Current Medicinal Chemistry - Volume 22, Issue 13, 2015
Volume 22, Issue 13, 2015
-
-
Hck Inhibitors as Potential Therapeutic Agents in Cancer and HIV Infection
Authors: F. Musumeci, S. Schenone, C. Brullo, A. Desogus, L. Botta and C. TintoriHematopoietic cell kinase (Hck) is a member of the Src-family of non-receptor tyrosine kinases, which plays many roles in signalling pathways involved in the regulation of cell processes. Hck is expressed in cells of hematopoietic origin, specifically myelomonocytic cells and B lymphocytes. It participates in phagocytosis, adhesion, migration, regulation of protrusion formation on cell membrane, lysosome exocytosis, podosome formation and actin polymerization. More importantly from a medicinal chemistry point of view, high levels of Hck are involved in chronic myeloid leukemia and other hematologic tumors. Furthermore, Hck activity has been associated with virus infections including HIV-1. In particular, Hck is activated by the HIV-1 accessory protein Nef, a multifunctional HIV-1 protein that accelerates progression to AIDS and enhances the infectivity of progeny viruses. Nef binding to Hck leads to kinase activation which is important in AIDS pathogenesis. For these reasons, Hck represents a potentially good therapeutic target for the treatment of both specific cancers and HIV infection. This article summarizes Hck biological activities connected with malignancies and HIV infection, many of which have been only recently reported, and presents an overview of the compounds endowed with Hck inhibitory activity, especially focusing on the medicinal chemistry aspect.
-
-
-
The Atherosclerotic Plaque Vulnerability: Focus on the Oxidative and Endoplasmic Reticulum Stress in Orchestrating the Macrophage Apoptosis in the Formation of the Necrotic Core
Although the understanding the pathophysiology of atherogenesis and atherosclerosis progression has been one of the major goals of cardiovascular research during the last decades, the precise mechanisms underlying plaque destabilization are still unknown. The disruption of the plaque and the thrombosis in the lumen that are mostly determined by the expansion of the necrotic core (NC) are driven by various mechanisms, including accelerated macrophage apoptosis and defective phagocytic clearance (defective efferocytosis). Oxidative stress is implicated in the expansion of the NC: in fact, many oxidized compounds and processes contribute to the macrophage apoptosis; in addition, the oxidized derivatives of polyunsatured fatty acids promote defective efferocytosis, with the final result of NC expansion. In the last years the role of the endoplasmic reticulum (ER) stress is under investigation to better define its possible contribution in affecting the NC expansion. The abnormal amount of apoptotic cells in the vulnerable plaque has been demonstrated to be related both to the sustained ER stress and to the expression of survival and protective genes, such as the unfolded protein response or/and the nuclear erytroid- related factor 2. In this review the authors focus on the promising results of the oxidative and ER stress in contributing to triggering and orchestrating the atherosclerotic plaque vulnerability.
-
-
-
Mechanisms of Neurodegeration in Type 2 Diabetes and the Neuroprotective Potential of Dipeptidyl Peptidase 4 Inhibitors
Authors: E. Matteucci and O. GiampietroProspective epidemiological studies suggest that type 2 diabetes is a risk factor for neurodegenerative pathologies such as Alzheimer disease, vascular dementia, and Parkinson disease. Drugs that act as incretin receptor agonists or inhibit the proteolytic degradation of incretins (dipeptidyl peptidase 4 inhibitors) have been approved since 2005 for use in diabetes treatment. Dipeptidyl peptidase 4 (DPP4) cleaves N-terminal dipeptides from polypeptides when the second residue is proline, hydroxyproline, dehydroproline or alanine. The inhibition of DPP4 hydrolytic activities extends the halflife of these peptides by preventing their degradation. Several peptides have been identified as DPP4 substrates, including neuropeptides, chemokines, and the incretin hormones; hence the pleomorphic effects of DPP4 inhibition. Recently, the neuroprotective properties of these drugs have been evaluated in cell cultures and animal models, not yet in human trials. Although mechanisms distinct from glycaemic control alone have been claimed to account for protection against neuronal degeneration, the precise cellular mechanism by which DPP4 inhibitors exert their neuroprotective effects remain unknown. The present review is focused on the candidate pathways that could be involved in mediating DPP4 inhibitors-mediated protection against neuronal degeneration.
-
-
-
The Crosstalk Between miRNA and Mammalian Circadian Clock
Authors: Xia Wang, Guihua Tian, Zhongfeng Li and Lei ZhengCircadian clocks are present in most organisms to coordinate daily rhythms in physiology and behavior. The general molecular mechanisms are based on interlocked transcription-translation feedback loops driving rhythms in gene expression of a series of core clock genes. Multiple levels of regulations including transcriptional, posttranscriptional and post-translational mechanisms make circadian clock regulation more complex than once thought. Particularly, accumulating evidences have shown that miRNAs are significant players in regulating various aspects of circadian clock function. In this review, we will summarize the recent findings in the interplay of miRNAs and mammalian circadian clock and discuss future perspectives for research on the role of miRNAs played in circadian timing in health and disease.
-
-
-
Lipid Nanocarriers (LNC) and their Applications in Ocular Drug Delivery
The peculiar physio-anatomical structure of the eye and the poor physico-chemical properties of many drug molecules are often responsible for the inefficient treatment of ocular diseases by conventional dosage forms, and justify the development of innovative ocular drug delivery systems. Lipid-based nanocarriers (LNC) are among the newer and interesting colloidal drug delivery systems; they show the capability to improve the local bioavailability of drugs administered by various ocular routes and, therefore, their therapeutic efficacy. Furthermore, their extreme biodegradability and biocompatible chemical nature have secured them the title of ‘nanosafe carriers.’ This review treats the main features of LNC [namely, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid-drug conjugates (LDC)]; examples and advantages of the application of these colloidal carrier systems for the ophthalmic administration of drugs are presented.
-
-
-
Target Based Drug Design - A Reality in Virtual Sphere
Authors: Saroj Verma and Yenamandra S. PrabhakarThe target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.
-
-
-
Food Addiction Spectrum: A Theoretical Model from Normality to Eating and Overeating Disorders
The authors comment on the recently proposed food addiction spectrum that represents a theoretical model to understand the continuum between several conditions ranging from normality to pathological states, including eating disorders and obesity, as well as why some individuals show a peculiar attachment to food that can become an addiction. Further, they review the possible neurobiological underpinnings of these conditions that include dopaminergic neurotransmission and circuits that have long been implicated in drug addiction. The aim of this article is also that at stimulating a debate regarding the possible model of a food (or eating) addiction spectrum that may be helpful towards the search of novel therapeutic approaches to different pathological states related to disturbed feeding or overeating.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
