Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986733215250325111534
2025-03-25
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/15/CMC-32-15-01.html?itemId=/content/journals/cmc/10.2174/092986733215250325111534&mimeType=html&fmt=ahah

References

  1. AliO. SzabóA. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids.Int. J. Mol. Sci.202324211569310.3390/ijms242115693 37958678
    [Google Scholar]
  2. FangW. ZhuY. YangS. TongX. YeC. Reciprocal regulation of phosphatidylcholine synthesis and H3K36 methylation programs metabolic adaptation.Cell Rep.202239211067210.1016/j.celrep.2022.110672 35417718
    [Google Scholar]
  3. FoxC.A. LethcoeK. RyanR.O. Calcium-induced release of cytochrome c from cardiolipin nanodisks: Implications for apoptosis.Biochim. Biophys. Acta Biomembr.202118631218372210.1016/j.bbamem.2021.183722 34400138
    [Google Scholar]
  4. MehtaS. ChakrabortyA. RoyA. SinghI.K. SinghA. fight hard or die trying: current status of lipid signaling during plant–pathogen interaction.Plants2021106109810.3390/plants10061098 34070722
    [Google Scholar]
  5. KimJ. CooperJ.A. junctional localization of septin 2 is required for organization of junctional proteins in static endothelial monolayers.Arterioscler. Thromb. Vasc. Biol.202141134635910.1161/ATVBAHA.120.315472 33147991
    [Google Scholar]
  6. VahediA. BigdelouP. FarnoudA.M. Quantitative analysis of red blood cell membrane phospholipids and modulation of cell-macrophage interactions using cyclodextrins.Sci. Rep.20201011511110.1038/s41598‑020‑72176‑3 32934292
    [Google Scholar]
  7. MiyasakaY. Condensed desmin and actin cytoskeletal communication in lipid droplets.Cytoskeleton2019769-1047749010.1002/cm.21573
    [Google Scholar]
  8. YangH. RothenbergerE. ZhaoT. FanW. KellyA. AttayaA. FanD. PanigrahyD. DengJ. Regulation of inflammation in cancer by dietary eicosanoids.Pharmacol. Ther.202324810845510.1016/j.pharmthera.2023.108455 37257760
    [Google Scholar]
  9. RudrapalM. EltayebW.A. RakshitG. El-ArabeyA.A. KhanJ. AldosariS.M. AlshehriB. AbdallaM. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies.Sci. Rep.2023131865610.1038/s41598‑023‑35161‑0 37244921
    [Google Scholar]
  10. MehtaH. TasinI. HacksteinC.P. WillbergC. KlenermanP. Prostaglandins differentially modulate mucosal-associated invariant T-cell activation and function according to stimulus.Immunol. Cell Biol.2023101326227210.1111/imcb.12617 36541521
    [Google Scholar]
  11. WangX. LiY. HouX. LiJ. MaX. Lipid metabolism reprogramming in endometrial cancer: Biological functions and therapeutic implications.Cell Commun. Signal.202422143610.1186/s12964‑024‑01792‑7 39256811
    [Google Scholar]
  12. AlharithiY.J. PhillipsE.A. WilsonT.D. CouvillionS.P. NicoraC.D. DarakjianP. RaksheS. FeiS.S. CountsB. MetzT.O. SearlesR. KumarS. MaloyanA. Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity.BioRxiv20242024.08.20.60880910.1101/2024.08.20.608809
    [Google Scholar]
  13. TangH.B. GuoQ.H. YangJ.M. ZhangJ.H. LuH.L. Hepatic metabolomic responses to low-temperature stress in the invasive turtle. Trachemys scripta elegans.Animals (Basel)20241416238810.3390/ani14162388 39199921
    [Google Scholar]
