Skip to content
2000
image of Augmenting Chemotherapy Response in Ovarian Cancer: N-3 Polyunsaturated Fatty Acids Target TOP2A

Abstract

Introduction

Ovarian cancer, a significant contributor to global female mortality and the third most prevalent gynecological cancer in India, poses challenges for conventional treatments like chemotherapy and radiotherapy.

Methods

This study explores the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the efficacy of chemotherapy, particularly doxorubicin (DOXO), in ovarian teratocarcinoma (PA-1) cells. Rigorous cell viability assays demonstrated that n-3 PUFAs in combination significantly enhanced DOXO-induced cytotoxicity, reducing cell survival and migration potential. N-3 PUFAs and DOXO synergistically reduced colony formation in the group receiving the combination treatment as seen in the clonogenic assays, as further validated by hanging drop and apoptosis assays results.

Results

Network pharmacological investigations pinpointed the gene topoisomerase II A (TOP2A) as a pivotal target, while molecular docking simulations revealed structural similarities between n-3 PUFAs (DHA or EPA) and DOXO, implying probable common mechanisms such as DNA intercalation and topoisomerase II inhibition. Molecular dynamics simulations delineated distinct interaction profiles for Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) with TOP2A, offering mechanistic insights. Combining computational and experimental methodologies reveals the synergistic benefits of n-3 PUFAs and DOXO in treating ovarian cancer, leading to improved therapeutic outcomes.

Conclusion

These results provide a comprehensive view of the potential of combining n-3 PUFAs with DOXO for more potent ovarian cancer treatments.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673359261250504031207
2025-06-02
2025-09-08
Loading full text...

Full text loading...

