Current Medicinal Chemistry - Volume 28, Issue 1, 2021
Volume 28, Issue 1, 2021
-
-
Dietary Epicatechin, A Novel Anti-aging Bioactive Small Molecule
Authors: Hongwei Si, Chao-Qiang Lai and Dongmin LiuEpicatechin (EC), a flavonoid present in various foods including cocoa, dark chocolate, berries, and tea, has recently been reported to promote general health and survival of old mice fed a standard chow diet. This is considered a novel discovery in the field of identifying natural compounds to extend lifespan, given that presumably popular anti-aging natural agents including resveratrol, green tea extract, and curcumin had failed in extending the lifespan of standard chow-diet-fed mice. However, the anti-aging mechanism of EC is not fully understood, thus impeding the potential application of this natural compound in improving a healthy lifespan in humans. In this review, we first summarized the main dietary sources that contain a significant amount of EC and recent research regarding the absorption, metabolism and distribution of EC in humans and rodents. The review is then focused on the anti-aging effects of EC in cultured cells, animals and humans with the possible physiological, cellular and molecular mechanisms underlying its lifespan-extending effects.
-
-
-
Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure
Authors: Renu C. Segaran, Li Yun Chan, Hong Wang, Gautam Sethi and Feng Ru TangRadiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
-
-
-
Therapeutic Potential of Natural Psychoactive Drugs for Central Nervous System Disorders: A Perspective from Polypharmacology
Authors: Genís Oña and José C. BousoIn the drug development, the formation of highly selective ligands has been unsuccessful in the treatment of central nervous system disorders. Multi-target ligands, from the polypharmacology paradigm, are being proposed as treatments for these complex disorders, since they offer enhanced efficacy and a strong safety profile. Natural products are the best examples of multi-target compounds, so they are of high interest within this paradigm. Additionally, recent research on psychoactive drugs of natural origin, such as ayahuasca and cannabis, has demonstrated the promising therapeutic potential for the treatment of some psychiatric and neurological disorders. In this text, we describe how research on psychoactive drugs can be effectively combined with the polypharmacology paradigm, providing ayahuasca and cannabis research as examples. The advantages and disadvantages are also discussed.
-
-
-
The Emerging Role of Atrial Natriuretic Peptide in Psychiatry
Introduction: Atrial natriuretic peptide (ANP), composed by 28 amino-acids, is well known to modulate fluid and electrolyte homeostasis, the hypothalamic-pituitary-adrenal (HPA) axis activity and the immune system. Since ANP is produced in both heart and in the central nervous system (CNS), in the last years, increasing attention has been devoted to its possible role in neuropsychiatric disorders. Indeed, scattered data would indicate its possible role in anxiety, major depression, addictive behaviors, post-traumatic stress disorder and other stress-related disorders. Further, ANP has been hypothesized to represent one of the factors linking depression to cardiovascular health and the immune system. Aims: Given the paucity of available information, the aim of this paper was to review the current literature on the role of ANP in the CNS and in the pathophysiology of different neuropsychiatric and stress-related conditions. Discussion: Supporting data on ANP in psychiatric disorders are still limited to animal studies, or to a few “real” findings in patients gathered some decades ago that should be replicated in larger clinical samples. Conclusion: Further studies are necessary to understand the possible implications of ANP in neuropsychiatry, because potentially it might represent a new way for innovative psychopharmacological treatments in different conditions, all underlaid by hyperactive HPA axis.
-
-
-
Targeting Inflammatory Mediators: An Anticancer Mechanism of Thymoquinone Action
Authors: Zakia Akter, Faiza R. Ahmed, Mousumi Tania and Md. Asaduzzaman KhanBackground: Thymoquinone is a promising anticancer molecule, the chemopreventive role of which is well-known at least in vitro and in the animal model. In this review article, we focused on the anti-inflammatory activities of thymoquinone in cancer cells. Method: Research data on inflammation, cancer and thymoquinone were acquired from PubMed, Scopus, Web of Science and Google Scholar. We reviewed papers published since the mid of the last century, and the most cited papers of the last ten years. Results: Studies indicate that thymoquinone possesses immunomodulatory activities, in addition to its chemopreventive role, as thymoquinone can target and modulate inflammatory molecules, like nuclear factor kappa B (NF-Κβ), interleukins, tumor necrosis factor-α (TNF-α), and certain growth factors. As chronic inflammation plays an important role in cancer development, controlling inflammatory pathways is an important mechanism of an anticancer molecule, and modulation of inflammatory pathways might be one of the key mechanisms of thymoquinone’s anticancer activities. Conclusion: This article reviewed the role of inflammation on cancer development, and the action of thymoquinone on inflammatory molecules, which have been proved in vitro and in vivo. Much attention is required for studying the role of thymoquinone in immunotherapeutics and developing this molecule as a future anticancer drug.
