Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The purpose of this review is to revisit in detail the arguments supporting or disproving the hypothesis that oxidized low-density lipoprotein (LDL) plays a key role in atherosclerotic lesion development. The detection of oxidized LDL was extremely important for confirming its key role in atherogenesis. Indirect evidence of its existence included the presence of autoantibodies against malondialdehyde-treated LDL in human blood; however, the affinity of circulating antibodies to another LDL modification, such as desialylated LDL, was an order of magnitude stronger. At least 3 forms of atherogenic modified lipoproteins were isolated from the blood of atherosclerotic patients using different methods, namely, small dense, electronegative and desialylated. Their properties were so similar that it was suggested that the three types could be classified as the same multiple-modified LDL particle. It has been shown that when native (unmodified) LDL is incubated with autologous serum from patients with atherosclerosis, multiple modifications occur, which include desialylation, a decrease in the content of phospholipids and neutral lipids, a decrease in particle size, an increase in negative charge and other physical and chemical changes. Longer incubation also increased the susceptibility of LDL to oxidation. Thus, LDL oxidation is not the only, much less the most important, form of atherogenic modification of LDL since it occurs at the last stages of multiple modifications cascade and does not significantly increase the atherogenic potential of multiple-modified LDL. Finally, clinical trials did not support the oxidative hypothesis; however, research on oxidized LDL continues, influencing the future research. It is time to abandon the myth.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673301236240311113807
2025-03-15
2025-10-11
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/15/CMC-32-15-02.html?itemId=/content/journals/cmc/10.2174/0109298673301236240311113807&mimeType=html&fmt=ahah

References

  1. SteinbergD. The LDL modification hypothesis of atherogenesis: An update.J. Lipid Res.200950S376S38110.1194/jlr.R800087‑JLR200
    [Google Scholar]
  2. OrekhovA. KhotinaV. SukhorukovV. SobeninI. Non-oxidative vs oxidative forms of modified low-density lipoprotein: What is more important in atherogenesis?Curr. Med. Chem.202431172309231310.2174/010929867329424524010210581438204226
    [Google Scholar]
  3. ZhaoY. XuQ. HeN. JiangM. ChenY. RenZ. TangZ. WuC. LiuL. Non-oxidative modified low-density lipoproteins: The underappreciated risk factors for atherosclerosis.Curr. Med. Chem.202310.2174/092986733166623080715401937550912
    [Google Scholar]
  4. ChellanB. RojasE. ZhangC. BowmanH.M.A. Enzyme-modified non-oxidized LDL (ELDL) induces human coronary artery smooth muscle cell transformation to a migratory and osteoblast-like phenotype.Sci. Rep.2018811195410.1038/s41598‑018‑30073‑w30097618
    [Google Scholar]
  5. GianopoulosI. DaskalopoulouS.S. Macrophage profiling in atherosclerosis: Understanding the unstable plaque.Basic Res. Cardiol.20241191355610.1007/s00395‑023‑01023‑z38244055
    [Google Scholar]
  6. PyrpyrisN. DimitriadisK. BenekiE. IliakisP. SoulaidopoulosS. TsioufisP. AdamopoulouE. KasiakogiasA. SakalidisA. KoutsopoulosG. AggeliK. TsioufisK. LOX-1 receptor: A diagnostic tool and therapeutic target in atherogenesis.Curr. Probl. Cardiol.202449110211710.1016/j.cpcardiol.2023.10211737802161
    [Google Scholar]
  7. KhanM.A. MohammadI. BanerjeeS. TomarA. VarugheseK.I. MehtaJ.L. ChandeleA. ArockiasamyA. Oxidized LDL receptors: A recent update.Curr. Opin. Lipidol.202334414715510.1097/MOL.000000000000088437171285
