Current Medicinal Chemistry - Volume 17, Issue 21, 2010
Volume 17, Issue 21, 2010
-
-
Blockade of Furin Activity and Furin-Induced Tumor Cells Malignant Phenotypes By The Chemically Synthesized Human Furin Prodomain
Authors: A. Basak, A. Chen, N. Scamuffa, D. Mohottalage, S. Basak and A.-M. KhatibProcessing of cancer-associated precursor proteins such as growth factors by the Proprotein Convertase furin is an important cellular process for acquisition of malignant phenotype and metastatic potential of tumor cells. Furin is inhibited by its own prodomain protein which also plays role in the folding of mature furin. Herein, the complete 83-mer furin prodomain protein was chemically synthesized for the first time by solid phase peptide chemistry and its effects on furin activity and tumor cells malignant phenotypes were evaluated. It inhibited furin activity in a competitive manner with low nanomolar inhibition constant (Ki). Expression of furin prodomain cDNA in tumor cells or cells incubated with the corresponding protein blocked furin-cleavage of proPDGF-A. This was associated with significant reduction in tumor cells proliferation, migration as well as invasion. Interestingly shorter synthetic furin prodomain peptides derived from either its primary or secondary activation site alone weakly inhibited furin and displayed limited effects on tumor cells. This suggests that the combined presence of the above two prodomain segments is crucial for prodomain's potent furin-inhibitory and hence anticancer activities.
-
-
-
New Insights on the Antitumoral Properties of Prodiginines
Authors: R. Perez-Tomas and M. VinasApoptosis is involved in the action of several (and perhaps all) cancer-chemotherapeutic agents. Prodiginines are a family of natural red pigmented secondary metabolites, produced by different bacteria and most of them are characterized by a common pyrrolylpyrromethene skeleton. The biosynthesis of prodigiosin and derivatives has been extensively studied in Serratia marcescens. S. marcescens is a Gramnegative bacterium belonging to Enterobacteriaceae. Prodiginines show numerous biological activities pointing out immunosuppressive and anticancer properties. Some prodiginines displayed apoptotic effects in vitro and antitumor activity in vivo. Their cytotoxic effect is attributed to the presence of the C- 6 methoxy substituent. The A-pyrrole ring plays a key role in both the copper nuclease activity and the cytotoxicity of prodiginines. Here we review the main characteristics of prodigiosin and their derivatives as well as the most prominent pharmacological activity of prodiginines and related compounds, including novel synthetic PG-derivatives with lower toxicity like GX15-070 (Obatoclax). The molecular targets of prodiginines are discussed and the mechanism of action for these molecules is a current topic in biomedicine with a real therapeutica potential in the clinic.
-
-
-
RAGE: A Multi-Ligand Receptor Unveiling Novel Insights in Health and Disease
Authors: P. Alexiou, M. Chatzopoulou, K. Pegklidou and V.J. DemopoulosReceptor for advanced glycation end products (RAGE) is expressed in a range of cell types such as endothelial cells, smooth muscle cells, mesangial cells, mononuclear phagocytes and certain neurons. It is a multi-ligand receptor and a member of the immunoglobulin superfamily of cell surface molecules. Its repertoire of ligands includes advanced glycation end products (AGEs), amyloid fibrils, amphoterin and S100/calgranulins. This variety of ligands allows RAGE to be implicated in a wide spectrum of pathological conditions such as diabetes and its complications, Alzheimer's disease, cancer and inflammation. Additionally, genetic polymorphisms in the RAGE gene may have impact on the functional activity of the receptor. It becomes obvious that RAGE pathway is a complicated one and the question of whether blockade of RAGE is a feasible and safe strategy for the prevention/treatment of chronic diseases is gradually gaining the attention of the pharmaceutical community. In this review the biology of RAGE and the triggered signaling cascades involved in health and disease will be presented. Additionally, its potential as an attractive pharmacotherapeutic target will be explored by pointing out the pharmacotherapeutic agents that have been developed for RAGE blockade.
-
-
-
Molecular and Biochemical Features of the Mitochondrial Enzyme Ornithine Transcarbamylase: A Possible New Role as a Signaling Factor
Authors: Mauricio Diaz-Munoz and Rolando Hernandez-MunozOrnithine transcarbamylase (OTC; EC 2.1.3.3) is a one-carbon-unit transferring enzyme that synthesizes citrulline using ornithine and carbamoylphosphate as substrates. It is involved in the metabolic transformation of arginine and proline, and it participates in the urea cycle in vertebrates and in the formation of putrescine in plants. Its enzymatic reaction is consistent with a ping-pong mechanism. OTC is expressed in a large variety of organisms from bacteria to mammals. Its gene can be regulated by glucocorticoids and other transcriptional factors such as C/EBP and HNF-4. The functional enzyme exists mostly as a trimer with an approximate molecular weight of 38 kDa. Inborn errors associated with a deficiency of OTC activity cause mainly urea cycle-related disorders, and lead to hyperammonemic states that may become lethal. In humans and experimental animals, OTC is localized in the mitochondrial matrix, mainly in the liver, but it is also in the intestinal epithelial cells. Some states of hepatotoxicity are associated with hepatocyte disruption and release of OTC into the bloodstream. However, recent evidence suggests that during active cell proliferation (e.g., during liver regeneration), OTC is also released from the hepatic tissue but without apparent damage. In this situation, extracellular and circulating hepatic OTC could be playing a different role, possibly functioning as a signaling molecule.