  14. MondaA. La TorreM.E. MessinaA. Di MaioG. MondaV. MoscatelliF. De StefanoM. La MarraM. PadovaM.D. DipaceA. LimoneP. CasilloM. MondaM. MessinaG. PolitoR. Exploring the ketogenic diet’s potential in reducing neuroinflammation and modulating immune responses.Front. Immunol.202415142581610.3389/fimmu.2024.1425816 39188713
    [Google Scholar]
  15. WangH ShanC GuoG NingD MiaoF Therapeutic potential of palmitoleic acid in non-alcoholic fatty liver disease: Targeting ferroptosis and lipid metabolism disorders.Int. Immunopharmacol.2024142Pt A11302510.1016/j.intimp.2024.113025
    [Google Scholar]
  16. PollardA.E. New concepts in the roles of AMPK in adipocyte stem cell biology.Essays Biochem.202468334936110.1042/EBC20240008 39175418
    [Google Scholar]
  17. LimJ.H. KimY. KimM.Y. KimE.N. KimT.W. ChoiB.S. KimW.U. KimH.W. ParkJ.Y. ParkC.W. Placental growth factor deficiency initiates obesity- and aging-associated metabolic syndrome.Metabolism202416115600210.1016/j.metabol.2024.156002 39173826
    [Google Scholar]
  18. BarbarrojaN. López-MedinaC. Escudero-ContrerasA. Arias-de la RosaI. Clinical and molecular insights into cardiovascular disease in psoriatic patients and the potential protective role of apremilast.Front. Immunol.202415145918510.3389/fimmu.2024.1459185 39170613
    [Google Scholar]
  19. OlimpieriT. PoerioN. PonsecchiG. Di LalloG. D’AndreaM.M. FrazianoM. Phosphatidylserine liposomes induce a phagosome acidification-dependent and ROS-mediated intracellular killing of Mycobacterium abscessus in human macrophages.Front. Cell. Infect. Microbiol.202414144371910.3389/fcimb.2024.1443719 39224705
    [Google Scholar]
  20. AydemirE. Anti-inflammatory immunomodulatory activity of valacyclovir on the in vitro activated mammalian macrophages.Discov. Med.2024361871641164710.24976/Discov.Med.202436187.150 39190379
    [Google Scholar]
  21. OmarA. BarakatM. AlzaghariL.F. AbdulrazzaqS.B. HasenE. ChellappanD.K. Al-NajjarM.A.A. The effect of Jordanian essential oil from coriander seeds on antioxidant, anti-inflammatory, and immunostimulatory activities using RAW 246.7 murine macrophages.PLoS One2024198e029725010.1371/journal.pone.0297250 39106253
    [Google Scholar]
  22. YangM. LiuX. JiangM. HuJ. XiaoZ. TAX1BP1/A20 inhibited TLR2-NF-κB activation to induce tolerant expression of IL-6 in endothelial cells.Int. Immunopharmacol.202413911278910.1016/j.intimp.2024.112789 39079200
    [Google Scholar]
  23. ZhouJ. HanJ. WeiY. WangY. Desaminotyrosine is a redox-active microbial metabolite that bolsters macrophage antimicrobial functions while attenuating IL-6 production.FASEB J.20243814e2384410.1096/fj.202400638R 39046365
    [Google Scholar]
  24. NishiK. NakataniY. IshidaM. KadotaA. SugaharaT. Anti-inflammatory activity of the combination of nobiletin and docosahexaenoic acid in lipopolysaccharide-stimulated RAW 264.7 cells: A potential synergistic anti-inflammatory effect.Nutrients20241613208010.3390/nu16132080
    [Google Scholar]
  25. RobeaM.A. BalmusI.M. GirleanuI. HuibanL. MuzicaC. CiobicaA. StanciuC. CimpoesuC.D. TrifanA. Coagulation dysfunctions in non-alcoholic fatty liver disease—oxidative stress and inflammation relevance.Medicina (Kaunas)2023599161410.3390/medicina59091614 37763733
    [Google Scholar]