References

  1. Shabir S. Gill P.K. Global scenario on ovarian cancer – Its dynamics, relative survival, treatment, and epidemiology. Adesh Univ. J. Med. Sci. Res. 2020 2 1 17 25 10.25259/AUJMSR_16_2019
    [Google Scholar]
  2. Cabasag C.J. Fagan P.J. Ferlay J. Vignat J. Laversanne M. Liu L. van der Aa M.A. Bray F. Soerjomataram I. Ovarian cancer today and tomorrow: A global assessment by world region and Human Development Index using GLOBOCAN 2020. Int. J. Cancer 2022 151 9 1535 1541 10.1002/ijc.34002 35322413
    [Google Scholar]
  3. Liberto J.M. Chen S.Y. Shih I.M. Wang T.H. Wang T.L. Pisanic T.R. II. Current and emerging methods for ovarian cancer screening and diagnostics: A comprehensive review. Cancers 2022 14 12 2885 10.3390/cancers14122885 35740550
    [Google Scholar]
  4. Narod S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol. 2016 13 4 255 261 10.1038/nrclinonc.2015.224 26787282
    [Google Scholar]
  5. Alatise K.L. Gardner S. Alexander-Bryant A. Mechanisms of drug resistance in ovarian cancer and associated gene targets. Cancers 2022 14 24 6246 10.3390/cancers14246246 36551731
    [Google Scholar]
  6. Maugeri-Saccà M. Vigneri P. De Maria R. Cancer stem cells and chemosensitivity. Clin. Cancer Res. 2011 17 15 4942 4947 10.1158/1078‑0432.CCR‑10‑2538 21622723
    [Google Scholar]
  7. Reya T. Morrison S.J. Clarke M.F. Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature 2001 414 6859 105 111 10.1038/35102167 11689955
    [Google Scholar]
  8. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  9. Pritchard J.R. Bruno P.M. Gilbert L.A. Capron K.L. Lauffenburger D.A. Hemann M.T. Defining principles of combination drug mechanisms of action. Proc. Natl. Acad. Sci. USA 2013 110 2 E170 E179 10.1073/pnas.1210419110 23251029
    [Google Scholar]
  10. Lee E.K. Xiong N. Cheng S.C. Barry W.T. Penson R.T. Konstantinopoulos P.A. Hoffman M.A. Horowitz N. Dizon D.S. Stover E.H. Wright A.A. Campos S.M. Krasner C. Morrissey S. Whalen C. Quinn R. Matulonis U.A. Liu J.F. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: A phase 2 clinical trial. Gynecol. Oncol. 2020 159 1 72 78 10.1016/j.ygyno.2020.07.028 32771276
    [Google Scholar]
  11. Carvalho C. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 2009 16 25 3267 3285 10.2174/092986709788803312 19548866
    [Google Scholar]
  12. Meredith A.M. Dass C.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J. Pharm. Pharmacol. 2016 68 6 729 741 10.1111/jphp.12539 26989862
    [Google Scholar]
  13. Heck M.M. Earnshaw W.C. Topoisomerase II: A specific marker for cell proliferation. J. Cell Biol. 1986 103 6 2569 2581 10.1083/jcb.103.6.2569 3025219
    [Google Scholar]
  14. Minihane A.M. Vinoy S. Russell W.R. Baka A. Roche H.M. Tuohy K.M. Teeling J.L. Blaak E.E. Fenech M. Vauzour D. McArdle H.J. Kremer B.H.A. Sterkman L. Vafeiadou K. Benedetti M.M. Williams C.M. Calder P.C. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015 114 7 999 1012 10.1017/S0007114515002093 26228057
    [Google Scholar]
  15. Burlingame B. Nishida C. Uauy R. Weisell R. Fats and fatty acids in human nutrition: Introduction. Ann. Nutr. Metab. 2009 55 1-3 5 7 10.1159/000228993 19752533
    [Google Scholar]
  16. Fabian C.J. Kimler B.F. Hursting S.D. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res. 2015 17 1 62 10.1186/s13058‑015‑0571‑6 25936773
    [Google Scholar]
  17. Geng L. Zhou W. Liu B. Wang X. Chen B. DHA induces apoptosis of human malignant breast cancer tissues by the TLR-4/PPAR-α pathways. Oncol. Lett. 2017 15 3 2967 2977 10.3892/ol.2017.7702 29435026
    [Google Scholar]
  18. Park M. Kim H. Anti-cancer mechanism of docosahexaenoic acid in pancreatic carcinogenesis: A mini-review. J. Cancer Prev. 2017 22 1 1 5 10.15430/JCP.2017.22.1.1 28382280
    [Google Scholar]
  19. Gleissman H. Johnsen J.I. Kogner P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp. Cell Res. 2010 316 8 1365 1373 10.1016/j.yexcr.2010.02.039 20211172
