Current Medicinal Chemistry - Volume 24, Issue 16, 2017
Volume 24, Issue 16, 2017
-
-
Editorial: Research and Selection of Multitarget Compounds in Medicinal Chemistry
Authors: Luciana Scotti, Francisco Jaime Bezerra Mendonça and Marcus T. ScottiIn drug discovery, a hit series, with the desired primary and secondary activities, as well as physiochemical properties is identified such that the final agent will be useful when administered to real patients [1]. Medicinal chemistry can improve recognition and the binding geometries (pharmacophores) of candidate compounds, and their target’s affinity. Medicinal chemistry, in a modern view, is dedicated to understanding molecular mechanisms, chemical relationships, and the pharmacological activities involved in drug action thru pharmacodynamic and pharmacokinetic factors. The introduction of new technologies has become a prime concept in medicinal chemistry, expanding its interdisciplinary character. Most drugs are small bioactive molecules that interact with specific macromolecules or receptors, resulting in therapeutic effects. Modern computational methods determine...
-
-
-
Secondary Metabolites from Cissampelos, A Possible Source for New Leads with Anti-Inflammatory Activity
The genus Cissampelos comprises of 21 species which have a wide global distribution and various pharmacological activities such as analgesic and antipyretic, antiinflammatory, anti-allergic, bronchodilation, and immunomodulation among others. Several compounds, mainly alkaloids with differing biological activities have been isolated from this genus. We will highlight antipyretic activities, anti-inflammatory, antiallergic, bronchodilatory, and immunomodulatory activities. In addition, we applied ligand-based-virtual screening associated with structure-based-virtual screening of a small dataset of 63 secondary metabolites from the Cissampelos genus of an in-house data bank, in order to select compounds with potential anti-inflammatory activity. Affinities were observed for hayatine (26), isochondrondendrine (30), pelosine (52), sepeerine (59), and warifteine (63) to the inhibiting enzymes MAPK p38 alpha, PKC beta, PKC theta and PKC zeta. The cissampeloflavone compound (8) alone showed no potential inhibitory activity for PKC zeta, or affinity for the PKC alpha. The compounds can be used as starting points for further studies on structures with potential anti-inflammatory activity.
-
-
-
Therapeutic Targeting of NLRP3 Inflammasomes by Natural Products and Pharmaceuticals: A Novel Mechanistic Approach for Inflammatory Diseases
Inflammasomes are multiprotein complexes having nucleotide-binding domain and leucine-rich repeat consisting members along with pyrin and HIN domain family. An inflammasome mainly consists of cytoplasmic sensor molecule, such as NLRP3, the adaptor apoptosisassociated speck-like protein containing caspase recruitment domain) protein along with effector procaspase-1. The inflammasome regulates caspase-1 activation, resulting in secretion of interleukin- 1β and interleukin-18. The inflammasome activation is linked with infection, stress, or other immunological signals involved in inflammation. The pathophysiological role of NLRP3 inflammasome in immune regulation, inflammatory receptor-ligand interactions, microbial-associated molecular patterns, danger as well as pathogen associated molecular patterns has been demonstrated in last few years. Furthermore, the role of the inflammasome in peripheral and central nervous system involved with cytokine and chemokine inflammatory responses has been demonstrated in preclinical and clinical studies. The understanding of molecular regulation of inflammasome associated pathways is crucial for drug design and delivery. The use of natural product as an alternate therapy is gaining focus because of easy access and cost effectiveness. A number of herbal extracts and its bioactive constituents known as phytochemicals have shown to be effective in inflammatory response mediated by NLRP3 inflammasomes pathways. To understand the interaction of phytochemicals and inflammasome at the molecular level, it is vital to develop effective drugs that can be evaluated further in the clinical settings. Therefore, this review renders an extensive account of all the phytochemicals which are evaluated either in inflammatory experimental animal models or in immortalized human/animal cell lines that modulate NLRP3 inflammasome mediated pathways to mitigate inflammatory responses with the hope that this pathway modulation by phytochemicals may provide a another class of drugs in the armamentarium as well as novel molecular mechanism of natural products targeting NLRP3 inflammasome.
-
-
-
Kinase Inhibitors in Multitargeted Cancer Therapy
Authors: Carla Gentile, Annamaria Martorana, Antonino Lauria and Riccardo BonsignoreThe old-fashioned anticancer approaches, aiming at arresting cancer cell proliferation interfering with non-specific targets (e.g. DNA), have been replaced, in the last decades, by more specific target oriented ones. Nonetheless, single-target approaches have not always led to optimal outcomes because, for its complexity, cancer needs to be tackled at various levels by modulation of several targets. Although at present, combinations of individual singletarget drugs represent the most clinically practiced therapeutic approaches, the modulation of multiple proteins by a single drug, in accordance with the polypharmacological strategy, has become more and more appealing. In the perspective of a multi-target approach, the closely related evolutionary members of the tyrosine kinase family are ideal candidates. Indeed, tyrosine kinase activities are not only critical in tumor phenotype maintenance, but also modulate several functions in the tumor microenvironment. Consequently, several multikinase inhibitors were approved in the last decade, and many new molecules are currently in preclinical or clinical development. In the present review we report on the most widely FDA-approved multitargeted drugs, discussing about their mechanism of action and outlining the clinical trials that have brought them to approval.
-
-
-
Advanced In Silico Approaches for Drug Discovery: Mining Information from Multiple Biological and Chemical Data Through mtk- QSBER and pt-QSPR Strategies
More LessThe last decade has been seeing an increase of public-private partnerships in drug discovery, mostly driven by factors such as the decline in productivity, the high costs, time, and resources needed, along with the requirements of regulatory agencies. In this context, traditional computer-aided drug discovery techniques have been playing an important role, enabling the identification of new molecular entities at early stages. However, recent advances in chemoinformatics and systems pharmacology, alongside with a growing body of high quality, publicly accessible medicinal chemistry data, have led to the emergence of novel in silico approaches. These novel approaches are able to integrate a vast amount of multiple chemical and biological data into a single modeling equation. The present review analyzes two main kinds of such cutting-edge in silico approaches. In the first subsection, we discuss the updates on multitasking models for quantitative structure-biological effect relationships (mtk- QSBER), whose applications have been significantly increasing in the past years. In the second subsection, we provide detailed information regarding a novel approach that combines perturbation theory with quantitative structure-property relationships modeling tools (pt- QSPR). Finally, and most importantly, we show that the joint use of mtk-QSBER and pt- QSPR modeling tools are apt to guide drug discovery through its multiple stages: from in vitro assays to preclinical studies and clinical trials.
-
-
-
Prediction of Chemical Multi-target Profiles and Adverse Outcomes with Systems Toxicology
Authors: Henri Wathieu, Abiola Ojo and Sivanesan DakshanamurthyThe field of systems biology, termed systems toxicology when applied to the characterization of adverse outcomes following chemical exposure, seeks to develop biological networks to explain phenotypic responses. Ideally, these are qualitatively and quantitatively similar to the actual network of biological entities that have functional consequences in living organisms. In this review, computational tools for predicting chemicalprotein interactions of multi-target compounds are outlined. Then, we discuss how the methods of systems toxicology currently draw on those interactions to predict resulting adverse outcomes which include diseases, adverse drug reactions, and toxic endpoints. These methods are useful for predicting the safety of drugs in drug development and the toxicity of environmental chemicals (ECs) in environmental toxicology.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
