Current Medicinal Chemistry - Volume 16, Issue 25, 2009
Volume 16, Issue 25, 2009
-
-
A New Drug Candidate (GEMSP) for Multiple Sclerosis
Authors: Arturo Mangas, Rafael Covenas, Dominique Bodet, Sebastien Duleu and Michel GeffardGEMSP is a mixture of functional polypeptides: fatty acids linked to poly-L-Lysine (PL), antioxidants linked to PL, free radical scavengers linked to PL, and amino acids linked to PL (patent numbers 6114388 (USA) and 792167 (EU)). In this review, we update the data on this new drug reported in the literature. There is evidence suggesting that GEMSP is a good candidate for the treatment of multiple sclerosis (MS), an inflammatory and neurodegenerative disease of the central nervous system characterized by focal leukocyte inflammation, demyelization and axonal degeneration, resulting in nerve cell dysfunction. Experimental autoimmune encephalomyelitis (EAE) is the main animal model used in the study of MS, a T cell-mediated autoimmune disease of the central nervous system. EAE has many clinical and histopathological similarities to MS. In this model, preclinical studies on GEMSP have demonstrated that the drug strongly inhibits brain leukocyte infiltration and completely abolishes EAE episodes and clinical scores, and it also appears that GEMSP preserves myelin integrity. In general, treatment with the free constituents of GEMSP (not linked to the inert carrier protein) is poorly active against brain leukocyte infiltration in EAE-immunized animals. This means that free molecules (not linked to PL) exert a very poor action on such infiltration and that these molecules are either rapidly incorporated into the metabolism or are degraded. Moreover, with immunocytochemical techniques, it has been demonstrated that one component of GEMSP, the methionine compound, is stored inside the motoneurons of the ventral horn of the spinal cord. However, this component of GEMSP has not been found in the brain. The new candidate for MS therapy has shown no toxicity either in experimental animals or in humans. An open clinical trial in humans has demonstrated that GEMSP is completely safe. In addition, the approved drugs for the treatment of MS exert marked side effects, but no side effects have been reported following the administration of GEMSP. The results obtained at six months of treatment with low doses of GEMSP (0.75 mg/day) in that open clinical trial in humans were as follows: 55% of the patients maintained a stable expanded disability status scale (EDSS) value and 18% of the patients had a decreased EDSS value instead of a normal progression of 0.25 point on the mean EDSS scale. We focus our review on the following topics: 1) EAE models and clinical evaluation; 2) the synthesis of GEMSP; 3) the effects of GEMSP dosage on EAE; 4) the effects of GEMSP on brain leukocyte infiltration; 5) GEMSP inside motoneurons; 6) the role of the components of GEMSP; and 7) GEMSP in MS patients, GEMSP toxicity, and side effects. In conclusion, all the data reported indicate that GEMSP is a new potential drug candidate for the treatment of MS.
-
-
-
Recent Developments in the Chemistry of Thebaine and its Transformation Products as Pharmacological Targets
Authors: Sandor Berenyi, Csaba Csutoras and Attila SiposThe most practical synthetic routes to the preparation of as important pharmaceuticals as oxycodone, naloxone, naltrexone, nalbuphine and buprenorphine have utilized the alkaloid, thebaine, as a starting material. This review intends to focus on chemical transformations of morphinans which resulted in morphinandiene derivatives with well-established and novel pharmacological potencies. These chemical transformations were mainly associated with the formation and substitution of the unique diene structure of the ring C of the morphinan backbone.
