Current Medicinal Chemistry - Volume 25, Issue 32, 2018
Volume 25, Issue 32, 2018
-
-
Tackling Chronic Pain and Inflammation through the Purinergic System
Authors: Giulia Magni, Daniele Riccio and Stefania CerutiThe purinergic system is composed of purine and pyrimidine transmitters, the enzymes that modulate the interconversion of nucleotides and nucleosides, the membrane transporters that control their extracellular concentrations, and the many receptor subtypes that are responsible for their cellular responses. The components of this system are ubiquitously localized in all tissues and organs, and their involvement in several physiological conditions has been clearly demonstrated. Moreover, extracellular purine and pyrimidine concentrations rise several folds under pathological conditions like tissue damage, ischemia, and inflammation, which suggest that this signaling system might contribute both to disease outcome and, possibly, to its tentative resolution. The complexity of this system has greatly impaired the clear identification of the mediators and receptors that are actually involved in a given pathology, also due to the often opposite roles played by the various receptor subtypes. Nevertheless, this knowledge is fundamental for the possible exploitation of these molecular entities as targets for the development of new pharmacological approaches. In this review, we aim at highlighting what is currently known on the role of the purinergic system in various pain conditions and during inflammatory processes. Although some confusion may arise from conflicting results, literature data clearly show that targeting specific purinergic receptors may represent an innovative approach to various pain and inflammatory conditions, and that new purine-based drugs are now very close to reach the market with these indications.
-
-
-
Targeting Melatonin MT2 Receptors: A Novel Pharmacological Avenue for Inflammatory and Neuropathic Pain
Authors: Luca Posa, Danilo De Gregorio, Gabriella Gobbi and Stefano ComaiMelatonin (MLT) has been implicated in several pathophysiological states, including pain. MLT mostly activates two G-protein coupled receptors, MT1 and MT2. In this review, we present the analgesic properties of MLT in preclinical and clinical studies, giving particular emphasis to the effects mediated by MT2 receptors and to recent investigations demonstrating the analgesic effects of MT2 receptor partial agonists in chronic and acute/inflammatory pain conditions. MT2 receptors are localized in specific brain areas, including the reticular and the ventromedial nuclei of the thalamus (part of the ascending nociceptive pathway) and the ventrolateral periaqueductal grey matter (vlPAG) (part of the descending antinociceptive pathway). MLT displays analgesic properties in several animal paradigms of chronic, acute, inflammatory and neuropathic pain; importantly, these effects are mediated by MT2 receptors since they are blocked by selective MT2 antagonists. In different pain paradigms, UCM924 and UCM765, two selective MT2 receptor partial agonists, produce analgesic effects with higher potency than MLT, thus confirming the involvement of MT2 receptors in pain. Notably, these compounds do not induce sedation and motor impairments. Although their analgesic mechanism of action is not yet completely elucidated, they act on antinociceptive descending pathways by stimulating MT2 receptors on glutamatergic neurons of the vlPAG, which in turn activate OFF cells and inhibit ON cells of the rostral ventromedial medulla (RVM). Collectively, there is strong preclinical evidence suggesting the pharmacological potential of MT2 receptor partial agonists, which also have a favorable toxicological profile. These compounds may be further developed as novel analgesic drugs.