    [Google Scholar]
  8. SalaP. PötzS. BrunnerM. TrötzmüllerM. FaulandA. TrieblA. HartlerJ. LankmayrE. KöfelerH. Determination of oxidized phosphatidylcholines by hydrophilic interaction liquid chromatography coupled to Fourier transform mass spectrometry.Int. J. Mol. Sci.201516128351836310.3390/ijms1604835125874761
    [Google Scholar]
  9. PapadeaP. SkipitariM. KalaitzopoulouE. VaremmenouA. SpiliopoulouM. PapasotiriouM. PapachristouE. GoumenosD. OnoufriouA. RosmarakiE. MargiolakiI. GeorgiouC.D. Methods on LDL particle isolation, characterization, and component fractionation for the development of novel specific oxidized LDL status markers for atherosclerotic disease risk assessment.Front. Med.20239107849210.3389/fmed.2022.107849236687450
    [Google Scholar]
  10. OrekhovA.N. SukhorukovV.N. NikiforovN.G. KubekinaM.V. SobeninI.A. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. PoznyakA.V. WuW.K. KasianovA.S. MakeevV.Y. ManabeI. OishiY. Signaling pathways potentially responsible for foam cell formation: Cholesterol accumulation or inflammatory response-what is first?Int. J. Mol. Sci.2020218271610.3390/ijms2108271632295185
    [Google Scholar]
  11. DasP. IngoleN. Lipoproteins and their effects on the cardiovascular system.Cureus20231511e4886510.7759/cureus.4886538106760
    [Google Scholar]
  12. MaxfieldF.R. SteinfeldN. MaC.I.J. The formation and consequences of cholesterol-rich deposits in atherosclerotic lesions.Front. Cardiovasc. Med.202310114830410.3389/fcvm.2023.114830436926046
    [Google Scholar]
  13. LuY. CuiX. ZhangL. WangX. XuY. QinZ. LiuG. WangQ. TianK. LimK.S. CharlesC.J. ZhangJ. TangJ. The functional role of lipoproteins in atherosclerosis: Novel directions for diagnosis and targeting therapy.Aging Dis.202213249152010.14336/AD.2021.092935371605
    [Google Scholar]
  14. TorzewskiM. The initial human atherosclerotic lesion and lipoprotein modification-A deep connection.Int. J. Mol. Sci.202122211148810.3390/ijms22211148834768918
    [Google Scholar]
  15. OuyangZ. ZhongJ. ShenJ. ZengY. The cell origins of foam cell and lipid metabolism regulated by mechanical stress in atherosclerosis.Front. Physiol.202314117982810.3389/fphys.2023.117982837123258
    [Google Scholar]
  16. XuJ. YangY. Identification of candidate biomarkers and mechanisms in foam cell formation from heterogeneous cellular origins via integrated transcriptome analysis.Ann. Transl. Med.202311518910.21037/atm‑22‑376137007574
    [Google Scholar]
  17. Ylä-HerttualaS. Development of atherosclerotic plaques.Acta Med. Scand.1985218S70171410.1111/j.0954‑6820.1985.tb08885.x3907296
    [Google Scholar]
  18. HanssonG.K. LibbyP. SchönbeckU. YanZ.Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis.Circ. Res.200291428129110.1161/01.RES.0000029784.15893.1012193460
    [Google Scholar]
  19. HanssonG.K. RobertsonA.K.L. NauclérS.C. Inflammation and atherosclerosis.Annu. Rev. Pathol.20061129732910.1146/annurev.pathol.1.110304.10010018039117
    [Google Scholar]
  20. LiuY. YuanP. WuJ. HuB. Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis.J. Mol. Med.202199111511152610.1007/s00109‑021‑02109‑834345929
    [Google Scholar]
  21. LibbyP. Inflammation in atherosclerosis-No longer a theory.Clin. Chem.202167113114210.1093/clinchem/hvaa27533393629
    [Google Scholar]
  22. GusevE. SarapultsevA. Atherosclerosis and inflammation: Insights from the theory of general pathological processes.Int. J. Mol. Sci.2023249791010.3390/ijms2409791037175617
    [Google Scholar]
  23. GoldsteinJ.L. BrownM.S. The LDL receptor.Arterioscler. Thromb. Vasc. Biol.200929443143810.1161/ATVBAHA.108.17956419299327
    [Google Scholar]