-
-
-
Pharmacological Strategies to Contend Against Myocardial Reperfusion Damage: Diverse Chemicals for Multiple Targets
Authors: F. Correa, E. Martinez-Abundis, S. Hernandez-Resendiz, N. Garcia, M. Buelna-Chontal, F. Arreguin and C. ZazuetaAcute myocardial infarction is a frequent and disabling disease. Paradoxically, reperfusion, the most effective treatment to reduce infarct size, can both protect and kill. Although reperfusion protects by preventing lesions occurring during prolonged ischemia, it causes damage because reflow is associated with an unbalance between oxygen availability and metabolic demand, altered ionic homeostasis, and reactive oxygen species (ROS) generation. Recently, more players in myocardial reperfusion injury have been described: protein kinase C (PKC) and members of the MAP kinase, which activate downstream cascades that may activate intricate processes compromising cardiac recovery after ischemia. All together, such mechanisms promote endothelial and vascular dysfunction, sequels of impaired blood flow, metabolic and contractile dysfunction, dysrhythmia, cellular necrosis and apoptosis. Different pharmacological agents, as well as mechanical strategies, have been used to challenge the outcome of the complex interactions among these mechanisms and with others. In this review, we focused on the potential of different compounds used in animal models and in the clinical practice to improve the prognosis after post-ischemic reperfusion. We also review mechanisms activated during reperfusion injury and the structure-activity relationship between some of the cardioprotective chemicals and their cellular targets.
-
-
-
Mesenchymal Stem Cells in Cartilage Repair: State of the Art and Methods to monitor Cell Growth, Differentiation and Cartilage Regeneration
Authors: J. Galle, A. Bader, P. Hepp, W. Grill, B. Fuchs, J.A. Kas, A. Krinner, B. MarquaB, K. Muller, J. Schiller, R.M. Schulz, M. von Buttlar, E. von der Burg, M. Zscharnack and M. LofflerDegenerative joint diseases caused by rheumatism, joint dysplasia or traumata are particularly widespread in countries with high life expectation. Although there is no absolutely convincing cure available so far, hyaline cartilage and bone defects resulting from joint destruction can be treated today by appropriate transplantations. Recently, procedures were developed based on autologous chondrocytes from intact joint areas. The chondrocytes are expanded in cell culture and subsequently transplanted into the defect areas of the affected joints. However, these autologous chondrocytes are characterized by low expansion capacity and the synthesis of extracellular matrix of poor functionality and quality. An alternative approach is the use of adult mesenchymal stem cells (MSCs). These cells effectively expand in 2D culture and have the potential to differentiate into various cell types, including chondrocytes. Furthermore, they have the ability to synthesize extracellular matrix with properties mimicking closely the healthy hyaline joint cartilage. Beside a more general survey of the architecture of hyaline cartilage, its composition and the pathological processes of joint diseases, we will describe here which advances were achieved recently regarding the development of closed, aseptic bioreactors for the production of autologous grafts for cartilage regeneration based on MSCs. Additionally, a novel mathematical model will be presented that supports the understanding of the growth and differentiation of MSCs. It will be particularly emphasized that such models are helpful to explain the well-known fact that MSCs exhibit improved growth properties under reduced oxygen pressure and limited supply with nutrients. Finally, it will be comprehensively shown how different analytical methods can be used to characterize MSCs on different levels. Besides discussing methods for non-invasive monitoring and tracking of the cells and the determination of their elastic properties, mass spectrometric methods to evaluate the lipid compositions of cells will be highlighted.
-
-
-
Synthetic Membrane-Targeted Antibiotics
Authors: S.K. Vooturi and S.M. FirestineAntimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.
-
-
-
Synthesis and Structure-Activity Relationships of Skin Ceramides
Authors: J. Novotny, A. Hrabalek and K. VavrovaCeramides are a complex group of lipids that has gained much attention as cell signaling molecules and skin barrier constituents. In the skin, these sphingolipids form a major part of the stratum corneum intercellular lipid matrix, which is the barrier for penetration of most compounds. The development of such a protective layer was a critical step in the evolution of life on a dry land. Moreover, prominent skin diseases such as psoriasis and atopic dermatitis are associated with diminished ceramide levels and may be effectively improved by exogenous ceramides or their analogues. Since ceramides are not obtained from natural sources in pure form, they are of synthetic interest since 1950's. In this review, we describe sphingosine syntheses from 1998 until 2008, and the synthetic approaches to the unique epidermal ceramides, including the 6-hydroxysphingosine-based ones, the alpha- and omega-hydroxy forms and the omega-acyloxy species. Moreover, the structural requirements of ceramides for a competent skin barrier are discussed, including acyl chain length, trans double bond, acyl alpha-hydroxyl, stereochemistry, omega-linoleyloxy species and ceramide conformation.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