-
-
-
Targeting the Prokineticin System to Control Chronic Pain and Inflammation
Authors: Lucia Negri and Daniela MafteiProkineticin1 and prokineticin2 belong to a new family of chemokines identified in several species including mammals and characterized by the presence of five disulfide bridges. These proteins signal through two G-coupled receptors (prokineticin-receptor1 and prokineticin- receptor2) widely expressed in all tissues and involved in a large spectrum of biological activities, including angiogenesis, hematopoiesis, immune processes, inflammation and nociceptive transmission. Prokineticin2 is overexpressed in inflamed tissues and has a crucial role in neutrophil dependent inflammation and hypernociception. Following tissue inflammation, peripheral nerve injury, cancer, bone metastasis the expression of prokineticin2 and of the prokineticin-receptor2 is increased also within dorsal root ganglia and spinal cord. Prokineticin receptors, highly expressed in nociceptor endings and dorsal root ganglia, exert a tonic activation of TRPV1 and TRPA1 contributing to peripheral sensitization. Prokineticin2-induces activation of the prokineticin receptors in the spinal dorsal horn and in activated astrocytes contributes to central sensitization and maintains chronic and neuropathic pain. Prokineticin2, acting on prokineticin receptors on monocytes, macrophages and dendritic cells, induces chemotaxis and release of inflammatory and pronociceptive cytokines. Hence, the prokineticin system represents a novel therapeutic target in chronic pain conditions. Evaluation of the mechanism of action of prokineticin2 and the potential effectiveness of its inhibition is discussed.
-
-
-
Innovative Opioid Peptides and Biased Agonism: Novel Avenues for More Effective and Safer Analgesics to Treat Chronic Pain
Authors: Andrea Bedini and Santi SpampinatoBackground: Chronic pain states are clinically relevant and yet unsolved conditions impacting on quality of life and representing an important social and economic burden; these diseases are poorly treated with the currently available drugs, being urgent the need of innovative analgesics. In this frame, novel analogues of endomorphin-1 and dermorphin emerge as promising starting points to develop innovative, more effective analgesics to treat neuropathic pain. Methods: An extensive and structured search of bibliographic databases for peer-reviewed research literature was undertaken using focused review questions; all the retrieved papers were published on prestigious international journals by the experts of the field and were carefully analyzed to collect all the information and data necessary to the conceptual framework of this review. Results: One hundred papers were included in this review; forty-one defined the up-to-date findings on neuropathic pain etiopathogenesis and its currently available treatment options. Thirty-five papers described all the advantages and drawbacks of using endomorphin-1 (23) or dermorphin (12) in the frame of neuropathic pain and outlined the most relevant advances in developing endomorphin-1 and dermorphin analogs useful as potential, innovative analgesics. Twenty-four papers provided the latest insights into exploiting biased agonism at opioid receptor as an innovative strategy to develop more effective and safer analgesics. Conclusion: This review reports that innovative opioid peptides will be of great help in better understanding the multifaceted scenario of neuropathic pain treatment, providing very interesting opportunities for the identification of novel and more effective opioid analgesics to be employed as medications.
-
-
-
The Orexinergic (Hypocretin) System and Nociception: An Update to Supraspinal Mechanisms
Authors: Ali Roohbakhsh, Mohaddeseh S. Alavi and Hassan Azhdari-ZarmehriChronic pain is a multifaceted and complex condition that is divided into somatic, visceral, and neuropathic pain. Although opioids and nonsteroidal anti-inflammatory drugs cause analgesia and are effective in the treatment of chronic pain, their utility is hampered by side effects, abuse potential, and development of tolerance to their pain-relieving effects. So, finding alternative analgesics with good efficacy and low side effects is of great interest and the orexinergic system is a potential candidate. Orexin-A and -B are exclusively expressed in the lateral hypothalamus and are involved in the feeding, sleep/wake cycle, cardiovascular function, hormone secretion, seizure, and pain modulation. Orexin peptides and their receptors have been proposed as opportunities for developing analgesic drugs. In experimental studies, orexin peptides induce analgesia that is comparable to morphine. Furthermore, there is evidence that orexin receptors 1 and 2 participate in responsiveness to both stressful stimuli and pain. Thus, direct and indirect activation of the orexinergic system is a new therapeutic approach to pain control. This article will review the most recent and important studies describing the role of orexins in pain modulation.
-
-
-
Gut-brain Axis: Role of Lipids in the Regulation of Inflammation, Pain and CNS Diseases
The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitaryadrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer’s Disease etc. Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes. Their effective role has been studied in inflammation, acute and chronic pain, obesity and central nervous system diseases. A possible correlation has been shown between these lipids and gut microbiota through different mechanisms. Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in the rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models. In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in the central nervous system diseases.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
