Skip to content
2000
image of Advancements in Structure-based Drug Design Using Geometric Deep Learning
Preview this fast track article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673388739250516071228
2025-05-23
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673388739250516071228/BMS-CMC-2025-88.html?itemId=/content/journals/cmc/10.2174/0109298673388739250516071228&mimeType=html&fmt=ahah

References

  1. Bronstein M.M. Bruna J. LeCun Y. Szlam A. Vandergheynst P. Geometric deep learning: Going beyond Euclidean data. IEEE Signal Process. Mag. 2017 34 4 18 42 10.1109/MSP.2017.2693418
    [Google Scholar]
  2. Tabasi M. Maghami P. Amiri-Tehranizadeh Z. Reza Saberi M. Chamani J. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. J. Mol. Liq. 2023 392 123472 10.1016/j.molliq.2023.123472
    [Google Scholar]
  3. Jing B. Eismann S. Suriana P. Townshend R.J.L. Learning from protein structure with geometric deep learning. Nat. Commun. 2021 12 488
    [Google Scholar]
  4. Stärk H. EquiBind: Geometric deep learning for drug binding site prediction. Proc. Natl. Acad. Sci. USA 2022 119 28 e2123107119
    [Google Scholar]
  5. Grechishnikova D. Transformer-CNN architectures for structure-based drug design. Sci. Rep. 2021 11 9143
    [Google Scholar]
  6. Ganea O. Independent SE(3)-equivariant models for end-to-end protein structure prediction. BioRxiv 2021
    [Google Scholar]
  7. Sharifi-Rad A. Mehrzad J. Darroudi M. Saberi M.R. Chamani J. Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn. 2021 39 3 1029 1043 10.1080/07391102.2020.1724568
    [Google Scholar]
  8. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673388739250516071228
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test