-
-
-
Receptor Dependent Multidimensional QSAR for Modeling Drug - Receptor Interactions
More LessQuantitative Structure Activity Relationship (QSAR) is an approach of mapping chemical structure to properties. A significant development can be observed in the last two decades in this method which originated from the Hansch analysis based on the logP data and Hammett constant towards a growing importance of the molecular descriptors derived from 3D structure including conformational dynamics and solvation scenarios. However, molecular interactions in biological systems are complex phenomena generating extremely noisy data, if simulated in silico. This decides that activity modeling and predictions are a risky business. Molecular recognition uncertainty in traditional receptor independent (RI) m-QSAR cannot be eliminated but by the inclusion of the receptor data. Modeling ligand-receptor interactions is a complex computational problem. This has limited the development of the receptor dependent (RD) m-QSAR. However, a steady increase of computational power has also improved modeling ability in chemoinformatics and novel RD QSAR methods appeared. Following the RI m-QSAR terminology this is usually classified as RD 3÷6D-QSAR. However, a clear systematic m-QSAR classification can be proposed, where dimension m refers to, the static ligand representation (3D), multiple ligand representation (4D), ligand-based virtual or pseudo receptor models (5D), multiple solvation scenarios (6D) and real receptor or target-based receptor model data (7D).
-
-
-
Thyroid Hormone Antagonists: Potential Medical Applications and Structure Activity Relationships
Authors: Johan Malm, Mathias Farnegardh, Gary J. Grover and Paul W. LadensonThyroid hormone receptors (TRs) exert profound effects on development, metabolism, and multiple specific organ functions. Principally by regulating crucial genes in a variety of tissues, the thyroid hormones, 3,5,3'-triiodo-Lthyronine (L-T3, 1) and 3,5,3',5'-tetraiodo-L-thyronine (L-T4, 2), influence basal calorigenesis and oxygen consumption, cardiac rate and contractility, lipid metabolism, bone structure and strength, and central nervous system functions critical for normal mentation and mood. Elevated levels of circulating and tissue 1 and/or 2 result in the thyrotoxic clinical state, manifested by weight loss despite increased caloric intake; heat intolerance due to increased calorigenesis; cardiac tachyarrhythmias, systolic hypertension, and heart failure; skeletal muscle weakness; and a spectrum of neuropsychiatric symptoms ranging from anxiety to delirium and psychosis. The current standard treatments of endogenous hyperthyroidism causing thyrotoxicosis reduce the overproduction of thyroid hormones by pharmacologically inhibiting their synthesis or release (e.g., with thionamides or lithium, respectively), or by ablating thyroid tissue surgically or with radioiodine. TR-antagonists could hypothetically have significant clinical use in treating thyrotoxic states if they were capable of promptly and completely restoring euthyroid levels of thyroid-specific gene activity. No TRα-selective ligands have been prepared up to this date, ligands that potentially would further ameliorate the problem with cardiac disease connected with hyperthyroidism and maybe cardiac arrhythmia. Despite its significant potential use, no TR-antagonist has reached clinical application. Design of TR-antagonists ligands has been based on the attachment of a large extension group at the 5- prime position of 1 or other structurally related analogues. This extension is believed to distort folding of the C-terminal helix (helix 12) to the body of the ligand binding domain (LBD), which normally forms a coactivator site. Examples of synthetic TR antagonists based on this extension strategy are reviewed, as well as other strategies to achieve functional TR-antagonism.
-
-
-
Doxorubicin: The Good, the Bad and the Ugly Effect
The anthracycline doxorubicin (DOX) is widely used in chemotherapy due to its efficacy in fighting a wide range of cancers such as carcinomas, sarcomas and hematological cancers. Despite extensive clinical utilization, the mechanisms of action of DOX remain under intense debate. A growing body of evidence supports the view that this drug can be a double-edge sword. Indeed, injury to nontargeted tissues often complicates cancer treatment by limiting therapeutic dosages of DOX and diminishing the quality of patients' life during and after DOX treatment. The literature shows that the heart is a preferential target of DOX toxicity. However, this anticancer drug also affects other organs like the brain, kidney and liver. This review is mainly devoted to discuss the mechanisms underlying not only DOX beneficial effects but also its toxic outcomes. Additionally, clinical studies focusing the therapeutic efficacy and side effects of DOX treatment will be discussed. Finally, some potential strategies to attenuate DOX-induced toxicity will be debated.
