Current Medicinal Chemistry - Volume 24, Issue 41, 2017
Volume 24, Issue 41, 2017
-
-
Microwave-assisted Olefin Metathesis as Pivotal Step in the Synthesis of Bioactive Compounds
Over the last two decades, olefin metathesis has emerged as a new avenue in the design of new routes for the synthesis of natural products and active pharmaceutical ingredients. In many cases, syntheses based on olefin metathesis strategies provide significant routes in terms of increasing the overall yields, improving the synthesis scope, and decreasing the number of steps. On the other hand, over the last decade, microwave-assisted chemistry has experienced an incredible development, which rapidly opened new areas in organic synthesis and in homogeneous catalysis. In this review article, we highlight applications of microwaveheated olefin metathesis reactions as pivotal steps in the total synthesis of biologically active compounds. By drawing selected examples from the recent literature, we aim to illustrate the great synthetic power and variety of metathesis reactions, as well as the beneficial effects of microwave irradiation over conventional heating sources. The majority of the selected applications of microwave-assisted olefin metathesis cover the synthesis of medium-ring cycles, macrocycles, and peptidomimetics by means of ring-closing metathesis (RCM) and crossmetathesis (CM) routes.
-
-
-
Microwave: An Important and Efficient Tool for the Synthesis of Biological Potent Organic Compounds
Authors: Kamlesh Kumari, Vijay K. Vishvakarma, Prashant Singh, Rajan Patel and Ramesh ChandraBackground: Green Chemistry is an interdisciplinary science or it can also be explained as a branch of chemistry. It is generally described as the chemistry to aim to synthesize chemical compounds to trim down the utilization of harmful chemicals proposed by the Environmental Protection Agency (EPA). Recently, the plan of academicians, researchers, industrialists is to generate greener and more efficient methodologies to carry out various organic syntheses. Objective: In the present scenario, green chemistry utilizes the raw materials economically, minimizes the waste and prevents the uses of harmful or hazardous chemicals to make the organic reactions simple and efficient. Conclusion: Microwave technique is a new, simple and efficient technology which opens new prospects to the chemists to carry out various organic and inorganic reactions, which are difficult via conventional methodology. It is used to decrease the duration of time to carry various organic transformation along with maximum yield, minimum by-products, minimum energy utilization, less manpower etc. e.g. various famous organic reactions have been carried out by various research groups like Aldol condensation, Knoevenagel condensation, Beckmann rearrangement, Vilsmeier reaction, Perkin reaction, Benzil-Benzilic acid rearrangement, Fischer cyclization, Mannich reaction, Claisen–Schmidt condensation, etc. Further, reduction, oxidation, coupling, condensation reaction were also performed using microwave technology.
-
-
-
Synthesis of Medicinally Privileged Heterocycles through Dielectric Heating
Authors: Debasish Bandyopadhyay and Bimal K. BanikBackground: Heterocyclic compounds are intriguing part of modern drug discovery research. Ecofriendly syntheses of heterocycles, following green techniques, are privileged routes to protect Mother nature. Microwave-assisted synthesis of chemical compounds is considered as a major greener pathway, both in academia and industry. Methods: A total of 106 publications (including a few authentic web links) have been reviewed mainly to discuss (i) mechanism of microwave irradiation, (ii) abundance of commercial heterocyclic drugs, (iii) various synthetic procedures, and (iv) medicinal activity of the synthesized molecules. Results: This review summarizes the potential application of microwave irradiation (dielectric heating) to synthesize biologically important heterocyclic small molecules in the recent past. A huge number of heterocyclic compounds are present in various natural sources like plant, marine microbe or other organisms and many of them possess unique biological activity. In addition to nature-derived heterocyclic compounds, a large number of synthetic heterocycles are being used as medicines. This review describes the relevant recent examples of microwave irradiation to accomplish various chemical transformations accelerated by a variety of catalysts which include, but not limited to, Lewis acids, other metal containing catalysts, organocatalysts, heterogeneous catalysts, phase-transfer catalysts, solid-supported catalysts, inorganic catalysts (bases, acids and salts) and so on. Although there are an increasing number of reports on application of dielectric heating in various other fields, this review is focused on a large number of new and novel strategies related to synthetic organic chemistry. The discussion is mostly organized by the disease type although some reactions/molecules can certainly be placed in multiple sections. Since green chemistry is an extremely emerging and comparatively new field of research, attempts to stimulate more activities on green medicinal chemistry are provided. Discussion related to the concurrent effect of microwaves, catalysts and/or solvents, supports to constitute expeditious and general route for the syntheses of medicinally important heterocyclic compounds and pharmacophores has also been included. Conclusion: The dielectric heating procedure to produce novel medicinally privileged heterocyclic scaffolds/ compounds is extremely promising and challenging. As a result, this green technique has been gaining increasing interest from the pharmaceutical world. A recent update has been presented. While every effort has been made to include all pertinent reports in this field, any omission is unintentional.
-
-
-
Microwave-assisted Formation of Organic Disulfides of Biochemical Significance
Authors: Debasish Sengupta, Babli Roy and Basudeb BasuOrganic compounds possessing the –S–S– bond, often called disulfide or disulfane, are extremely important and useful in various fields. They often exhibit unique and diverse chemistry in synthetic, biochemical, pharmacological areas as well as are vastly used as vulcanizing agents for rubbers and elastomers. In peptide and protein chemistry, the disulfide bridges impart stability in folding and their synthesis is a pivotal transformation in modern medicinal chemistry research. On the other hand, microwave (MW) provides heat energy source, an alternative to conventional heating, and is used for diverse chemical reactions. This review has presented the progress towards the synthesis of small organic disulfanes and acyclic/cyclic peptides bearing the 128;“S128;“S128;“ bond, bond specifically under microwave irradiation, which often facilitated the formation of disulfides over conventional heating both in terms of reaction time and efficiency.