  26. Reyes-JiménezE. Ramírez-HernándezA.A. Santos-ÁlvarezJ.C. Velázquez-EnríquezJ.M. González-GarcíaK. Carrasco-TorresG. Villa-TreviñoS. Baltiérrez-HoyosR. Vásquez-GarzónV.R. Coadministration of 3′5-dimaleamylbenzoic acid and quercetin decrease pulmonary fibrosis in a systemic sclerosis model.Int. Immunopharmacol.202312211066410.1016/j.intimp.2023.110664 37481854
    [Google Scholar]
  27. OhJ.Y. MarquesM.B. XuX. LiJ. GenschmerK.R. PhillipsE. ChimentoM.F. MobleyJ. GaggarA. PatelR.P. Different-sized extracellular vesicles derived from stored red blood cells package diverse cargoes and cause distinct cellular effects.Transfusion202363358660010.1111/trf.17271 36752125
    [Google Scholar]
  28. NshimiyimanaR. SimardM. TederT. RodriguezA.R. SpurB.W. HaeggströmJ.Z. SerhanC.N. Biosynthesis of resolvin D1, resolvin D2, and RCTR1 from 7,8(S,S)-epoxytetraene in human neutrophils and macrophages.Proc. Natl. Acad. Sci. USA202412137e240582112110.1073/pnas.2405821121 39236243
    [Google Scholar]
  29. MohedinJ.A. RezaiemaneshA. AsadiS. HaddadiM. AhmedB.A. KarajiA.G. SalariF. Resolvin D1 (Rvd1) attenuates in vitro LPS-stimulated inflammation through downregulation of miR-155, miR-146, miR-148 and krupple like factor 5.Reports Biochem. Mol. Biol.202412456610.61186/rbmb.12.4.566 39086587
    [Google Scholar]
  30. LeutiA. The endocannabinoid anandamide activates pro-resolving pathways in human primary macrophages by engaging both CB2 and GPR18 receptors.FASEB J.20243810e2367510.1096/fj.202301325R
    [Google Scholar]
  31. BriottetM. SyK. LondonC. AissatA. ShumM. EscabasseV. LouisB. UrbachV. Specialized proresolving mediator resolvin E1 corrects the altered cystic fibrosis nasal epithelium cilia beating dynamics.Proc. Natl. Acad. Sci. USA20241215e231308912110.1073/pnas.2313089121 38252817
    [Google Scholar]
  32. ZhangX. ZhangH. Pro-resolving and anti-inflammatory effects of resolvins and protectins in rheumatoid arthritis.Inflammopharmacology20233162995300410.1007/s10787‑023‑01343‑5 37831392
    [Google Scholar]
  33. ZhengA. HuangN. BeanD. RayapaneniS. DeeneyJ. SagarM. HamiltonJ.A. Resolvin E1 heals injured cardiomyocytes: Therapeutic implications and H-FABP as a readout for cardiovascular disease & systemic inflammation.Prostaglandins Leukot. Essent. Fatty Acids202319710258610.1016/j.plefa.2023.102586 37604082
    [Google Scholar]
  34. LiW. ShepherdH.M. TeradaY. ShayA.E. BeryA.I. GelmanA.E. LavineK.J. SerhanC.N. KreiselD. Resolvin D1 prevents injurious neutrophil swarming in transplanted lungs.Proc. Natl. Acad. Sci. USA202312031e230293812010.1073/pnas.2302938120 37487095
    [Google Scholar]
  35. MarínC. Yubero-SerranoE. López-MirandaJ. Pérez-JiménezF. Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet.Int. J. Mol. Sci.20131458869888910.3390/ijms14058869 23615475
    [Google Scholar]
  36. HoustonM. The role of noninvasive cardiovascular testing, applied clinical nutrition and nutritional supplements in the prevention and treatment of coronary heart disease.Ther. Adv. Cardiovasc. Dis.20181238510810.1177/1753944717743920 29316855
    [Google Scholar]
  37. WeinsteinG. Zelber-SagiS. PreisS.R. BeiserA.S. DeCarliC. SpeliotesE.K. SatizabalC.L. VasanR.S. SeshadriS. Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the framingham study.JAMA Neurol.20187519710410.1001/jamaneurol.2017.3229 29159396
    [Google Scholar]
