Skip to content
2000
Volume 32, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Ovarian cancer, a significant contributor to global female mortality and the third most prevalent gynecological cancer in India, poses challenges for conventional treatments like chemotherapy and radiotherapy.

Methods

This study explores the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the efficacy of chemotherapy, particularly doxorubicin (DOXO), in ovarian teratocarcinoma (PA-1) cells. Rigorous cell viability assays demonstrated that n-3 PUFAs in combination significantly enhanced DOXO-induced cytotoxicity, reducing cell survival and migration potential. N-3 PUFAs and DOXO synergistically reduced colony formation in the group receiving the combination treatment as seen in the clonogenic assays, as further validated by hanging drop and apoptosis assays results.

Results

Network pharmacological investigations pinpointed the gene topoisomerase II A (TOP2A) as a pivotal target, while molecular docking simulations revealed structural similarities between n-3 PUFAs (DHA or EPA) and DOXO, implying probable common mechanisms such as DNA intercalation and topoisomerase II inhibition. Molecular dynamics simulations delineated distinct interaction profiles for Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) with TOP2A, offering mechanistic insights. Combining computational and experimental methodologies reveals the synergistic benefits of n-3 PUFAs and DOXO in treating ovarian cancer, leading to improved therapeutic outcomes.

Conclusion

These results provide a comprehensive view of the potential of combining n-3 PUFAs with DOXO for more potent ovarian cancer treatments.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673359261250504031207
2025-06-02
2025-10-28
Loading full text...

Full text loading...