  24. KeshavarzR. ReinerŽ. ZenginG. EidA.H. SahebkarA. MicroRNA-mediated regulation of LDL receptor: Biological and pharmacological implications.Curr. Med. Chem.202331141830183810.2174/092986733066623040709165237026494
    [Google Scholar]
  25. ZhouR. StoufferG.A. FrishmanW.H. Cholesterol paradigm and beyond in atherosclerotic cardiovascular disease: Cholesterol, sterol regulatory element-binding protein, inflammation, and vascular cell mobilization in vasculopathy.Cardiol. Rev.202230526727310.1097/CRD.000000000000040634224448
    [Google Scholar]
  26. HaberlandM.E. OlchC.L. FolgelmanA.M. Role of lysines in mediating interaction of modified low density lipoproteins with the scavenger receptor of human monocyte macrophages.J. Biol. Chem.198425918113051131110.1016/S0021‑9258(18)90863‑X6088540
    [Google Scholar]
  27. HenriksenT. MahoneyE.M. SteinbergD. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins.Proc. Natl. Acad. Sci.198178106499650310.1073/pnas.78.10.64996273873
    [Google Scholar]
  28. SteinbrecherU. Receptors for oxidized low density lipoprotein.Biochim. Biophys. Acta Mol. Cell Biol. Lipids19991436327929810.1016/S0005‑2760(98)00127‑19989260
    [Google Scholar]
  29. MiyazakiA. NakayamaH. HoriuchiS. Scavenger receptors that recognize advanced glycation end products.Trends Cardiovasc. Med.200212625826210.1016/S1050‑1738(02)00171‑812242049
    [Google Scholar]
  30. FukudaS. HoriuchiS. TomitaK. MurakamiM. MorinoY. TakahashiK. Acetylated low-density lipoprotein is endocytosed through coated pits by rat peritoneal macrophages.Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.198652111310.1007/BF028899452881390
    [Google Scholar]
  31. GruberE.J. AygunA.Y. LeiferC.A. Macrophage uptake of oxidized and acetylated low-density lipoproteins and generation of reactive oxygen species are regulated by linear stiffness of the growth surface.PLoS One20211612e026075610.1371/journal.pone.026075634914760
    [Google Scholar]
  32. ShawP.X. Rethinking oxidized low-density lipoprotein, its role in atherogenesis and the immune responses associated with it.Arch. Immunol. Ther. Exp.200452422523915467487
    [Google Scholar]
  33. LiuS.X. ZhouM. ChenY. WenW.Y. SunM.J. Lipoperoxidative injury to macrophages by oxidatively modified low density lipoprotein may play an important role in foam cell formation.Atherosclerosis19961211556110.1016/0021‑9150(95)05683‑18678924
    [Google Scholar]
  34. KawamuraM. HeineckeJ.W. ChaitA. Increased uptake of α-hydroxy aldehyde-modified low density lipoprotein by macrophage scavenger receptors.J. Lipid Res.20004171054105910.1016/S0022‑2275(20)32009‑510884285
    [Google Scholar]
  35. SteinbergD. ParthasarathyS. CarewT.E. In vivo inhibition of foam cell development by probucol in Watanabe rabbits.Am. J. Cardiol.1988623B6B1210.1016/S0002‑9149(88)80044‑43394654
    [Google Scholar]
  36. SparrowC.P. ParthasarathyS. SteinbergD. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein.J. Biol. Chem.198926452599260410.1016/S0021‑9258(19)81655‑12914924
    [Google Scholar]
  37. NishikawaK. AraiH. InoueK. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages.J. Biol. Chem.199026595226523110.1016/S0021‑9258(19)34110‑92318890
    [Google Scholar]
  38. LuchettiF. CrinelliR. NasoniM.G. BenedettiS. PalmaF. FraternaleA. IulianoL. LDL receptors, caveolae and cholesterol in endothelial dysfunction: OxLDLs accomplices or victims?Br. J. Pharmacol.2021178163104311410.1111/bph.1527232986849
    [Google Scholar]
  39. RobichauxW.G.III MeiF.C. YangW. WangH. SunH. ZhouZ. MilewiczD.M. TengB.B. ChengX. Epac1 (exchange protein directly activated by cAMP 1) upregulates LOX-1 (oxidized low-density lipoprotein receptor 1) to promote foam cell formation and atherosclerosis development.Arterioscler. Thromb. Vasc. Biol.20204012e322e33510.1161/ATVBAHA.119.31423833054390