  38. Gómez-MarcosM.Á. Recio-RodríguezJ.I. Patino-AlonsoM.C. Agudo-CondeC. Rodríguez-SanchezE. Maderuelo-FernandezJ.A. Gómez-SánchezL. Gomez-SanchezM. García-OrtizL. Evolution of target organ damage and haemodynamic parameters over 4 years in patients with increased insulin resistance: The LOD-DIABETES prospective observational study.BMJ Open201666e01040010.1136/bmjopen‑2015‑010400 27251684
    [Google Scholar]
  39. NikiforovN.G. ZlenkoD.V. OrekhovaV.A. MelnichenkoA.A. OrekhovA.N. Local accumulation of lymphocytes in the intima of human aorta is associated with giant multinucleated endothelial cells: Possible explanation for mosaicism of atherosclerosis.Int. J. Mol. Sci.2022233105910.3390/ijms23031059 35162983
    [Google Scholar]
  40. LiY. ShiG. HanY. ShangH. LiH. LiangW. ZhaoW. BaiL. QinC. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model.Stem Cell Res. Ther.202112140710.1186/s13287‑021‑02490‑8 34266502
    [Google Scholar]
  41. OrekhovA.N. SukhorukovV.N. NikiforovN.G. KubekinaM.V. SobeninI.A. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. PoznyakA.V. WuW.K. KasianovA.S. MakeevV.Y. ManabeI. OishiY. Signaling pathways potentially responsible for foam cell formation: Cholesterol accumulation or inflammatory response—what is first?Int. J. Mol. Sci.2020218271610.3390/ijms21082716 32295185
    [Google Scholar]
  42. OrekhovA.N. TertovV.V. MukhinD.N. Desialylated low density lipoprotein - Naturally occurring modified lipoprotein with atherogenic potency.Atherosclerosis1991862-315316110.1016/0021‑9150(91)90211‑K 1872910
    [Google Scholar]
  43. OrekhovA.N. TertovV.V. MukhinD.N. MikhailenkoI.A. Modification of low density lipoprotein by desialylation causes lipid accumulation in cultured cells: Discovery of desialylated lipoprotein with altered cellular metabolism in the blood of atherosclerotic patients.Biochem. Biophys. Res. Commun.1989162120621110.1016/0006‑291X(89)91982‑7 2751649
    [Google Scholar]
  44. TertovV.V. KaplunV.V. SobeninI.A. BoytsovaE.Y. BovinN.V. OrekhovA.N. Human plasma trans-sialidase causes atherogenic modification of low density lipoprotein.Atherosclerosis2001159110311510.1016/S0021‑9150(01)00498‑1 11689212
    [Google Scholar]
  45. NikonovaE.Y. TertovV.V. SatoC. KitajimaK. BovinN.V. Specificity of human trans-sialidase as probed with gangliosides.Bioorg. Med. Chem. Lett.200414205161516410.1016/j.bmcl.2004.07.058 15380219
    [Google Scholar]
  46. TertovV.V. OrekhovA.N. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima.Exp. Mol. Pathol.199764312714510.1006/exmp.1997.2216 9439479
    [Google Scholar]
  47. OrekhovA.N. We must abandon the myth: Oxidized low-density lipoprotein is not a lipoprotein that plays a key role in atherogenesis.Curr. Med. Chem.202532152899291410.2174/0109298673301236240311113807 38494931
    [Google Scholar]
  48. TertovV.V. OrekhovA.N. SobeninI.A. MorrisettJ.D. GottoA.M.Jr GuevaraJ.G. Jr. Carbohydrate composition of protein and lipid components in sialic acid-rich and -poor low density lipoproteins from subjects with and without coronary artery disease.J. Lipid Res.199334336537510.1016/S0022‑2275(20)40729‑1 8468522
    [Google Scholar]
  49. TertovV.V. SobeninI.A. GabbasovZ.A. PopovE.G. JaakkolaO. SolakiviT. NikkariT. SmirnovV.N. OrekhovA.N. Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and characterization.Lab. Invest.1992675665675 1434544
    [Google Scholar]