References

  1. ShabirS. GillP.K. Global scenario on ovarian cancer – Its dynamics, relative survival, treatment, and epidemiology.Adesh Univ. J. Med. Sci. Res.202021172510.25259/AUJMSR_16_2019
    [Google Scholar]
  2. CabasagC.J. FaganP.J. FerlayJ. VignatJ. LaversanneM. LiuL. van der AaM.A. BrayF. SoerjomataramI. Ovarian cancer today and tomorrow: A global assessment by world region and Human Development Index using GLOBOCAN 2020.Int. J. Cancer202215191535154110.1002/ijc.3400235322413
    [Google Scholar]
  3. LibertoJ.M. ChenS.Y. ShihI.M. WangT.H. WangT.L. PisanicT.R.II. Current and emerging methods for ovarian cancer screening and diagnostics: A comprehensive review.Cancers20221412288510.3390/cancers1412288535740550
    [Google Scholar]
  4. NarodS. Can advanced-stage ovarian cancer be cured?Nat. Rev. Clin. Oncol.201613425526110.1038/nrclinonc.2015.22426787282
    [Google Scholar]
  5. AlatiseK.L. GardnerS. Alexander-BryantA. Mechanisms of drug resistance in ovarian cancer and associated gene targets.Cancers20221424624610.3390/cancers1424624636551731
    [Google Scholar]
  6. Maugeri-SaccàM. VigneriP. De MariaR. Cancer stem cells and chemosensitivity.Clin. Cancer Res.201117154942494710.1158/1078‑0432.CCR‑10‑253821622723
    [Google Scholar]
  7. ReyaT. MorrisonS.J. ClarkeM.F. WeissmanI.L. Stem cells, cancer, and cancer stem cells.Nature2001414685910511110.1038/3510216711689955
    [Google Scholar]
  8. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  9. PritchardJ.R. BrunoP.M. GilbertL.A. CapronK.L. LauffenburgerD.A. HemannM.T. Defining principles of combination drug mechanisms of action.Proc. Natl. Acad. Sci. USA20131102E170E17910.1073/pnas.121041911023251029
    [Google Scholar]
  10. LeeE.K. XiongN. ChengS.C. BarryW.T. PensonR.T. KonstantinopoulosP.A. HoffmanM.A. HorowitzN. DizonD.S. StoverE.H. WrightA.A. CamposS.M. KrasnerC. MorrisseyS. WhalenC. QuinnR. MatulonisU.A. LiuJ.F. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: A phase 2 clinical trial.Gynecol. Oncol.20201591727810.1016/j.ygyno.2020.07.02832771276
    [Google Scholar]
  11. CarvalhoC. Doxorubicin: the good, the bad and the ugly effect.Curr. Med. Chem.200916253267328510.2174/09298670978880331219548866
    [Google Scholar]
  12. MeredithA.M. DassC.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism.J. Pharm. Pharmacol.201668672974110.1111/jphp.1253926989862
    [Google Scholar]
  13. HeckM.M. EarnshawW.C. Topoisomerase II: A specific marker for cell proliferation.J. Cell Biol.198610362569258110.1083/jcb.103.6.25693025219
    [Google Scholar]
  14. MinihaneA.M. VinoyS. RussellW.R. BakaA. RocheH.M. TuohyK.M. TeelingJ.L. BlaakE.E. FenechM. VauzourD. McArdleH.J. KremerB.H.A. SterkmanL. VafeiadouK. BenedettiM.M. WilliamsC.M. CalderP.C. Low-grade inflammation, diet composition and health: Current research evidence and its translation.Br. J. Nutr.20151147999101210.1017/S000711451500209326228057
    [Google Scholar]
  15. BurlingameB. NishidaC. UauyR. WeisellR. Fats and fatty acids in human nutrition: Introduction.Ann. Nutr. Metab.2009551-35710.1159/00022899319752533
    [Google Scholar]
  16. FabianC.J. KimlerB.F. HurstingS.D. Omega-3 fatty acids for breast cancer prevention and survivorship.Breast Cancer Res.20151716210.1186/s13058‑015‑0571‑625936773
    [Google Scholar]
  17. GengL. ZhouW. LiuB. WangX. ChenB. DHA induces apoptosis of human malignant breast cancer tissues by the TLR-4/PPAR-α pathways.Oncol. Lett.20171532967297710.3892/ol.2017.770229435026
    [Google Scholar]
  18. ParkM. KimH. Anti-cancer mechanism of docosahexaenoic acid in pancreatic carcinogenesis: A mini-review.J. Cancer Prev.20172211510.15430/JCP.2017.22.1.128382280
    [Google Scholar]
  19. GleissmanH. JohnsenJ.I. KognerP. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil?Exp. Cell Res.201031681365137310.1016/j.yexcr.2010.02.03920211172
    [Google Scholar]
  20. VaughanV.C. HassingM-R. LewandowskiP.A. Marine polyunsaturated fatty acids and cancer therapy.Br. J. Cancer2013108348649210.1038/bjc.2012.58623299528
    [Google Scholar]
  21. HajjajiN. BougnouxP. Selective sensitization of tumors to chemotherapy by marine-derived lipids: A review.Cancer Treat. Rev.201339547348810.1016/j.ctrv.2012.07.00122850619
    [Google Scholar]
  22. de Aguiar Pastore SilvaJ. Emilia de Souza FabreM. WaitzbergD.L. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: A systematic review.Clin. Nutr.201534335936610.1016/j.clnu.2014.11.00525907586
    [Google Scholar]
  23. GermainE. ChajèsV. CognaultS. LhuilleryC. BougnouxP. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MBA-MB-231: Relationship to lipid peroxidation.Int. J. Cancer199875457858310.1002/(SICI)1097‑0215(19980209)75:4<578::AID‑IJC14>3.0.CO;2‑59466659
    [Google Scholar]
  24. de LimaT.M. Amarante-MendesG.P. CuriR. Docosahexaenoic acid enhances the toxic effect of imatinib on Bcr-Abl expressing HL-60 cells.Toxicol. In Vitro20072181678168510.1016/j.tiv.2007.05.00817604596
    [Google Scholar]
  25. NewellM. BrunM. FieldC.J. Treatment with DHA modifies the response of MDA-MB-231 breast cancer cells and tumors from nu/nu mice to doxorubicin through apoptosis and cell cycle arrest.J. Nutr.20191491465610.1093/jn/nxy22430601995
    [Google Scholar]
  26. NarayananN.K. NarayananB.A. BoslandM. CondonM.S. NargiD. Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells.Int. J. Cancer200611971586159810.1002/ijc.2203116646082
    [Google Scholar]
  27. MorinC. FortinS. Docosahexaenoic acid monoglyceride increases carboplatin activity in lung cancer models by targeting EGFR.Anticancer Res.201737116015602310.21873/anticanres.1204829061780
    [Google Scholar]