    [Google Scholar]
  40. HanssonG.K. Cell-mediated immunity in atherosclerosis.Curr. Opin. Lipidol.19978530131110.1097/00041433‑199710000‑000099335954
    [Google Scholar]
  41. FrostegårdJ. Autoimmunity, oxidized LDL and cardiovascular disease.Autoimmun. Rev.20021423323710.1016/S1568‑9972(02)00059‑912849001
    [Google Scholar]
  42. GencerS. EvansB.R. van der VorstE.P.C. DöringY. WeberC. Inflammatory chemokines in atherosclerosis.Cells202110222610.3390/cells1002022633503867
    [Google Scholar]
  43. PatrikiD. SaraviS.S.S. CamiciG.G. LiberaleL. BeerJ.H. PCSK 9: A link between inflammation and atherosclerosis.Curr. Med. Chem.202229225126710.2174/092986732866621070719262534238141
    [Google Scholar]
  44. WaksmanR. MerdlerI. CaseB.C. WaksmanO. PortoI. Targeting inflammation in atherosclerosis: Overview, strategy and directions.EuroIntervention2024201324410.4244/EIJ‑D‑23‑0060638165117
    [Google Scholar]
  45. ChenJ. SunX. LiuY. ZhangY. ZhaoM. ShaoL. SENP3 attenuates foam cell formation by deSUMOylating NLRP3 in macrophages stimulated with ox-LDL.Cell. Signal.202411711109210.1016/j.cellsig.2024.11109238331013
    [Google Scholar]
  46. LiS. Navia-PelaezJ.M. ChoiS.H. MillerY.I. Macrophage inflammarafts in atherosclerosis.Curr. Opin. Lipidol.202334518919510.1097/MOL.000000000000088837527160
    [Google Scholar]
  47. SuryawanshiY.N. WarbheR.A. Familial hypercholesterolemia: A literature review of the pathophysiology and current and novel treatments.Cureus20231511e4912110.7759/cureus.4912138125244
    [Google Scholar]
  48. ChisolmG.M. SteinbergD. The oxidative modification hypothesis of atherogenesis: An overview.Free Radic. Biol. Med.200028121815182610.1016/S0891‑5849(00)00344‑010946223
    [Google Scholar]
  49. AttiqA. AfzalS. AhmadW. KandeelM. Hegemony of inflammation in atherosclerosis and coronary artery disease.Eur. J. Pharmacol.202496617633810.1016/j.ejphar.2024.17633838242225
    [Google Scholar]
  50. VirellaL.M.F. BebuI. HuntK.J. VirellaG. BakerN.L. BraffettB. GaoX. LachinJ.M. Immune complexes and the risk of CVD in type 1 diabetes.Diabetes20196891853186010.2337/db19‑035831217176
    [Google Scholar]
  51. SteinfeldN. MaC.I.J. MaxfieldF.R. Signaling pathways regulating the extracellular digestion of lipoprotein aggregates by macrophages.Mol. Biol. Cell2024351ar510.1091/mbc.E23‑06‑023937910189
    [Google Scholar]
  52. SummerhillV.I. GrechkoA.V. YetS.F. SobeninI.A. OrekhovA.N. The atherogenic role of circulating modified lipids in atherosclerosis.Int. J. Mol. Sci.20192014356110.3390/ijms2014356131330845
    [Google Scholar]
  53. NikiforovN.G. ZlenkoD.V. OrekhovaV.A. MelnichenkoA.A. OrekhovA.N. Local accumulation of lymphocytes in the intima of human aorta is associated with giant multinucleated endothelial cells: Possible explanation for mosaicism of atherosclerosis.Int. J. Mol. Sci.2022233105910.3390/ijms2303105935162983
    [Google Scholar]
  54. OrekhovA.N. NikiforovN.G. SukhorukovV.N. KubekinaM.V. SobeninI.A. WuW.K. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. GratchevA.N. MelnichenkoA.A. WetzkerR. SummerhillV.I. ManabeI. OishiY. Role of phagocytosis in the pro-inflammatory response in LDL-induced foam cell formation; a transcriptome analysis.Int. J. Mol. Sci.202021381710.3390/ijms2103081732012706
    [Google Scholar]
  55. OrekhovA.N. TertovV.V. KudryashovS.A. SmirnovV.N. Triggerlike stimulation of cholesterol accumulation and DNA and extracellular matrix synthesis induced by atherogenic serum or low density lipoprotein in cultured cells.Circ. Res.199066231132010.1161/01.RES.66.2.3112297806
    [Google Scholar]