  50. TertovV.V. SobeninI.A. OrekhovA.N. Characterization of desialylated low-density lipoproteins which cause intracellular lipid accumulation.Int. J. Tissue React.1992144155162 1478792
    [Google Scholar]
  51. TertovV.V. KaplunV.V. DvoryantsevS.N. OrekhovA.N. Apolipoprotein B-bound lipids as a marker for evaluation of low density lipoprotein oxidation in vivo.Biochem. Biophys. Res. Commun.1995214260861310.1006/bbrc.1995.2329 7677772
    [Google Scholar]
  52. TertovV.V. SobeninI.A. KaplunV.V. OrekhovA.N. Antioxidant content in low density lipoprotein and lipoprotein oxidation in vivo and in vitro.Free Radic. Res.199829216517310.1080/10715769800300191A 9790519
    [Google Scholar]
  53. BeaumontJ.L. Auto-immune hyperlipidemia. An atherogenic metabolic disease of immune origin.Rev. Eur. Etud. Clin. Biol.1970151010371041 4931715
    [Google Scholar]
  54. PalinskiW. RosenfeldM.E. Ylä-HerttualaS. GurtnerG.C. SocherS.S. ButlerS.W. ParthasarathyS. CarewT.E. SteinbergD. WitztumJ.L. Low density lipoprotein undergoes oxidative modification in vivo.Proc. Natl. Acad. Sci. USA19898641372137610.1073/pnas.86.4.1372 2465552
    [Google Scholar]
  55. OrekhovA.N. TertovV.V. KabakovA.E. Adamova IYu; Pokrovsky, S.N.; Smirnov, V.N. Autoantibodies against modified low density lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation.Arterioscler. Thromb.199111231632610.1161/01.ATV.11.2.316 1998649
    [Google Scholar]
  56. Lopes-VirellaM.F. VirellaG. Cytokines, modified lipoproteins, and arteriosclerosis in diabetes.Diabetes199645Suppl. 3S40S4410.2337/diab.45.3.S40 8674888
    [Google Scholar]
  57. KurienB.T. FesmireJ. NathS.K. ScofieldR.H. Increased carotid intima–media thickening and antioxidized low-density lipoprotein in an anti-Ro60 SLE autoantibody subset.Frontiers in Lupus20231119730910.3389/flupu.2023.1197309 39055110
    [Google Scholar]
  58. TertovV.V. OrekhovA.N. SayadyanK.S. SerebrennikovS.G. KacharavaA.G. LyakishevA.A. SmirnovV.N. Correlation between cholesterol content in circulating immune complexes and atherogenic properties of CHD patients’ serum manifested in cell culture.Atherosclerosis199081318318910.1016/0021‑9150(90)90065‑Q 2350370
    [Google Scholar]
  59. SobeninI.A. KaragodinV.P. MelnichenkoA.A. BobryshevY.V. OrekhovA.N. Diagnostic and prognostic value of low density lipoprotein-containing circulating immune complexes in atherosclerosis.J. Clin. Immunol.201333248949510.1007/s10875‑012‑9819‑4 23073618
    [Google Scholar]
  60. TertovV.V. SobeninI.A. OrekhovA.N. JaakkolaO. SolakiviT. NikkariT. Characteristics of low density lipoprotein isolated from circulating immune complexes.Atherosclerosis1996122219119910.1016/0021‑9150(95)05737‑4 8769682
    [Google Scholar]
  61. KacharavaA.G. TertovV.V. OrekhovA.N. Autoantibodies against low-density lipoprotein and atherogenic potential of blood.Ann. Med.199325655155510.1080/07853890.1993.12088583 8292305
    [Google Scholar]
  62. OrekhovA.N. KalenichO.S. TertovV.V. NovikovI.D. Lipoprotein immune complexes as markers of atherosclerosis.Int. J. Tissue React.1991135233236 1806545
    [Google Scholar]
  63. OrekhovA. KhotinaV. SukhorukovV. SobeninI. Non-oxidative vs oxidative forms of modified low-density lipoprotein: What is more important in atherogenesis?Curr. Med. Chem.202431172309231310.2174/0109298673294245240102105814 38204226