    [Google Scholar]
  20. Vaughan V.C. Hassing M-R. Lewandowski P.A. Marine polyunsaturated fatty acids and cancer therapy. Br. J. Cancer 2013 108 3 486 492 10.1038/bjc.2012.586 23299528
    [Google Scholar]
  21. Hajjaji N. Bougnoux P. Selective sensitization of tumors to chemotherapy by marine-derived lipids: A review. Cancer Treat. Rev. 2013 39 5 473 488 10.1016/j.ctrv.2012.07.001 22850619
    [Google Scholar]
  22. de Aguiar Pastore Silva J. Emilia de Souza Fabre M. Waitzberg D.L. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: A systematic review. Clin. Nutr. 2015 34 3 359 366 10.1016/j.clnu.2014.11.005 25907586
    [Google Scholar]
  23. Germain E. Chajès V. Cognault S. Lhuillery C. Bougnoux P. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MBA-MB-231: Relationship to lipid peroxidation. Int. J. Cancer 1998 75 4 578 583 10.1002/(SICI)1097‑0215(19980209)75:4<578::AID‑IJC14>3.0.CO;2‑5 9466659
    [Google Scholar]
  24. de Lima T.M. Amarante-Mendes G.P. Curi R. Docosahexaenoic acid enhances the toxic effect of imatinib on Bcr-Abl expressing HL-60 cells. Toxicol. In Vitro 2007 21 8 1678 1685 10.1016/j.tiv.2007.05.008 17604596
    [Google Scholar]
  25. Newell M. Brun M. Field C.J. Treatment with DHA modifies the response of MDA-MB-231 breast cancer cells and tumors from nu/nu mice to doxorubicin through apoptosis and cell cycle arrest. J. Nutr. 2019 149 1 46 56 10.1093/jn/nxy224 30601995
    [Google Scholar]
  26. Narayanan N.K. Narayanan B.A. Bosland M. Condon M.S. Nargi D. Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells. Int. J. Cancer 2006 119 7 1586 1598 10.1002/ijc.22031 16646082
    [Google Scholar]
  27. Morin C. Fortin S. Docosahexaenoic acid monoglyceride increases carboplatin activity in lung cancer models by targeting EGFR. Anticancer Res. 2017 37 11 6015 6023 10.21873/anticanres.12048 29061780
    [Google Scholar]
  28. Ding X. Ge L. Yan A. Ding Y. Tao J. Liu Q. Qiao C. Docosahexaenoic acid serving as sensitizing agents and gefitinib resistance revertants in EGFR targeting treatment. OncoTargets Ther. 2019 12 10547 10558 10.2147/OTT.S225918 31819534
    [Google Scholar]
  29. Shekari N. Javadian M. Ghasemi M. Baradaran B. Darabi M. Kazemi T. Synergistic beneficial effect of docosahexaenoic acid (DHA) and docetaxel on the expression level of matrix Metalloproteinase-2 (MMP-2) and microRNA-106b in gastric cancer. J. Gastrointest. Cancer 2020 51 1 70 75 10.1007/s12029‑019‑00205‑0 30680612
    [Google Scholar]
  30. Zajdel A. Kałucka M. Chodurek E. Wilczok A. DHA but not AA enhances cisplatin cytotoxicity in ovarian cancer cells. Nutr. Cancer 2018 70 7 1118 1125 10.1080/01635581.2018.1497673 30204485
    [Google Scholar]
  31. Gurav P. Garad S. n-3 PUFAs show promise as adjuvants in chemotherapy, enhancing their efficacy while safeguarding hematopoiesis and promoting bone generation. Curr. Top. Med. Chem. 2023 23 10.2174/0115680266258838231020102401 37907485
    [Google Scholar]
  32. Tanaka A. Yamamoto A. Murota K. Tsujiuchi T. Iwamori M. Fukushima N. Polyunsaturated fatty acids induce ovarian cancer cell death through ROS-dependent MAP kinase activation. Biochem. Biophys. Res. Commun. 2017 493 1 468 473 10.1016/j.bbrc.2017.08.168 28882592
    [Google Scholar]
  33. Wang Y.C. Wu Y.N. Wang S.L. Lin Q.H. He M.F. Liu Q. Wang J.H. Docosahexaenoic acid modulates invasion and metastasis of human ovarian cancer via multiple molecular pathways. Int. J. Gynecol. Cancer 2016 26 6 994 1003 10.1097/IGC.0000000000000746 27258728
    [Google Scholar]
  34. Baracos V.E. Mazurak V.C. Ma D.W.L. n -3 Polyunsaturated fatty acids throughout the cancer trajectory: Influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr. Res. Rev. 2004 17 2 177 192 10.1079/NRR200488 19079925
    [Google Scholar]