  56. OrekhovA.N. AndreevaE.R. BobryshevY.V. Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions.Tissue Cell2016481253410.1016/j.tice.2015.11.00226747411
    [Google Scholar]
  57. OrekhovA.N. NikiforovN.G. OmelchenkoA.V. SinyovV.V. SobeninI.A. VinokurovA.Y. OrekhovaV.A. The role of mitochondrial mutations in chronification of inflammation: Hypothesis and overview of own data.Life2022128115310.3390/life1208115336013333
    [Google Scholar]
  58. PrescottM.F. MüllerK.R. FlammerR. FeigeU. The effect of LDL and modified LDL on macrophage secretion products.Agents Actions Suppl.19841616317010.1007/978‑3‑0348‑7235‑5_196091426
    [Google Scholar]
  59. FogelmanA.M. ShechterI. SeagerJ. HokomM. ChildJ.S. EdwardsP.A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages.Proc. Natl. Acad. Sci.19807742214221810.1073/pnas.77.4.22146769124
    [Google Scholar]
  60. PalinskiW. RosenfeldM.E. HerttualaY.S. GurtnerG.C. SocherS.S. ButlerS.W. ParthasarathyS. CarewT.E. SteinbergD. WitztumJ.L. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl. Acad. Sci.19898641372137610.1073/pnas.86.4.13722465552
    [Google Scholar]
  61. OrekhovA.N. TertovV.V. KabakovA.E. Adamova IYu PokrovskyS.N. SmirnovV.N. Autoantibodies against modified low density lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation.Arterioscler. Thromb.199111231632610.1161/01.ATV.11.2.3161998649
    [Google Scholar]
  62. OrekhovA.N. TertovV.V. MukhinD.N. MikhailenkoI.A. Modification of low density lipoprotein by desialylation causes lipid accumulation in cultured cells: Discovery of desialylated lipoprotein with altered cellular metabolism in the blood of atherosclerotic patients.Biochem. Biophys. Res. Commun.1989162120621110.1016/0006‑291X(89)91982‑72751649
    [Google Scholar]
  63. AustinM.A. BreslowJ.L. HennekensC.H. BuringJ.E. WillettW.C. KraussR.M. Low-density lipoprotein subclass patterns and risk of myocardial infarction.JAMA1988260131917192110.1001/jama.1988.034101301250373418853
    [Google Scholar]
  64. KraussR.M. Heterogeneity of plasma low-density lipoproteins and atherosclerosis risk.Curr. Opin. Lipidol.19945533934910.1097/00041433‑199410000‑000057858908
    [Google Scholar]
  65. KraussR.M. Dense low density lipoproteins and coronary artery disease.Am. J. Cardiol.199575653B57B10.1016/0002‑9149(95)80012‑H7863975
    [Google Scholar]
  66. KraussR.M. Atherogenicity of triglyceride-rich lipoproteins.Am. J. Cardiol.199881413B17B10.1016/S0002‑9149(98)00032‑09526808
    [Google Scholar]
  67. AvogaroP. BonG.B. CazzolatoG. Presence of a modified low density lipoprotein in humans.Arteriosclerosis198881798710.1161/01.ATV.8.1.793341993
    [Google Scholar]
  68. CazzolatoG. AvogaroP. BonB.G. Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC.Free Radic. Biol. Med.199111324725310.1016/0891‑5849(91)90120‑R1937142
    [Google Scholar]
  69. AvogaroP. CazzolatoG. BonB.G. Some questions concerning a small, more electronegative LDL circulating in human plasma.Atherosclerosis1991911-216317110.1016/0021‑9150(91)90198‑C1811552
    [Google Scholar]
  70. Bittolo-BonG. CazzolatoG. Analytical capillary isotachophoresis of total plasma lipoproteins: A new tool to identify atherogenic low density lipoproteins.J. Lipid Res.199940117017710.1016/S0022‑2275(20)33353‑89869664
    [Google Scholar]
  71. SevanianA. AsatryanL. ZiouzenkovaO. Low density lipoprotein (LDL) modification: Basic concepts and relationship to atherosclerosis.Blood Purif.1999172-3667810.1159/00001437810449864
    [Google Scholar]
  72. QuesadaS.J.L. BenítezS. LlanosO.J. Electronegative low-density lipoprotein.Curr. Opin. Lipidol.200415332933510.1097/00041433‑200406000‑0001415166790
    [Google Scholar]
