Current Medicinal Chemistry - Volume 29, Issue 4, 2022
Volume 29, Issue 4, 2022
-
-
Targeting Chikungunya Virus Entry: Alternatives for New Inhibitors in Drug Discovery
Chikungunya virus (CHIKV) is an Alphavirus (Togaviridae) responsible for Chikungunya fever (CHIKF) that is mainly characterized by a severe polyarthralgia, in which it is transmitted by the bite of infected Aedes aegypti and Ae. albopictus mosquitoes. Nowadays, there are no licensed vaccines or approved drugs to specifically treat this viral disease. Structural viral proteins participate in key steps of its replication cycle, such as viral entry, membrane fusion, nucleocapsid assembly, and virus budding. In this context, envelope E3-E2-E1 glycoproteins complex could be targeted for designing new drug candidates. In this review, aspects of the CHIKV entry mechanism are discussed to provide insights into assisting the drug discovery process. Moreover, several naturals, naturebased and synthetic compounds, as well as repurposed drugs and virtual screening are also explored as alternatives for developing CHIKV entry inhibitors. Finally, we provided a complementary analysis of studies involving inhibitors that were not explored by in silico methods. Based on this, Phe118, Val179, and Lys181 were found to be the most frequent residues, being present in 89.6, 82.7, and 93.1% of complexes, respectively. Lastly, some chemical aspects associated with interactions of these inhibitors and mature envelope E3- E2-E1 glycoproteins’ complex were discussed to provide data for scientists worldwide, supporting their search for new inhibitors against this emerging arbovirus.
-
-
-
Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy
Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since there is currently no causative drug against this viral infection available, science is striving for new drugs and other approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARSCoV- 2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.
-
-
-
Structural Basis for the Understanding of Entry Inhibitors against SARS Viruses
Authors: Prem K. Kushwaha, Neha Kumari, Sneha Nayak, Keshav Kishor and Ashoke SharonOutbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARSCoV- 2) initiated in Wuhan city, China, in December 2019 and continued to spread Internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the disease and contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutininand has only 70% similarity to SAmediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related viral diseases, including COVID-19. It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at the S1/S2 subunit interface in the S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and open scope for the new drug discovery process targeting SARS-related virus entry into the host cell.
-
-
-
SARS-CoV-2 Entry Inhibitors Targeting Virus-ACE2 or Virus-TMPRSS2 Interactions
Authors: Hao Lin, Srinivasulu Cherukupalli, Da Feng, Shenghua Gao, Dongwei Kang, Peng Zhan and Xinyong LiuCOVID-19 is an infectious disease caused by SARS-CoV-2. The life cycle of SARS-CoV-2 includes the entry into the target cells, replicase translation, replicating and transcribing genomes, translating structural proteins, assembling and releasing new virions. Entering host cells is a crucial stage in the early life cycle of the virus, and blocking this stage can effectively prevent virus infection. SARS enters the target cells mediated by the interaction between the viral S protein and the target cell surface receptor angiotensin- converting enzyme 2 (ACE2), as well as the cleavage effect of a type-II transmembrane serine protease (TMPRSS2) on the S protein. Therefore, the ACE2 receptor and TMPRSS2 are important targets for SARS-CoV-2 entry inhibitors. Herein, we provide a concise report/information on drugs with potential therapeutic value targeting virus-ACE2 or virus-TMPRSS2 interactions to provide a reference for the design and discovery of potential entry inhibitors against SARS-CoV-2.
-
-
-
Viral Entry Inhibitors Targeting Six-Helical Bundle Core against Highly Pathogenic Enveloped Viruses with Class I Fusion Proteins
Authors: Jing Pu, Joey T. Zhou, Ping Liu, Fei Yu, Xiaoyang He, Lu Lu and Shibo JiangType l enveloped viruses bind to cell receptors through surface glycoproteins to initiate infection or undergo receptor-mediated endocytosis and initiate membrane fusion in the acidic environment of endocytic compartments, releasing genetic material into the cell. In the process of membrane fusion, envelope protein exposes fusion peptide, followed by an insertion into the cell membrane or endosomal membrane. Further conformational changes ensue in which the type 1 envelope protein forms a typical six-helix bundle structure, shortening the distance between viral and cell membranes so that fusion can occur. Entry inhibitors targeting viral envelope proteins, or host factors, are effective antiviral agents and have been widely studied. Some have been used clinically, such as T20 and Maraviroc for human immunodeficiency virus 1 (HIV-1) or Myrcludex B for hepatitis D virus (HDV). This review focuses on entry inhibitors that target the six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins, including retroviruses, coronaviruses, influenza A viruses, paramyxoviruses, and filoviruses.
-
-
-
Challenges and Perspectives in the Discovery of Dengue Virus Entry Inhibitors
Authors: Facundo N. Gallo, Ana G. Enderle, Lucas A. Pardo, Emilse S. Leal and Mariela BolliniDengue virus (DENV) disease has become one of the major challenges in public health. Currently, there is no antiviral treatment for this infection. Since human transmission occurs via mosquitoes of the Aedes genus, most efforts have been focused on the control of this vector. However, these control strategies have not been totally successful, as reflected in the increasing number of DENV infections per year, becoming an endemic disease in more than 100 countries worldwide. Consequently, the development of a safe antiviral agent is urgently needed. In this sense, rational design approaches have been applied in the development of antiviral compounds that inhibit one or more steps in the viral replication cycle. The entry of viruses into host cells is an early and specific stage of infection. Targeting either viral components or cellular protein targets are an affordable and effective strategy for therapeutic intervention of viral infections. This review provides an extensive overview of the small organic molecules, peptides, and inorganic moieties that have been tested so far as DENV entry direct-acting antiviral agents. The latest advances based on computer-aided drug design (CADD) strategies and traditional medicinal chemistry approaches in the design and evaluation of DENV virus entry inhibitors will be discussed. Furthermore, physicochemical drug properties, such as solubility, lipophilicity, stability, and current results of pre-clinical and clinical studies will also be discussed in detail.
-
-
-
Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells
Authors: Merve Erkisa, Melda Sariman, Oyku G. Geyik, Caner Geyik, Tatjana Stanojkovic and Engin UlukayaCancer remains a deadly disease, and its treatment desperately needs to be managed through novel, rapidly advancing strategies. Most cancer cases eventually develop into recurrences, for which cancer stem cells (CSCs) are thought to be responsible. These cells are considered a subpopulation of all tumor cancer cells, with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. CSCs show a marked degree of resistance to chemotherapy or radiotherapy and immune surveillance. To combat CSCs, new drugs are flooding the market each year, increasing the cost of therapy dramatically. Natural products are becoming a new research area, presenting a diverse chemical library to suppress CSCs and some natural products show great promise in this regard. In the near future, the introduction of natural products as a source of new chemotherapy modalities may result in the development of novel anticancer drugs that could be reasonably-priced alternatives to expensive current treatments. Lately preclinical and clinical research has focused on natural compounds’ effects on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance. In this review, we present research on the mechanisms through which natural compounds kill CSCs and the potential use of natural compounds in the inhibition of CSCs.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
