Current Medicinal Chemistry - Volume 13, Issue 23, 2006
Volume 13, Issue 23, 2006
-
-
Engineered T Cell Receptors and their Potential in Molecular Medicine
More LessAuthors: John J. Miles, Sharon L. Silins and Scott R. BurrowsT cell receptors are among the most specific biological structures found in nature and are therefore excellent candidates for the molecular targeting of antigen. It is becoming increasingly apparent that common sets of T cell receptors are frequently used in humans to combat pathogen and cancer derived threats. Given that many of these conserved T cell receptors have high affinity for their target ligands, there is potential to amass virtual banks of “off-the-shelf” receptors for use in a wide range of immunotherapeutic strategies. Additionally, such T cell receptors could become basic blueprints for artificial enhancement through mutagenesis, thereby creating an even better 3-dimensional fit for their cognate targets. Indeed, preliminary approaches using both “natural” and “supernatural” T cell receptors have shown promise in treating autoimmunity and malignancy. This review will discuss these studies and other approaches through which T cell receptors can be exploited in immunodiagnostics, pathogen control and gene therapy.
-
-
-
Growth Factors and Chemokines: A Comparative Functional Approach Between Invertebrates and Vertebrates
More LessAuthors: G. Tettamanti, D. Malagoli, R. Benelli, A. Albini, A. Grimaldi, G. Perletti, D. M. Noonan, M. de Eguileor and E. OttavianiGrowth factors and cytokines control and coordinate a broad spectrum of fundamental cellular functions, and are evolutionarily conserved both in vertebrates and invertebrates. In this review, we focus our attention on the functional phylogenetic aspects of growth factors/cytokines like the Transforming Growth Factor-β (TGF-β), the Connective Tissue Growth Factor (CTGF), and the Vascular Endothelial Growth Factor (VEGF). We will also delve into the activites of two chemokine families, interleukin (IL)-8 (or CXCL8) and CC chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2). These molecules have been selected for their involvement in immune responses and wound healing processes, where they mediate and finely regulate various regeneration processes like angiogenesis or fibroplasia, not only in vertebrates, but also in invertebrates.
-
-
-
CRF Receptor Antagonists: Utility in Research and Clinical Practice
More LessAuthors: E. Chatzaki, V. Minas, E. Zoumakis and A. MakrigiannakisCRF, CRF-related peptides and CRF receptors constitute a complex physiological system which has a key role in facilitating the adaptation of the organism to the stressful stimuli of the environment. The behavioral, endocrine, autonomic and immune branches of stress response are considered to be under the coordinating effects of CRF and its related peptides. The effects of these peptides are mediated through two distinct receptors, types 1 and 2 CRF receptors (CRF1 and CRF2). The two receptors are encoded by separate genes and belong to the G-coupled receptor superfamily. The wide influence of the CRF system on physiological processes in both brain and periphery, suggests the implication of the respective peptides in the pathophysiology of numerous disorders which involve dysregulated stress responses. The potential use of CRF antagonists in such disorders is currently under intense investigation. Furthermore, such compounds have been invaluable in elucidating the physiology of the CRF system. This review will focus on existing data on the structural and pharmacological characteristics as well as the experimental and potential clinical uses of non-peptide, small molecule CRF antagonists.
-
-
-
Current Progress in Non-Invasive Imaging of Beta Cell Mass of the Endocrine Pancreas
More LessThe increasing incidence of diabetes requires a better understanding of the pathogenesis of the clinical disease. Studies in prevention and treatment have been hampered by the single end-point of diagnosis of diabetes and hyperglycemia. The common pathology in both type 1 and type 2 diabetes is insufficient beta-cell mass to meet the metabolic demand. Unfortunately, current diagnostic methods rely on metabolic responses that do not accurately reflect true beta-cell mass. Recent advances in beta-cell imaging have utilized multiple modalities in experimental and clinical settings. While no “gold-standard” exists to measure beta-cell mass, modalities such as single photon emission computed tomography, optical and fluorescent imaging, magnetic resonance imaging, and positron emission tomography have been used with mixed success. Many of the methods are limited by the inability to translate to the clinical setting, poor discrimination between the exocrine and endocrine pancreas, or a poor measurement of beta-cell mass. However, promising new “neurofunctional imaging” approaches have emerged as improved measures of beta-cell mass. We review the current understanding of the pathogenesis and evaluation of diabetes, as well as experimental approaches to assessing beta-cell mass.