  73. MelloA.P.Q. da SilvaI.T. AbdallaD.S.P. DamascenoN.R.T. Electronegative low-density lipoprotein: Origin and impact on health and disease.Atherosclerosis2011215225726510.1016/j.atherosclerosis.2010.12.02821292266
    [Google Scholar]
  74. EstruchM. QuesadaS.J.L. LlanosO.J. BenítezS. Electronegative LDL: A circulating modified LDL with a role in inflammation.Mediators Inflamm.2013201311310.1155/2013/18132424062611
    [Google Scholar]
  75. KeL.Y. StancelN. BairH. ChenC.H. The underlying chemistry of electronegative LDL’s atherogenicity.Curr. Atheroscler. Rep.201416842810.1007/s11883‑014‑0428‑y24890631
    [Google Scholar]
  76. AkyolS. LuJ. AkyolO. AkcayF. ArmutcuF. KeL.Y. ChenC.H. The role of electronegative low-density lipoprotein in cardiovascular diseases and its therapeutic implications.Trends Cardiovasc. Med.201727423924610.1016/j.tcm.2016.11.00228040327
    [Google Scholar]
  77. UrbinaR.A. RullA. LlanosO.J. QuesadaS.J.L. Electronegative LDL: An active player in atherogenesis or a by- product of atherosclerosis?Curr. Med. Chem.20192691665167910.2174/092986732566618033009395329600751
    [Google Scholar]
  78. KeL.Y. LawS.H. MishraV.K. ParveenF. ChanH.C. LuY.H. ChuC.S. Molecular and cellular mechanisms of electronegative lipoproteins in cardiovascular diseases.Biomedicines202081255010.3390/biomedicines812055033260304
    [Google Scholar]
  79. ChenD.Y. SawamuraT. DixonR.A.F. QuesadaS.J.L. ChenC.H. Autoimmune rheumatic diseases: An update on the role of atherogenic electronegative LDL and potential therapeutic strategies.J. Clin. Med.2021109199210.3390/jcm1009199234066436
    [Google Scholar]
  80. BenitezS. PuigN. RivesJ. SoléA. QuesadaS.J.L. Can electronegative LDL act as a multienzymatic complex?Int. J. Mol. Sci.2023248707410.3390/ijms2408707437108253
    [Google Scholar]
  81. TertovV.V. BonB.G. SobeninI.A. CazzolatoG. OrekhovA.N. AvogaroP. Naturally occurring modified low density lipoproteins are similar if not identical: more electronegative and desialylated lipoprotein subfractions.Exp. Mol. Pathol.199562316617210.1006/exmp.1995.10188612720
    [Google Scholar]
  82. TertovV.V. SobeninI.A. GabbasovZ.A. PopovE.G. JaakkolaO. SolakiviT. NikkariT. SmirnovV.N. OrekhovA.N. Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and characterization.Lab. Invest.19926756656751434544
    [Google Scholar]
  83. La BelleM. KraussR.M. Differences in carbohydrate content of low density lipoproteins associated with low density lipoprotein subclass patterns.J. Lipid Res.19903191577158810.1016/S0022‑2275(20)42342‑92246611
    [Google Scholar]
  84. TertovV.V. SobeninI.A. TonevitskyA.G. OrekhovA.N. SmirnovV.N. Isolation of atherogenic modified (desialylated) low density lipoprotein from blood of atherosclerotic patients: Separation from native lipoprotein by affinity chromatography.Biochem. Biophys. Res. Commun.199016731122112710.1016/0006‑291X(90)90639‑52322261
    [Google Scholar]
  85. TertovV.V. SobeninI.A. OrekhovA.N. Similarity between naturally occurring modified desialylated, electronegative and aortic low density lipoprotein.Free Radic. Res.199625431331910.3109/107157696091490548889495
    [Google Scholar]
  86. ShenM.M. KraussR.M. LindgrenF.T. ForteT.M. Heterogeneity of serum low density lipoproteins in normal human subjects.J. Lipid Res.198122223624410.1016/S0022‑2275(20)35367‑07240955
    [Google Scholar]
  87. TengB. ThompsonG.R. SnidermanA.D. ForteT.M. KraussR.M. KwiterovichP.O.Jr. Composition and distribution of low density lipoprotein fractions in hyperapobetalipoproteinemia, normolipidemia, and familial hypercholesterolemia.Proc. Natl. Acad. Sci.198380216662666610.1073/pnas.80.21.66626579550
    [Google Scholar]