    [Google Scholar]
  64. ZhaoY. XuQ. HeN. JiangM. ChenY. RenZ. TangZ. WuC. LiuL. Non-oxidative modified low-density lipoproteins: The underappreciated risk factors for atherosclerosis.Curr. Med. Chem.202331345598561110.2174/0929867331666230807154019 37550912
    [Google Scholar]
  65. ChellanB. RojasE. ZhangC. Hofmann BowmanM.A. Enzyme-modified non-oxidized LDL (ELDL) induces human coronary artery smooth muscle cell transformation to a migratory and osteoblast-like phenotype.Sci. Rep.2018811195410.1038/s41598‑018‑30073‑w 30097618
    [Google Scholar]
  66. CazzolatoG. AvogaroP. Bittolo-BonG. Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC.Free Radic. Biol. Med.199111324725310.1016/0891‑5849(91)90120‑R 1937142
    [Google Scholar]
  67. PackardC. CaslakeM. ShepherdJ. The role of small, dense low density lipoprotein (LDL): A new look.Int. J. Cardiol.200074Suppl. 1S17S2210.1016/S0167‑5273(99)00107‑2 10856769
    [Google Scholar]
  68. TertovV.V. SobeninI.A. GabbasovZ.A. PopovE.G. YaroslavovA.A. JauhiainenM. EhnholmC. SmirnovV.N. OrekhovA.N. Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation in human aortic intimal cells-The role of lipoprotein aggregation.Clin. Chem. Lab. Med.199230417117810.1515/cclm.1992.30.4.171 1388057
    [Google Scholar]
  69. TertovV.V. SobeninI.A. TonevitskyA.G. OrekhovA.N. SmirnovV.N. Isolation of atherogenic modified (desialylated) low density lipoprotein from blood of atherosclerotic patients: Separation from native lipoprotein by affinity chromatography.Biochem. Biophys. Res. Commun.199016731122112710.1016/0006‑291X(90)90639‑5 2322261
    [Google Scholar]
  70. OrekhovA.N. TertovV.V. KudryashovS.A. SmirnovV.N. Triggerlike stimulation of cholesterol accumulation and DNA and extracellular matrix synthesis induced by atherogenic serum or low density lipoprotein in cultured cells.Circ. Res.199066231132010.1161/01.RES.66.2.311 2297806
    [Google Scholar]
  71. TertovV.V. SobeninI.A. OrekhovA.N. Modified (desialylated) low-density lipoprotein measured in serum by lectin-sorbent assay.Clin. Chem.19954171018102110.1093/clinchem/41.7.1018 7600681
    [Google Scholar]
  72. TertovV.V. SobeninI.A. GabbasovZ.A. PopovE.G. OrekhovA.N. Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoproteins.Biochem. Biophys. Res. Commun.1989163148949410.1016/0006‑291X(89)92163‑3 2775281
    [Google Scholar]
  73. TertovV.V. OrekhovA.N. SobeninI.A. GabbasovZ.A. PopovE.G. YaroslavovA.A. SmirnovV.N. Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation.Circ. Res.199271121822810.1161/01.RES.71.1.218 1606664
    [Google Scholar]
  74. AvogaroP. CazzolatoG. Bittolo-BonG. Some questions concerning a small, more electronegative LDL circulating in human plasma.Atherosclerosis1991911-216317110.1016/0021‑9150(91)90198‑C 1811552
    [Google Scholar]
  75. BerneisK.K. KraussR.M. Metabolic origins and clinical significance of LDL heterogeneity.J. Lipid Res.20024391363137910.1194/jlr.R200004‑JLR200 12235168
    [Google Scholar]
  76. ChenC.H. JiangT. YangJ.H. JiangW. LuJ. MaratheG.K. PownallH.J. BallantyneC.M. McIntyreT.M. HenryP.D. YangC.Y. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription.Circulation2003107162102210810.1161/01.CIR.0000065220.70220.F7 12695302
    [Google Scholar]