  28. DingX. GeL. YanA. DingY. TaoJ. LiuQ. QiaoC. Docosahexaenoic acid serving as sensitizing agents and gefitinib resistance revertants in EGFR targeting treatment.OncoTargets Ther.201912105471055810.2147/OTT.S22591831819534
    [Google Scholar]
  29. ShekariN. JavadianM. GhasemiM. BaradaranB. DarabiM. KazemiT. Synergistic beneficial effect of docosahexaenoic acid (DHA) and docetaxel on the expression level of matrix Metalloproteinase-2 (MMP-2) and microRNA-106b in gastric cancer.J. Gastrointest. Cancer2020511707510.1007/s12029‑019‑00205‑030680612
    [Google Scholar]
  30. ZajdelA. KałuckaM. ChodurekE. WilczokA. DHA but not AA enhances cisplatin cytotoxicity in ovarian cancer cells.Nutr. Cancer20187071118112510.1080/01635581.2018.149767330204485
    [Google Scholar]
  31. GuravP. GaradS. n-3 PUFAs show promise as adjuvants in chemotherapy, enhancing their efficacy while safeguarding hematopoiesis and promoting bone generation.Curr. Top. Med. Chem.2024241455910.2174/011568026625883823102010240137907485
    [Google Scholar]
  32. TanakaA. YamamotoA. MurotaK. TsujiuchiT. IwamoriM. FukushimaN. Polyunsaturated fatty acids induce ovarian cancer cell death through ROS-dependent MAP kinase activation.Biochem. Biophys. Res. Commun.2017493146847310.1016/j.bbrc.2017.08.16828882592
    [Google Scholar]
  33. WangY.C. WuY.N. WangS.L. LinQ.H. HeM.F. LiuQ. WangJ.H. Docosahexaenoic acid modulates invasion and metastasis of human ovarian cancer via multiple molecular pathways.Int. J. Gynecol. Cancer2016266994100310.1097/IGC.000000000000074627258728
    [Google Scholar]
  34. BaracosV.E. MazurakV.C. MaD.W.L. n -3 Polyunsaturated fatty acids throughout the cancer trajectory: Influence on disease incidence, progression, response to therapy and cancer-associated cachexia.Nutr. Res. Rev.200417217719210.1079/NRR20048819079925
    [Google Scholar]
  35. BrattonB.A. MalyI.V. HofmannW.A. Effect of polyunsaturated fatty acids on proliferation and survival of prostate cancer cells.PLoS One2019147e021982210.1371/journal.pone.021982231314803
    [Google Scholar]
  36. KhojastehfardM. DolatkhahH. SomiM.H. Nazari Soltan AhmadS. EstakhriR. sharifiR. NaghizadehM. Rahmati-YamchiM. The effect of oral administration of PUFAs on the matrix metalloproteinase expression in gastric adenocarcinoma patients undergoing chemotherapy.Nutr. Cancer201971344445110.1080/01635581.2018.150649430616380
    [Google Scholar]
  37. GuravP. PatadeT. HajareS. KedarR.N. n-3 PUFAs synergistically enhance the efficacy of doxorubicin by inhibiting the proliferation and invasion of breast cancer cells.Med. Oncol.2023411210.1007/s12032‑023‑02229‑w38017288
    [Google Scholar]
  38. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms2109323332370233
    [Google Scholar]
  39. RoseD.P. ConnollyJ.M. RayburnJ. ColemanM. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice.J. Natl. Cancer Inst.199587858759210.1093/jnci/87.8.5877752256
    [Google Scholar]
  40. FodilM. BlanckaertV. UlmannL. MimouniV. ChénaisB. Contribution of n-3 long-chain polyunsaturated fatty acids to the prevention of breast cancer risk factors.Int. J. Environ. Res. Public Health20221913793610.3390/ijerph1913793635805595
    [Google Scholar]
  41. WestL. Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer.Am. J. Cancer Res.202010124450446333415010
    [Google Scholar]
  42. ZhangH. YaoY. ZhongX. MengF. HemminkiK. QiuJ. ShuX. Association between intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid (n-3 PUFA DHA) and reduced risk of ovarian cancer: A systematic Mendelian Randomization study.Clin. Nutr.20234281379138810.1016/j.clnu.2023.06.02837421851
    [Google Scholar]
  43. WangY. LiuK. LongT. LongJ. LiY. LiJ. ChengL. Dietary fish and omega-3 polyunsaturated fatty acids intake and cancer survival: A systematic review and meta-analysis.Crit. Rev. Food Sci. Nutr.202363236235625110.1080/10408398.2022.202982635068276
    [Google Scholar]
  44. ZhengH. TangH. LiuM. HeM. LaiP. DongH. LinJ. JiaC. ZhongM. DaiY. BaiX. WangL. Inhibition of endometrial cancer by n-3 polyunsaturated fatty acids in preclinical models.Cancer Prev. Res. (Phila.)20147882483410.1158/1940‑6207.CAPR‑13‑0378‑T24866178
    [Google Scholar]
  45. GhanemA. EmaraH.A. MuawiaS. Abd El MaksoudA.I. Al-KarmalawyA.A. ElshalM.F. Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: in vitro and molecular docking studies.New J. Chem.20204440173741738110.1039/D0NJ04088F
    [Google Scholar]
  46. ZhangK. ZhengX. SunY. FengX. WuX. LiuW. GaoC. YanY. TianW. WangY. TOP2A modulates signaling via the AKT/mTOR pathway to promote ovarian cancer cell proliferation.Cancer Biol. Ther.2024251232512610.1080/15384047.2024.232512638445610
    [Google Scholar]
  47. GaoY. ZhaoH. RenM. ChenQ. LiJ. LiZ. YinC. YueW. TOP2A promotes tumorigenesis of high- grade serous ovarian cancer by regulating the TGF-β/Smad Pathway.J. Cancer202011144181419210.7150/jca.4273632368301
    [Google Scholar]
  48. BaiY. LiL.D. LiJ. LuX. Targeting of topoisomerases for prognosis and drug resistance in ovarian cancer.J. Ovarian Res.2016913510.1186/s13048‑016‑0244‑927315793
    [Google Scholar]
  49. SoniS. TorvundM. MandalC.C. Omega-3 fatty acid treatment combined with chemotherapy to prevent toxicity, Drug resistance, and metastasis in cancer.Curr. Drug Targets202223657459610.2174/138945012266621090112193534488585
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673359261250504031207
Loading
/content/journals/cmc/10.2174/0109298673359261250504031207
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cytotoxicity; DHA; doxorubicin; EPA; Ovarian cancer; TOP2A
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test