-
-
-
The Emerging Roles of Exosomes in the Chemoresistance of Hepatocellular Carcinoma
Authors: Jie Zhang, Qianqian Song, Mengna Wu and Wenjie ZhengHepatocellular carcinoma (HCC) is a common gastrointestinal malignancy with a leading incidence of cancer-related mortality worldwide. Despite the progress of treatment options, there remains low efficacy for patients with intermediate-advanced HCC, due to tumor metastasis, recurrence and chemoresistance. Increasing evidence suggests that exosomes in the tumor microenvironment (TME), along with other extracellular vesicles (EVs) and cytokines, contribute to the drug chemosensitivity of cancer cells. Exosomes, the intercellular communicators in various biological activities, have shown to play important roles in HCC progression. This review summarizes the underlying associations between exosomes and chemoresistance of HCC cells. The exosomes derived from distinct cell types mediate the drug resistance by regulating drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cell (CSC) properties, autophagic phenotypes, as well as the immune response. In summary, TME-related exosomes can be a potential target to reverse chemoresistance and a candidate biomarker of drug efficacy in HCC patients.
-
-
-
A Comprehensive Review on Oxysterols and Related Diseases
The present review aims to provide a complete and comprehensive summary of current literature relevant to oxysterols and related diseases. Oxidation of cholesterol leads to the formation of a large number of oxidized products, generally known as oxysterols. They are intermediates in the biosynthesis of bile acids, steroid hormones, and 1,25- dihydroxyvitamin D3. Although oxysterols are considered as metabolic intermediates, there is a growing body of evidence that many of them are bioactive, and their absence or excess may be part of the cause of a disease phenotype. These compounds derive from either enzymatic or non-enzymatic oxidation of cholesterol. This study provides comprehensive information about the structures, formation, and types of oxysterols even when involved in certain disease states, focusing on their effects on metabolism and linkages with these diseases. The role of specific oxysterols as mediators in various disorders, such as degenerative (age-related) and cancer-related disorders, has now become clearer. Oxysterol levels may be employed as suitable markers for the diagnosis of specific diseases or in predicting the incidence rate of diseases, such as diabetes mellitus, Alzheimer’s disease, multiple sclerosis, osteoporosis, lung cancer, breast cancer, and infertility. However, further investigations may be required to confirm these mentioned possibilities.
-
-
-
The Efficacy of Anti-inflammatory Agents in the Prevention of Atrial Fibrillation Recurrences
Authors: Homa Nomani, Sara Saei, Thomas P. Johnston, Amirhossein Sahebkar and Amir H. MohammadpourSeveral studies have indicated an association between inflammation and the recurrence of Atrial Fibrillation (AF), especially after ablation, which is a therapeutic option leading to local inflammation. On the other hand, each AF can lead to another AF, as a general rule. Thus, preventing recurrences of AF is extremely important for patient outcomes. In this paper, we attempted to review the effect of medicinal agents with anti-inflammatory properties on the prevention of AF recurrence. There are several randomized controlled trials (RCTs) and meta-analyses on the prevention of AF recurrence using agents with anti-inflammatory properties, which include steroids, colchicine, statins, and n-3 fatty acids (n-3 FA). Clinical trials evaluating the efficacy of anti-inflammatory drugs in preventing the recurrence of AF led to inconsistent results for corticosteroids, statins and n-3 FAs. These results may be related to the fact that inflammation is not the only factor responsible for triggering recurrences of AF. For example, the presence of structural, mechanical and electrical remodeling could potentially be the most important factors that trigger recurrences of AF but these factors have not been addressed in most of the reported studies. Therefore, future clinical trials are needed to compare the efficacy of anti-inflammatory drugs in AF patients with, or without other factors. For colchicine, a potent anti-inflammatory drug, there are limited studies. However, all the studies investigating colchicine in the context of AF were consistent and promising, especially when colchicine was used on a short-term basis following ablation in patients with paroxysmal AF. Therefore, colchicine could be a promising candidate for further clinical studies involving recurrent AF.