  88. DejagerS. BruckertE. ChapmanM.J. Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia.J. Lipid Res.199334229530810.1016/S0022‑2275(20)40756‑48429263
    [Google Scholar]
  89. TertovV.V. SobeninI.A. OrekhovA.N. Characterization of desialylated low-density lipoproteins which cause intracellular lipid accumulation.Int. J. Tissue React.19921441551621478792
    [Google Scholar]
  90. BerneisK.K. KraussR.M. Metabolic origins and clinical significance of LDL heterogeneity.J. Lipid Res.20024391363137910.1194/jlr.R200004‑JLR20012235168
    [Google Scholar]
  91. LindgrenF.T. JensenL.C. WillsR.D. FreemanN.K. Flotation rates, molecular weights and hydrated densities of the low-density lipoproteins.Lipids19694533734410.1007/BF025310035823713
    [Google Scholar]
  92. JaakkolaO. SolakiviT. TertovV.V. OrekhovA.N. MiettinenT.A. NikkariT. Characteristics of low-density lipoprotein subfractions from patients with coronary artery disease.Coron. Artery Dis.19934437938610.1097/00019501‑199304000‑000108261211
    [Google Scholar]
  93. KraussR.M. BurkeD.J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans.J. Lipid Res.19822319710410.1016/S0022‑2275(20)38178‑57057116
    [Google Scholar]
  94. TertovV.V. SobeninI.A. KaplunV.V. OrekhovA.N. Antioxidant content in low density lipoprotein and lipoprotein oxidation in vivo and in vitro.Free Radic. Res.199829216517310.1080/10715769800300191A9790519
    [Google Scholar]
  95. TertovV.V. SobeninI.A. GabbasovZ.A. PopovE.G. OrekhovA.N. Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoproteins.Biochem. Biophys. Res. Commun.1989163148949410.1016/0006‑291X(89)92163‑32775281
    [Google Scholar]
  96. TertovV.V. OrekhovA.N. SobeninI.A. GabbasovZ.A. PopovE.G. YaroslavovA.A. SmirnovV.N. Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation.Circ. Res.199271121822810.1161/01.RES.71.1.2181606664
    [Google Scholar]
  97. RullA. JayaramanS. GantzD.L. UrbinaR.A. CuellarP.M. LlanosO.J. QuesadaS.J.L. GurskyO. Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids2016186191015102410.1016/j.bbalip.2016.05.00827233433
    [Google Scholar]
  98. OrekhovA.N. TertovV.V. SobeninI.A. SmirnovV.N. ViaD.P. GuevaraJ.Jr GottoA.M.Jr MorrisettJ.D. Sialic acid content of human low density lipoproteins affects their interaction with cell receptors and intracellular lipid accumulation.J. Lipid Res.199233680581710.1016/S0022‑2275(20)41506‑81512508
    [Google Scholar]
  99. TribbleD.L. van den BergJ.J. MotchnikP.A. AmesB.N. LewisD.M. ChaitA. KraussR.M. Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and alpha-tocopherol content.Proc. Natl. Acad. Sci.19949131183118710.1073/pnas.91.3.11838302851
    [Google Scholar]
  100. TertovV.V. KaplunV.V. SobeninI.A. OrekhovA.N. Low-density lipoprotein modification occurring in human plasma.Atherosclerosis1998138118319510.1016/S0021‑9150(98)00023‑99678784
    [Google Scholar]
  101. TertovV.V. KaplunV.V. DvoryantsevS.N. OrekhovA.N. Apolipoprotein B-bound lipids as a marker for evaluation of low density lipoprotein oxidation in vivo. Biochem. Biophys. Res. Commun.1995214260861310.1006/bbrc.1995.23297677772
    [Google Scholar]
  102. TertovV.V. KaplunV.V. OrekhovA.N. Lack of correlation between degree of human plasma low density lipoprotein oxidation and its atherogenic potential.Biofactors19976213914310.1002/biof.55200602079259995
    [Google Scholar]
  103. TertovV.V. KaplunV.V. OrekhovA.N. In vivo oxidized low density lipoprotein: Degree of lipoprotein oxidation does not correlate with its atherogenic properties.Mol. Cell. Biochem.19981831/214114610.1023/A:10068117202829655188
    [Google Scholar]