-
-
-
Microwave Assisted Synthesis of Biorelevant Benzazoles
Authors: Kapileswar Seth, Priyank Purohit and Asit K. ChakrabortiThe benzazole scaffolds are present in various therapeutic agents and have been recognized as the essential pharmacophore for diverse biological activities. These have generated interest and necessity to develop efficient synthetic methods of these privileged classes of compounds to generate new therapeutic leads for various diseases. The biological activities of the benzazoles and efforts towards their synthesis have been summarized in a few review articles. In view of these, the aim of this review is to provide an account of the developments that have taken place in the synthesis of biorelevant benzazoles under microwave irradiation as the application of microwave heating has long been recognized as a green chemistry tool for speedy generation of synthetic targets. Attention has been focused to those literature reports wherein the use of microwave irradiation is the key step in the formation of the heterocyclic ring system or in functionalization of the benzazole ring system to generate the essential pharmacophoric feature. The convenient and economic way to synthesize these privileged class of heterocycles through the use of microwave irradiation that would be beneficial for the drug discovery scientist to synthesize biologically active benzazoles and provide access to wide range of reactions for the synthesis of benzazoles constitute the theme of this review. Examples have been drawn wherein the use of microwave heating offers distinct advantage in terms of improved product yields and reduction of reaction time as compared to those observed for the synthesis under conventional heating.
-
-
-
Microwave-induced Bismuth Salts-mediated Synthesis of Molecules of Medicinal Interests
Authors: Debasish Bandyopadhyay, Ashlee Chavez and Bimal K. BanikBackground: Bismuth salts-mediated reactions have become a powerful tool for the synthesis of diverse medicinally-significant compounds because of their low-toxicity (non-toxic) and Lewis acidic capacity. In fact, LD50 of bismuth nitrate is lower than table salt. On the other hand, microwave-induced chemical synthesis is considered as a major greener route in modern chemistry. Methods: A total of 139 publications (including a few authentic web links) have been reviewed mainly to discuss bismuth salts-induced electrophilic aromatic substitution, protection-deprotection chemistry of carbonyl compounds, enamination, oxidation, carbohydrate chemistry, hydrolysis, addition-elimination route, Paal-Knorr reaction, Clauson-kaas synthesis, Michael addition, aza-Michael addition, Hantzsch reaction, Biginelli reaction, Ferrier rearrangement, Pechmann condensation, Diels-Alder and aza-Diels- Alder reactions, as well as effects of microwave irradiation in a wide range of chemical transformations. Results: Bismuth salts-mediated reactions are developed for the synthesis of diverse organic molecules of medicinal significance. Reactions conducted with bismuth salts are environmentally benign, economical, rapid and high yielding. Microwave irradiation has accelerated these reactions significantly. It is believed that bismuth salts released corresponding acids in the media during the reaction. However, a coordination of bismuth salt to the electronegative atom is also observed in the NMR study. Bismuth has much less control (less attractive forces) over anions (for example, halides, nitrate, sulfate and triflates) compared to alkali metals. Therefore, it forms weak bond with electronegative atoms more readily and facilitates the reactions significantly. Many products obtained via bismuth salts-mediated reactions are medicinally active or intermediate for the synthesis of biologically active molecules including antifungal, anti-parasitic, anticancer and antibacterial agents, as well as agents to prevent Leishmaniosis and Chagas' diseases. Conclusion: Bismuth salts are able to (i) generate mineral acids in the reaction media and (ii) coordinate with electronegative atoms to facilitate the reaction. When the reagents and the catalyst (bismuth salt) are subjected to microwave irradiation, microwave passes through the (glass) walls of the reaction vessel and heat only the reactants avoiding local overheating at the wall of the vessel. Accordingly, the possibility of side reaction and subsequent by-product formation are reduced abruptly which in turn increases the yield of the desired product. The extreme rapidity with excellent yield of the product can be rationalized as a synergistic effect of the bismuth salts and microwave irradiation.
-
-
-
A Practical Green Synthesis and Biological Evaluation of Benzimidazoles Against Two Neglected Tropical Diseases: Chagas and Leishmaniasis
Antimicrobial resistance is an ever-increasing problem throughout the world and has already reached severe proportions. Two very common neglected tropical diseases are Chagas' disease and leishmaniasis. Chagas' disease is a severe health problem, mainly in Latin America, causing approximately 50000 deaths a year and millions of people are infected. About 25-30% of the patients infected with Trypanosoma cruzi develop the chronic form of the disease. On the other hand, Leishmaniasis represents complex diseases with an important clinical and epidemiological diversity. It is endemic in 88 countries 72 of which are developing countries and it has been estimated that are 12 million people infected and 350 million are in areas with infection risk. On this basis, research on organic compounds that can be used against these two diseases is an important target. A very simple, green, and efficient protocol is developed in which bismuth nitrate pentahydrate is employed as a Lewis acid catalyst in aqueous media under microwave irradiation for the synthesis of various 2-aryl substituted benzimidazoles from aldehydes and o-phenylenediamine. Other salient features of this protocol include milder conditions, atom-economy, easy extraction, and no wastes. Nine 1H-benzimidazole derivatives (1-9) with substituents at positions 2 and 5 were synthesized and the structure of the compounds was elucidated by spectroscopic methods. The compounds were screened to identify whether they posses pharmacological activity against Chagas' disease and leishmaniasis. Compound 8 showed better activity than the control Nifurtimox against INC-5 Trypanosoma cruzi strain whereas compounds 3 and 9 have demonstrated potent leshmanicidal activity. A systematic green synthetic procedure and in vitro biological evaluation of nine 1H-benzimidazoles are described.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