  35. Bratton B.A. Maly I.V. Hofmann W.A. Effect of polyunsaturated fatty acids on proliferation and survival of prostate cancer cells. PLoS One 2019 14 7 e0219822 10.1371/journal.pone.0219822 31314803
    [Google Scholar]
  36. Khojastehfard M. Dolatkhah H. Somi M.H. Nazari Soltan Ahmad S. Estakhri R. sharifi R. Naghizadeh M. Rahmati-Yamchi M. The effect of oral administration of PUFAs on the matrix metalloproteinase expression in gastric adenocarcinoma patients undergoing chemotherapy. Nutr. Cancer 2019 71 3 444 451 10.1080/01635581.2018.1506494 30616380
    [Google Scholar]
  37. Gurav P. Patade T. Hajare S. Kedar R.N. n-3 PUFAs synergistically enhance the efficacy of doxorubicin by inhibiting the proliferation and invasion of breast cancer cells. Med. Oncol. 2023 41 1 2 10.1007/s12032‑023‑02229‑w 38017288
    [Google Scholar]
  38. Bukowski K. Kciuk M. Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020 21 9 3233 10.3390/ijms21093233 32370233
    [Google Scholar]
  39. Rose D.P. Connolly J.M. Rayburn J. Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J. Natl. Cancer Inst. 1995 87 8 587 592 10.1093/jnci/87.8.587 7752256
    [Google Scholar]
  40. Fodil M. Blanckaert V. Ulmann L. Mimouni V. Chénais B. Contribution of n-3 long-chain polyunsaturated fatty acids to the prevention of breast cancer risk factors. Int. J. Environ. Res. Public Health 2022 19 13 7936 10.3390/ijerph19137936 35805595
    [Google Scholar]
  41. West L. Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. Am. J. Cancer Res. 2020 10 12 4450 4463 33415010
    [Google Scholar]
  42. Zhang H. Yao Y. Zhong X. Meng F. Hemminki K. Qiu J. Shu X. Association between intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid (n-3 PUFA DHA) and reduced risk of ovarian cancer: A systematic Mendelian Randomization study. Clin. Nutr. 2023 42 8 1379 1388 10.1016/j.clnu.2023.06.028 37421851
    [Google Scholar]
  43. Wang Y. Liu K. Long T. Long J. Li Y. Li J. Cheng L. Dietary fish and omega-3 polyunsaturated fatty acids intake and cancer survival: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023 63 23 6235 6251 10.1080/10408398.2022.2029826 35068276
    [Google Scholar]
  44. Zheng H. Tang H. Liu M. He M. Lai P. Dong H. Lin J. Jia C. Zhong M. Dai Y. Bai X. Wang L. Inhibition of endometrial cancer by n-3 polyunsaturated fatty acids in preclinical models. Cancer Prev. Res. (Phila.) 2014 7 8 824 834 10.1158/1940‑6207.CAPR‑13‑0378‑T 24866178
    [Google Scholar]
  45. Ghanem A. Emara H.A. Muawia S. Abd El Maksoud A.I. Al-Karmalawy A.A. Elshal M.F. Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: in vitro and molecular docking studies. New J. Chem. 2020 44 40 17374 17381 10.1039/D0NJ04088F
    [Google Scholar]
  46. Zhang K. Zheng X. Sun Y. Feng X. Wu X. Liu W. Gao C. Yan Y. Tian W. Wang Y. TOP2A modulates signaling via the AKT/mTOR pathway to promote ovarian cancer cell proliferation. Cancer Biol. Ther. 2024 25 1 2325126 10.1080/15384047.2024.2325126 38445610
    [Google Scholar]
  47. Gao Y. Zhao H. Ren M. Chen Q. Li J. Li Z. Yin C. Yue W. TOP2A promotes tumorigenesis of high- grade serous ovarian cancer by regulating the TGF-β/Smad Pathway. J. Cancer 2020 11 14 4181 4192 10.7150/jca.42736 32368301
    [Google Scholar]
  48. Bai Y. Li L.D. Li J. Lu X. Targeting of topoisomerases for prognosis and drug resistance in ovarian cancer. J. Ovarian Res. 2016 9 1 35 10.1186/s13048‑016‑0244‑9 27315793
    [Google Scholar]
  49. Soni S. Torvund M. Mandal C.C. Omega-3 fatty acid treatment combined with chemotherapy to prevent toxicity, Drug resistance, and metastasis in cancer. Curr. Drug Targets 2022 23 6 574 596 10.2174/1389450122666210901121935 34488585
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673359261250504031207
Loading
/content/journals/cmc/10.2174/0109298673359261250504031207
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: TOP2A ; DHA ; doxorubicin ; Ovarian cancer ; EPA ; cytotoxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test