  104. ChenF. NingY. LiuJ. LianM. WangJ. DanH. miR-147a targets ZEB2 to regulate ox-LDL-induced monocyte adherence to HUVECs, atherosclerotic plaque formation, and stability in atherosclerosis.J. Biol. Chem.2023299610465710.1016/j.jbc.2023.10465737001814
    [Google Scholar]
  105. XuC.X. XuL. PengF.Z. CaiY.L. WangY.G. MiR-647 promotes proliferation and migration of ox-LDL-treated vascular smooth muscle cells through regulating PTEN/PI3K/AKT pathway.Eur. Rev. Med. Pharmacol. Sci.201923167110711910.26355/eurrev_201908_1875631486513
    [Google Scholar]
  106. WangQ. WangT. LiangS. ZhouL. Ox-LDL-induced vascular smooth muscle cell dysfunction partly depends on the Circ_0044073/miR-377-3p/AURKA axis in atherosclerosis.Int. Heart J.202364225226210.1536/ihj.22‑14837005319
    [Google Scholar]
  107. LinH. GaoD. WangS. WangZ. GuanH. WangY. ZhouY. Inhibition of circ_0000231 suppresses oxidized low density lipoprotein-induced apoptosis, autophagy and inflammation in human umbilical vein endothelial cells by regulating miR-590-5p/PDCD4 axis.Clin. Hemorheol. Microcirc.2023202311710.3233/CH‑23169637066904
    [Google Scholar]
  108. HuK. HuangM.J. LingS. LiY.X. CaoX.Y. ChenY.F. LeiJ.M. FuW.Z. TanB.F. LncRNA CASC11 upregulation promotes HDAC4 to alleviate oxidized low-density lipoprotein-induced injury of cardiac microvascular endothelial cells.Kaohsiung J. Med. Sci.202339875876810.1002/kjm2.1268737096653
    [Google Scholar]
  109. WangX. MaoW. MaX. TLN1 synergizes with ITGA5 to ameliorate cardiac microvascular endothelial cell dysfunction.Folia Morphol.20248319210110.5603/FM.a2023.003137144848
    [Google Scholar]
  110. PillaiS.S. PereiraD.G. ZhangJ. HuangW. BegM.A. KnaackD.A. de GoncalvesS.B. SahooD. SilversteinR.L. ShapiroJ.I. SodhiK. ChenY. Contribution of adipocyte Na/K-ATPase α1/CD36 signaling induced exosome secretion in response to oxidized LDL.Front. Cardiovasc. Med.202310104649510.3389/fcvm.2023.104649537180782
    [Google Scholar]
  111. AswaniS.S. MohanM.S. AparnaN.S. BobanP.T. SajaK. Oxidized LDL-mediated upregulation of ADAMTS-4 in monocytes/macrophages involves ROS-NF-κB-SIRT-1 pathway.Physiol. Int.2023110217319010.1556/2060.2023.0017037216221
    [Google Scholar]
  112. SteinbergD. Clinical trials of antioxidants in atherosclerosis: are we doing the right thing?Lancet19953468966363810.1016/S0140‑6736(95)92657‑77603147
    [Google Scholar]
  113. SteinbergD. Is there a potential therapeutic role for vitamin E or other antioxidants in atherosclerosis?Curr. Opin. Lipidol.200011660360710.1097/00041433‑200012000‑0000611086333
    [Google Scholar]
  114. EthertonK.P.M. LichtensteinA.H. HowardB.V. SteinbergD. WitztumJ.L. Antioxidant vitamin supplements and cardiovascular disease.Circulation2004110563764110.1161/01.CIR.0000137822.39831.F1
    [Google Scholar]
  115. DeminaE.P. SmutovaV. PanX. FougeratA. GuoT. ZouC. ChakrabertyR. SnarrB.D. ShiaoT.C. RoyR. OrekhovA.N. MiyagiT. LaffargueM. SheppardD.C. CairoC.W. PshezhetskyA.V. Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low-density lipoproteins and increasing their uptake by macrophages.J. Am. Heart Assoc.2021104e01875610.1161/JAHA.120.01875633554615
    [Google Scholar]
  116. TertovV.V. SobeninI.A. OrekhovA.N. JaakkolaO. SolakiviT. NikkariT. Characteristics of low density lipoprotein isolated from circulating immune complexes.Atherosclerosis1996122219119910.1016/0021‑9150(95)05737‑48769682
    [Google Scholar]
  117. OrekhovA. SukhorukovV. MelnichenkoA. Is oxidized low-density lipoprotein a principal actor in atherogenesis?Curr. Med. Chem.202431426909691010.2174/010929867328364023120810330638185888
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673301236240311113807
Loading
/content/journals/cmc/10.2174/0109298673301236240311113807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test