  77. JaakkolaO. SolakiviT. TertovV.V. OrekhovA.N. MiettinenT.A. NikkariT. Characteristics of low-density lipoprotein subfractions from patients with coronary artery disease.Coron. Artery Dis.19934437938610.1097/00019501‑199304000‑00010 8261211
    [Google Scholar]
  78. ZakievE. SobeninI. SukhorukovV. MyasoedovaV. IvanovaE. OrekhovA. Carbohydrate composition of circulating multiple-modified low-density lipoprotein.Vasc. Health Risk Manag.20161237938510.2147/VHRM.S112948 27789955
    [Google Scholar]
  79. LindgrenF.T. JensenL.C. WillsR.D. FreemanN.K. Flotation rates, molecular weights and hydrated densities of the low‐density lipoproteins.Lipids19694533734410.1007/BF02531003 5823713
    [Google Scholar]
  80. ShenM.M. KraussR.M. LindgrenF.T. ForteT.M. Heterogeneity of serum low density lipoproteins in normal human subjects.J. Lipid Res.198122223624410.1016/S0022‑2275(20)35367‑0 7240955
    [Google Scholar]
  81. TengB. ThompsonG.R. SnidermanA.D. ForteT.M. KraussR.M. KwiterovichP.O. Jr. Composition and distribution of low density lipoprotein fractions in hyperapobetalipoproteinemia, normolipidemia, and familial hypercholesterolemia.Proc. Natl. Acad. Sci. USA198380216662666610.1073/pnas.80.21.6662 6579550
    [Google Scholar]
  82. DejagerS. BruckertE. ChapmanM.J. Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia.J. Lipid Res.199334229530810.1016/S0022‑2275(20)40756‑4 8429263
    [Google Scholar]
  83. TribbleD.L. van den BergJ.J. MotchnikP.A. AmesB.N. LewisD.M. ChaitA. KraussR.M. Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and alpha-tocopherol content.Proc. Natl. Acad. Sci. USA19949131183118710.1073/pnas.91.3.1183 8302851
    [Google Scholar]
  84. OrekhovA.N. TertovV.V. SobeninI.A. SmirnovV.N. ViaD.P. GuevaraJ.Jr GottoA.M.Jr MorrisettJ.D. Sialic acid content of human low density lipoproteins affects their interaction with cell receptors and intracellular lipid accumulation.J. Lipid Res.199233680581710.1016/S0022‑2275(20)41506‑8 1512508
    [Google Scholar]
  85. La BelleM. KraussR.M. Differences in carbohydrate content of low density lipoproteins associated with low density lipoprotein subclass patterns.J. Lipid Res.19903191577158810.1016/S0022‑2275(20)42342‑9 2246611
    [Google Scholar]
  86. TertovV.V. KaplunV.V. SobeninI.A. OrekhovA.N. Low-density lipoprotein modification occurring in human plasma.Atherosclerosis1998138118319510.1016/S0021‑9150(98)00023‑9 9678784
    [Google Scholar]
  87. AzarovaI. FeoktistovA. RadukhinA. GorlovaO. OrekhovaV. PervushinaN. SobeninI. NikiforovN. KotyashovaS. AladinskyV. TemchenkoA. BobryshevY. OrekhovA. Natural products inhibit atherogenic modification (desialylation) of low density lipoprotein.Atherosclerosis20142352e11210.1016/j.atherosclerosis.2014.05.303
    [Google Scholar]
  88. DeminaE.P. SmutovaV. PanX. FougeratA. GuoT. ZouC. ChakrabertyR. SnarrB.D. ShiaoT.C. RoyR. OrekhovA.N. MiyagiT. LaffargueM. SheppardD.C. CairoC.W. PshezhetskyA.V. Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low‐density lipoproteins and increasing their uptake by macrophages.J. Am. Heart Assoc.2021104e01875610.1161/JAHA.120.018756 33554615
    [Google Scholar]
  89. GuoT. DätwylerP. DeminaE. RichardsM.R. GeP. ZouC. ZhengR. FougeratA. PshezhetskyA.V. ErnstB. CairoC.W. Selective inhibitors of human neuraminidase 3.J. Med. Chem.20186151990200810.1021/acs.jmedchem.7b01574 29425031
