Current Medicinal Chemistry - Volume 24, Issue 26, 2017
Volume 24, Issue 26, 2017
-
-
Polypurine Reverse Hoogsteen Hairpins as a Gene Silencing Tool for Cancer
Authors: Carlos J. Ciudad, Laura Rodriguez, Xenia Villalobos, Alex J. Felix and Veronica NoePolypurine reverse Hoogsteen (PPRH) molecules are DNA hairpins formed by two polypurine strands running in an antiparallel orientation and containing no nucleotide modifications. The two strands, linked by a pentathymidine loop, are bound through intramolecular reverse Hoogsteen bonds. Then, PPRHs can bind by Watson-Crick bonds to their corresponding polypyrimidine target in the dsDNA provoking a displacement of the polypurine strand of the duplex. We described the effect and mechanisms of action of PPRHs in cells using PPRHs designed against the template and coding strands of the dhfr gene. The proof of principle of PPRHs as a therapeutic tool was established using a PPRH against survivin in a xenograft prostate cancer tumor model. To improve the PPRHs effect, the influence of the length was studied obtaining a higher efficiency with longer molecules. To decrease the possible offtarget effect, when a purine interruption is found in the pyrimidine target, the PPRH sequence should contain both strands of the complementary base opposite to the interruption. Furthermore, the stability of PPRHs is higher than that of siRNAs, as evidenced by the longer halflife of the former in different types of serum and in PC3 cells. PPRHs do not induce the levels of the transcription factors nor the proinflammatory cytokines involved in the Toll-like Receptor pathway and they do not trigger the formation of the inflammasome complex. PPRHs can be used as therapeutic tools to target genes related to cancer progression, resistance to drugs or immunotherapy approaches.
-
-
-
Pathobiology and Therapeutic Implications of Tumor Acidosis
Authors: Jenny Viklund, Sofia Avnet and Angelo De MilitoDrug resistance and therapeutic failure are important causes of disease relapse and progression and may be considered as major obstacles preventing cure of cancer patients. Tumors use a large number of molecular, biochemical and cellular mechanisms to evade chemotherapy and targeted therapy. Important determinants of drug efficacy are the intrinsic pharmacological characteristics of drugs which may be largely affected by the tumor physiology. One feature of solid tumors is the acidic extracellular pH, resulting from metabolic shift and increased metabolic rates combined with low tissue perfusion due to defective vasculature. Besides its role in tumor pathobiology promoting tumor growth and metastasis, the acidic tumor environment creates a chemical barrier for many anticancer drugs, thus limiting their activity. The content of this review will be focused on the pathobiology of tumor acidosis and on its role in therapeutic resistance.
-
-
-
Collaborative and Defensive Fibroblasts in Tumor Progression and Therapy Resistance
Authors: Barbara Chiavarina and Andrei TurtoiTumor microenvironment is a complex network of epithelial cancer cells and non-transformed stromal cells. Of the many stromal cell types, fibroblasts are the most numerous ones and are traditionally viewed as supportive elements of cancer progression. Many studies show that cancer cells engage in active crosstalk with associated fibroblasts in order to obtain key resources, such as growth factors and nutrients. The facets of fibroblast “complicity to murder” in cancer are multiple. However, recent therapeutic attempts aiming at depleting fibroblasts from tumors, perturbed rather simplistic picture. Contrary to the expectations, tumors devoid of fibroblasts accelerated their progression while patients faced poorer outcomes. These studies remind us of the physiologic roles fibroblasts have in maintaining tissue homeostasis even in the presence of cancer. It is becoming increasingly clear that our research focus on advanced tumors has biased our understanding of fibroblast role in tumor biology. The numerous events where the fibroblasts protect the tissue from malignant transformation remain largely unacknowledged, as the tumors are invisible. The present review has the ambition to offer a more balanced view of fibroblasts functions in cancer progression and therapy resistance. We will address the question whether it is possible to synergize the efforts with fibroblasts as the therapeutic concept against tumor progression and therapy resistance.
-
-
-
Targeting Heparan Sulfate Proteoglycans and their Modifying Enzymes to Enhance Anticancer Chemotherapy Efficacy and Overcome Drug Resistance
Authors: Cinzia Lanzi, Nadia Zaffaroni and Giuliana CassinelliTargeting heparan sulfate proteoglycans (HSPGs) and enzymes involved in heparan sulfate (HS) chain editing is emerging as a new anticancer strategy. The involvement of HSPGs in tumor cell signaling, inflammation, angiogenesis and metastasis indicates that agents able to inhibit aberrant HSPG functions can potentially act as multitarget drugs affecting both tumor cell growth and the supportive boost provided by the microenvironment. Moreover, accumulating evidence supports that an altered expression or function of HSPGs, or of the complex enzyme system regulating their activities, can also depress the tumor response to anticancer treatments in several tumor types. Thereby, targeting HSPGs or HSPG modifying enzymes appears an appealing approach to enhance chemotherapy efficacy. A great deal of effort from academia and industry has led to the development of agents mimicking HS, and/or inhibiting HSPG modifying enzymes. Inhibitors of Sulf-2, an endosulfatase that edits the HS sulfation pattern, and inhibitors of heparanase, the endoglycosidase that produces functional HS fragments, appear particularly promising. In fact, a Sulf-2 inhibitor (OKN-007), and two heparanase inhibitors/HS mimics (roneparstat, PG545) are currently under early clinical investigation. In this review, we summarized preclinical studies in experimental tumor models of the main chemical classes of Sulf-2 and heparanase inhibitors. We described examples of different mechanisms through which heparanase and HSPGs, often in cooperation, may impact tumor sensitivity to various antitumor agents. Finally, we reported a few preclinical studies showing increased antitumor efficacy obtained with the use of candidate clinical HS mimics in combination regimens.
-
-
-
Targeting DNA Minor Groove by Hybrid Molecules as Anticancer Agents
Authors: Shalini Nekkanti, Ramya Tokala and Nagula ShankaraiahAgents which can recognize and bind specific sequences of DNA offer selective therapy through the modulation of specific transcription factors or genes. Recently, there has been renewed interest in the field of anticancer minor groove binders. This may be attributed to the fact that many compounds of this class have demonstrated significant antitumor activity against a wide variety of cancers in recent clinical trials. This review will discuss the recent to overcome the drawbacks of existing minor groove binding anticancer agents through raeffortstional drug design based on scaffolds with known antitumor activity.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