-
-
-
Interaction Between Cytokines and Oxidative Stress in Acute Pancreatitis
More LessAuthors: Javier Pereda, Luis Sabater, Luis Aparisi, Javier Escobar, Juan Sandoval, Jose Vina, Gerardo Lopez-Rodas and Juan SastreAcute pancreatitis is an inflammation initially localized in the pancreatic gland which may lead to local and systemic complications. The development of severe acute pancreatitis is mediated by pathophysiological mechanisms involved in the systemic inflammatory response, cytokines and oxidative stress being their components of major importance. Nevertheless, it is still unknown why an episode of acute pancreatitis remains mild or progresses to a severe form. Activated leukocytes are the main source of cytokines. Interleukin 1β and tumor necrosis factor alpha (TNF-α) initiate and propagate almost all the consequences of the systemic inflammatory response syndrome, leading to amplification of the inflammatory response. It is noteworthy that the systemic inflammatory response is restrained and the rate of mortality decreased in acute pancreatitis when TNF-α is blocked with specific antibodies or in knock-out mice deficient in its receptors. A synergy between pro-inflammatory cytokines and oxidative stress occurs in the development of the inflammatory response in acute pancreatitis. Pro-inflammatory cytokines and oxidative stress trigger common signal transduction pathways that lead to amplification of the inflammatory cascade, mainly through activation of mitogen-activated protein kinases (MAPK) and nuclear factor kappaB (NF-κB). Furthermore, proinflammatory cytokines, particularly TNF-α, and oxidative stress promote each other generating a vicious circle in acute pancreatitis. This cross-talk that arises between pro-inflammatory cytokines and oxidative stress greatly contributes to amplification of the uncontrolled inflammatory cascade through MAPK and NF-κB.
-
-
-
Tenofovir Plus Didanosine as Nrti Backbone in HIV-Infected Subjects
More LessAuthors: Marco Bongiovanni and Federica TordatoNucleoside reverse transcriptase inhibitors (NRTI) are essential components of highly active antiretroviral treatment (HAART). Although several combinations can be used as NRTI backbones, not all are associated with good virological and/or immunological results. In particular, some NRTI combinations should be avoided due to antagonism (zidovudine plus stavudine) or to high rate of toxicity (didanosine plus stavudine). Tenofovir (TDF) and didanosine (ddI) are among the more often prescribed NRTI for their convenient posology (one pill each per day), relatively high genetic barrier for resistance, quite acceptable safety profile and remarkable antiviral potency when such drugs have been used as single drug or in combinations with other NRTIs. However, antiretroviral regimens containing TDF and ddI have been associated with a high rate of virological failure in HIV-infected naïve patients due to possible drug-interactions. The virological efficacy of this backbone in HIV-infected, HAART pre-treated subjects, is still controversial. Aim of this review is to assess the possible role that antiretroviral regimens containing TDF and ddI can have in the treatment of HIV-positive subjects, focusing on their plasmatic and/or intracellular interactions to optimize the antiretroviral efficacy and minimize the toxicities of this combination.
-
-
-
Recent Advances in Coumarins and 1-Azacoumarins as Versatile Biodynamic Agents
More LessAuthors: Manohar V. Kulkarni, Geeta M. Kulkarni, Chao-Hsiung Lin and Chung-Ming SunCoumarins, also referred as benzopyran-2-ones, and their corresponding nitrogen counterpart, 1- azacoumarins also referred to as carbostyrils, are a family of nature-occurring lactones and lactams respectively. The plant extracts containing coumarin-related heterocycles, which were employed as herbal remedies in early days, have now been extensively studied for their biological activities. These investigations have revealed their potentials as versatile biodynamic agents. For example, coumarins with phenolic hydroxyl groups have the ability to scavenge reactive oxygen species and thus prevent the formation of 5-HETE and HHT in the arachidonic pathway of inflammation suppression. Recent in vivo studies have revealed the role of coumarins in hepatotoxicity and also in depletion of cytochrome P450. Similarly 1-azacoumarins which is part of quinoline alkaloids, are known for their diverse biological activity and recently, a 6-functionalized 1-aza coumarins are undergoing human clinical trials as an orally active anti-tumor drug in view of its farnesyl protein-inhibiting activity in the nanomolar range. Furthermore, several synthetic coumarins with a variety of pharmacophoric groups at C-3, C-4 and C-7 positions have been intensively screened for anti-microbial, anti- HIV, anti-cancer, lipid-lowering, anti-oxidant, and anti-coagulation activities. Specifically, coumarin-3-sulfonamides and carboxamides were reported to