    [Google Scholar]
  90. CiesielskiO. BiesiekierskaM. BalcerczykA. Epigallocatechin-3-gallate (EGCG) alters histone acetylation and methylation and impacts chromatin architecture profile in human endothelial cells.Molecules20202510232610.3390/molecules25102326 32429384
    [Google Scholar]
  91. ChoiK.C. JungM.G. LeeY.H. YoonJ.C. KwonS.H. KangH.B. KimM.J. ChaJ.H. KimY.J. JunW.J. LeeJ.M. YoonH.G. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation.Cancer Res.200969258359210.1158/0008‑5472.CAN‑08‑2442 19147572
    [Google Scholar]
  92. RiksenN.P. NeteaM.G. Immunometabolic control of trained immunity.Mol. Aspects Med.20217710089710.1016/j.mam.2020.100897 32891423
    [Google Scholar]
  93. SchianoC. Epitranscriptome: A novel regulatory layer during atherosclerosis progression.Curr. Med. Chem.202532152915293010.2174/0109298673322775240822051304 39219432
    [Google Scholar]
  94. ZhangY. ANGPTL4-the link binding lipid metabolism and inflammation.Curr. Med. Chem.202532152931294910.2174/0109298673320024240829070906 39252623
    [Google Scholar]
  95. TrigliaL.T. Lipids and inflammation: Novel molecular targets and therapeutic implications.Curr. Med. Chem.202532152950297010.2174/0109298673311105240902053715 39289929
    [Google Scholar]
  96. KotlyarovS. Involvement of lipids and lipid mediators in inflammation and atherogenesis.Curr. Med. Chem.202532152971299110.2174/0109298673303369240312092913 38504569
    [Google Scholar]
  97. OrekhovA.N. Features of gene regulation in violation of the inflammatory response of monocyte-like cells bearing mitochondrial mutations associated with atherosclerosis.Curr. Med. Chem.202532152992300510.2174/0109298673303008240829075444 39279121
    [Google Scholar]
  98. LitvinovaL. Mitochondria and lipid droplets: Focus on the molecular structure of contact sites in the pathogenesis of metabolic syndrome.Curr. Med. Chem.202532153006302710.2174/0109298673309247240610050423 38934280
    [Google Scholar]
  99. SazonovaM.A. Analysis of mutational burden of mitochondrial genome in cells of different human organs and tissues.Curr. Med. Chem.202532153028304310.2174/0109298673296881240816065357 39185646
    [Google Scholar]
  100. AkramM.A. The role of lipids in atherosclerosis: Focus on molecular biology mechanisms and therapeutic approaches.Curr. Med. Chem.202532153044306810.2174/0109298673348217241119063941 39773041
    [Google Scholar]
  101. RahimifardM. Unveiling the protective role of metformin against chemotherapy-induced cardiotoxicity: A comprehensive scoping review on non-clinical studies.Curr. Med. Chem.202532153069308710.2174/0109298673320425240806051215 39161152
    [Google Scholar]
  102. DenizF.S.S. Phytosomes-unraveling the unique properties of plant-derived nanotechnological drug delivery systems: A review.Curr. Med. Chem.202532153088310510.2174/0109298673319759250116104648 39865813
    [Google Scholar]
  103. DabravolskiS. Exosomes in atherosclerosis: role in the pathogenesis and targets for therapy.Curr. Med. Chem.202532153106312110.2174/0109298673302220240430173404 38706365
    [Google Scholar]
/content/journals/cmc/10.2174/092986733215250325111534
Loading
/content/journals/cmc/10.2174/092986733215250325111534
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test