiled from medicinal chemistry literature, in which detailed results from the ‘lead-tocandidate’ stage are available with associated property data. For the other inhibitors, such information has not been disclosed in the literature, or the available data is limited and not sufficient to provide clear structural analysis. Conclusion: The structure-property relationships summarized for 25 inhibitors and their analogues illustrate general guidelines for lead optimization and candidate selection, and this information could be extended for better property-based drug design in the future.
-
-
-
Entering the Sugar Rush Era: Revisiting the Antihyperglycemic Activities of Biguanides after a Century of Metformin Discovery
The development of clinically viable metformin analogs is a challenge largely to be overcome. Despite being an extremely efficient drug for the treatment of type 2 diabetes mellitus, multiple studies were conducted seeking to improve its hypoglycemic activity or to ameliorate aspects such as low oral absorption and the incidence of gastrointestinal side effects. Furthermore, efforts have been made to attribute new activities, or even to expand the pre-existing ones, that could enhance its effects on diabetes, such as pancreas-protective, antioxidant, and anti-inflammatory activities. In this paper, we describe the analogs of metformin developed in the last three decades, highlighting the lack of computationally based rational approaches to guide their development. We also discuss this is probably a consequence of how unclear the mechanism of action of the parent drug is and highlight the recent advances towards the establishment of the main molecular target(s) for metformin. We also explored the binding of metformin, buformin and phenformin to the mitochondrial respiratory chain complex I through molecular docking analyses and reviewed the prospects of applying computational tools to improve the success in the development of such analogs. Therefore, it becomes evident that the wide range of molecular targets and the multiple activities displayed by metformin make this drug a promising prototype for developing novel entities, particularly for treating type 2 diabetes mellitus.
-
-
-
Regulatory Mechanisms of Vanillic Acid in Cardiovascular Diseases: A Review
Cardiovascular diseases (CVD) are the primary cause of death globally. Activation of oxidative stress and inflammatory pathways are contributory to the development of CVD. Pharmacological activities of vanillic acid have been investigated suggesting that they may have therapeutic utility clinically. Given its phenolic nature, the anti-inflammatory and antioxidant properties of vanillic acid have been shown to exert potent inhibitory activity against Adenosine Monophosphate-Activated Protein Kinase (AMPK), Nuclear Factor Kappa B (NF- ΚB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Nod128;like receptor family protein (NLRP), Toll-like receptors (TLRs), Mitogen-Activated Signaling Proteins (MAPK) and Mammalian Target of Rapamycin (mTOR) signaling pathways. Vanillic acid has been shown to block pro-inflammatory cytokines and suppress inflammatory cascades. The inhibitory impact of vanillic acid on reactive oxygen species (ROS) and nitric oxygen synthase (iNOS) expression has also been demonstrated. Vanillic acid reduces oxidative-related markers such as superoxide dismutase (SOD), glutathione (GSH), Heme Oxygenase 1 (HO-1), and glutathione peroxidase (GSH-Px). Here, we review the cardioprotective effects and mechanisms of action of vanillic acid in CVD. Current potential applications of vanillic acid in CVD are discussed concerning preclinical and clinical studies.
-
-
-
HDAC3 Impairs Cardiac Function in Chronic Heart Failure Rats via Mediating MicroRNA-26b-3p to Target High Mobility Group AT-Hook 2
Authors: Xinyuan Han, Shunda Wang, Zhijun Yong, Xueting Zhang, Xuanqi Wang and Chaofeng SunBackground: Histone deacetylase 3 (HDAC3) has been studied in chronic heart failure (CHF), while the regulatory mechanism of HDAC3 on the development of CHF in regulating microRNA (miR)-26b-3p/high mobility group AT-hook 2 (HMGA2) axis has not been extensively investigated. This study aimed to probe the effects of HDAC3, miR-26b-3p and HMGA2 on CHF. Methods: CHF rat models were established using aortic coarctation. HDAC3, miR-26b-3p and HMGA2 levels in CHF rats were examined. Thereafter, the CHF rats were injected with relative oligonucleotides and plasmids of HDAC3, miR-26b-3p and HMGA2 to detect the cardiac function, inflammatory reaction, myocardial tissue pathological changes, and cardiomyocyte apoptosis. The binding relationship between miR-26b-3p and HMGA2 and the interaction between HDAC3 and miR-26b-3p were validated. Results: HDAC3 and HMGA2 were elevated, while miR-26b-3p was decreased in CHF rats. The reduced HDAC3 or HMGA2 or enriched miR-26b-3p attenuated cardiac dysfunction, inflammatory reaction, myocardial tissue pathological changes and cardiomyocyte apoptosis in CHF rats, while the reduction of miR-26b-3p exerted the opposite effects. Furthermore, the inhibition of the miR-26b-3p or elevation of HMGA2 reversed the effect of reduced HDAC3 on mitigating CHF progression. Mechanically, miR-26b-3p targeted HMGA2 and HDAC3 bound to miR-26-3p. Conclusion: Downregulation of HDAC3 relieves cardiac function in CHF rats via mediating miR-26b-3p/HMGA2 axis. This study provides novel theory references and a distinct direction for the therapy strategies of CHF.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