-
-
-
The Role of Ubiquitin E3 Ligase in Atherosclerosis
Authors: Zhi-Xiang Zhou, Zhong Ren, Bin-Jie Yan, Shun-Lin Qu, Zhi-Han Tang, Dang-Heng Wei, Lu-Shan Liu, Min-Gui Fu and Zhi-Sheng JiangAtherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.
-
-
-
The Effect of CB1 Antagonism on Hepatic Oxidative/Nitrosative Stress and Inflammation in Nonalcoholic Fatty Liver Disease
Dysfunction of the endocannabinoid system (ES) has been identified in nonalcoholic fatty liver disease (NAFLD) and associated metabolic disorders. Cannabinoid receptor type 1 (CB1) expression is largely dependent on nutritional status. Thus, individuals suffering from NAFLD and metabolic syndrome (MS) have a significant increase in ES activity. Furthermore, oxidative/ nitrosative stress and inflammatory process modulation in the liver are highly influenced by the ES. Numerous experimental studies indicate that oxidative and nitrosative stress in the liver is associated with steatosis and portal inflammation during NAFLD. On the other hand, inflammation itself may also contribute to reactive oxygen species (ROS) production due to Kupffer cell activation and increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The pathways by which endocannabinoids and their lipid-related mediators modulate oxidative stress and lipid peroxidation represent a significant area of research that could yield novel pharmaceutical strategies for the treatment of NAFLD. Cumulative evidence suggested that the ES, particularly CB1 receptors, may also play a role in inflammation and disease progression toward steatohepatitis. Pharmacological inactivation of CB1 receptors in NAFLD exerts multiple beneficial effects, particularly due to the attenuation of hepatic oxidative/nitrosative stress parameters and significant reduction of proinflammatory cytokine production. However, further investigations regarding precise mechanisms by which CB1 blockade influences the reduction of hepatic oxidative/nitrosative stress and inflammation are required before moving toward the clinical phase of the investigation.
-
-
-
Web-based Tools for Drug Repurposing: Successful Examples of Collaborative Research
More LessComputational approaches have been proven to be complementary tools of interest in identifying potential candidates for drug repurposing. However, although the methods developed so far offer interesting opportunities and could contribute to solving issues faced by the pharmaceutical sector, they also come with their constraints. Indeed, specific challenges ranging from data access, standardization and integration to the implementation of reliable and coherent validation methods must be addressed to allow systematic use at a larger scale. In this mini-review, we cover computational tools recently developed for addressing some of these challenges. This includes specific databases providing accessibility to a large set of curated data with standardized annotations, web-based tools integrating flexible user interfaces to perform fast computational repurposing experiments and standardized datasets specifically annotated and balanced for validating new computational drug repurposing methods. Interestingly, these new databases combined with the increasing number of information about the outcomes of drug repurposing studies can be used to perform a meta-analysis to identify key properties associated with successful drug repurposing cases. This information could further be used to design estimation methods to compute a priori assessment of the repurposing possibilities.
-
-
-
Drug Leads Derived from Japanese Marine Organisms
Authors: Daisuke Uemura, Yoshinori Kawazoe, Toshiyasu Inuzuka, Yuki Itakura, Chiari Kawamata and Takahiro AbeMany natural products with extraordinary chemical structures and brilliant biological activities have been obtained from marine organisms. We have investigated such fascinating bioactive molecules, exemplified by the potent marine toxin palytoxin and the antitumor molecule halichondrin B, which has been developed as the anticancer drug Halaven®, to explore novel frontiers in organic chemistry and bioscience. Working within the traditional discipline, we have sought to acquire a deeper understanding of biological phenomena. We introduce here our major work along with up-todate topics. We isolated yoshinone A from marine cyanobacteria and completed a gram-scale synthesis. Yoshinone A is a novel polyketide that inhibited the differentiation of 3T3-L1 cells into adipocytes without significant cytotoxicity. The detailed mechanisms of action will be elucidated via further experiments in vitro and in vivo. In this study, we explore the true producers of okadaic acid and halichondrin B by immunostaining of Halichondria okadai with an antibody that was prepared using these natural products as an antigen. We will analyze isolated symbionts and reveal biosynthetic pathways.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