exhibit selective cytotoxicity against mammalian cancer cell lines. The C4-substituted aryloxymethyl, arylaminomethyl, and dichloroacetamidomethyl coumarins, along with the corresponding 1-azacoumarins, have been demonstrated to be potential anti-microbial and anti-inflammatory agents. To expand the structural diversity of synthetic courmarins for biological functions, attempts have also been made to attach a chloramphenicol side chain at C- 3 position of courmarin. In addition, the bi- and tri-heterocyclic coumarins and 1-azacoumarins with benzofuran, furan and thiazole ring systems along with biocompatible fragments like vanillin have shown remarkable potency as anti-inflammatory agents in animal models. Photobiological studies on pyridine-fused polycyclic coumarins have highlighted their potential as thymine dimer photosensitisers and the structurally related compounds of both coumarin and carbostyrils have also been found to act via the DNA gyrase pathway in their anti-bacterial activity. Apart from the above works, the present review also addresses the potential roles of coumarins and carbostyrils as protease inhibitors, or fluorescent probes in mechanistic investigation of biochemical pathways, and their application for QSAR in theoretical studies. Though 1-Azacoumarins have received less attention as compared to coumarins in the literature, an attempt has been made to compare both the systems at various stages, so that it can spark new thoughts on synthetic methodologies, reactivity pattern and biological activities.
-
-
-
Molecular Imaging of Matrix Metalloproteinases In Vivo Using Small Molecule Inhibitors for SPECT and PET
More LessAuthors: S. Wagner, H.-J. Breyholz, A. Faust, C. Holtke, B. Levkau, O. Schober, M. Schafers and K. KopkaMatrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent secreted or membrane anchored endopeptidases. MMPs are involved in many physiological processes but also take part in the pathophysiological mechanisms responsible for a wide range of diseases. Pathological expression and activation of MMPs are associated with cancer, atherosclerosis, stroke, arthritis, periodontal disease, multiple sclerosis and liver fibrosis. Thus, noninvasive visualisation and quantification of MMP activity in vivo are of great interest in basic research and clinical application. This can be achieved by scintigraphic molecular imaging techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provided suitable radiolabelled tracers exist, e.g. radioactive inhibitors of matrix metalloproteinases (MMPIs). The approach to monitor MMP activity in vivo using radiolabelled small molecule inhibitors suitable for SPECT and PET is summarised in this review. Briefly, latest advances in scintigraphic imaging are introduced and followed by a report about the enzyme class of MMPs. The involvement of MMPs in cancer and atherosclerosis is exemplified and small molecule MMPIs are classified. Subsequently, the development of radiolabelled small molecule MMPIs, their synthesis and in vitro and in vivo evaluation is reviewed. Finally, an outlook on the clinical potential of labelled MMPIs in diagnostic algorithms is given.
-
-
-
Treating Chronic Hepatitis B: Today and Tomorrow
More LessAuthors: G. Borgia and I. GentileThree hundred and fifty million people worldwide are estimated to be chronically infected with hepatitis B virus. 15-40% of these subjects will develop cirrhosis, liver failure or hepatocellular carcinoma during their life. The treatment of chronic hepatitis B has improved dramatically over the last decade thanks to the advent of nucleoside/ nucleotide analogues and the use of pegylated interferons. However, these agents have increased the complexity of the management of hepatitis B. Five drugs have been approved for chronic hepatitis B treatment: standard interferon-α2b, pegylated interferon-α2a, lamivudine, adefovir dipivoxil, and entecavir. A definite course of standard or pegylated interferon is administered to induce hepatitis B virus clearance. Unfortunately, these agents are not effective in all patients and are associated with not negligible side effects. Nucleoside or nucleotide analogues that inhibit hepatitis B virus polymerase induce on-treatment suppression of viral replication but patients tend to relapse after cessation of treatment. Consequently, these analogues, which are well tolerated, should be used for prolonged periods, even indefinitely. However, prolonged treatment is associated with a high rate of resistance. The following anti-hepatitis B virus drugs are currently undergoing clinical testing: telbivudine, emtricitabine, tenofovir disoproxil fumarate, clevudine and thymosin-α1. Here we will examine the mechanism of action, efficacy, safety, tolerability and emergence of resistance of agents used to treat chronic hepatitis B. We shall also examine the potential of drugs now being tested and of combination treatment.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month