-
-
-
New Therapeutic Targets for Drug Design Against Trypanosoma cruzi, Advances and Perspectives
Chagas disease is one of the most important parasitic diseases in Latin America, affecting16 to 18 million people. Nifurtimox and Benznidazol are drugs that are commonly used in its treatment; however, these drugs produce several adverse reactions and are not effective in the chronic phase of the disease. Therefore, the design, synthesis, and biological evaluation of new compounds with potential activity against Trypanozoma cruzi are of great importance. We review six proteins involved in the biochemical metabolism of Trypanosoma cruzi that have recently been studied as potential targets for designing new drugs for Chagas disease. These are farnesyl pyrophosphate synthase, trans-sialidase, cruzain cystein protease, trypanothione reductase, glucose 6-phosphate-dehydrogenase, glyceraldehyde 3-phosphatedehydrogenase, and α-hydroxy acid dehydrogenase. We also review the advances of compounds recently designed based on structure-activity, and the perspectives of new compounds that inhibit these therapeutic targets.
-
-
-
Potential Therapeutic Effects of Na+/Ca2+ Exchanger Inhibition in Cardiac Diseases
Authors: Andras Toth, Lorand Kiss, Andras Varro and Peter P. NanasiThe Na+/Ca2+ exchanger (NCX) has a pivotal role in cardiac Na+ and Ca2+ homeostasis and is an essential pathway for Ca2+ extrusion from cardiomyocytes. Altered NCX function may result in abnormal Ca2+ release from the sarcoplasmic reticulum (SR) and impaired cardiac electrical activity and contractility in several diseases, like arrhythmias, ischemia/reperfusion injury, hypertrophy and heart failure. This review focuses on the role of the exchanger and the major effects of partial NCX blockade in normally functioning and diseased hearts. In healthy cardiac cells consequences of a partial NCX blockade were found to be moderate and species dependent. In rabbit and dog practically no change in the magnitude of the calcium transients and mechanical activity was observed, while elevation of systolic calcium levels and a concomitant positive inotropic action were demonstrated in rat and murine hearts. On the other hand, NCX inhibition represents a novel potential therapeutic strategy in case of a variety of cardiac dysfunctions. Partial NCX blockade was shown to have beneficial effects in animal models of ischemia/reperfusion injury and also antiarrhythmic and positive inotropic actions in the failing heart. Further progress in this field is seriously hampered by the absence of really selective NCX inhibitors. KB-R7943 and SEA0400 are widely used NCX blockers, both drugs, however, have limited selectivity and efficacy, properties required to initiate relevant clinical trials. In summary, there is an increasing demand by both researchers and clinicians for new NCX inhibitors with significantly enhanced selectivity and functionality.
-
-
-
Blocking Receptor Protein Tyrosine Phosphatase β /ζ: A Potential Therapeutic Strategy for Parkinson's Disease
Authors: Gonzalo Herradon and Laura EzquerraPleiotrophin (PTN) is a recently discovered cytokine which has been found highly upregulated in the substantia nigra and striatum of rodents in experimental models of Parkinson's disease. Interestingly, immunohistochemical studies have shown increased levels of PTN expression in the substantia nigra of patients with Parkinson's disease. Since, in other contexts, PTN has been shown to be critical in repair processes in the injured nervous system, the antecedents suggest that PTN could exhibit protective effects in Parkinson's disease. This hypothesis was confirmed when PTN was shown to support survival of dopaminergic neurons and to promote the differentiation of neural stem cells to dopaminergic neurons. These findings suggest a new therapeutic approach in the treatment of Parkinson's disease based on the molecular mechanism of action of PTN. Pleiotrophin receptor, receptor protein tyrosine phosphatase (RPTP) β/ζ, is found active in monomeric form in neurons and glia within the central nervous system. Pleiotrophin induces dimerization of RPTPβ/ζ inactivating its phosphatase activity, thus increasing the phosphorylation levels of its substrates such as β-catenin, Fyn and β- adducin. These substrates have been shown to be critical for the proliferation of dopaminergic progenitors and the survival and differentiation of dopaminergic neurons. This review summarizes the strong scientific basis to consider blocking RPTPβ/ζ as a potentially novel therapeutic strategy in the treatment of Parkinson'ss disease and discusses various starting points to design antagonists of this receptor.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
