Skip to content
2000
Volume 32, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Curcumin, a natural polyphenolic compound found in turmeric, has garnered increasing research interest due to its potential health benefits, particularly in the context of the rising global prevalence of metabolic syndrome (MetS). With MetS affecting a significant portion of the global population and serving as a precursor to chronic diseases, such as type 2 diabetes and cardiovascular diseases, identifying effective, accessible, and safe interventions has become a critical public health priority. This review explores curcumin’s role in regulating gut microbiota composition, enhancing intestinal barrier function, and reducing inflammation, which can collectively improve key components of MetS, such as hyperglycemia, dyslipidemia, obesity, and hypertension. Supplementation with curcumin has shown promising results in improving metabolic health by promoting the production of short-chain fatty acids (SCFAs), such as butyric and propionic acids. These effects may protect against dyslipidemia and reduce the risk of chronic conditions. Furthermore, curcumin has demonstrated potential in reducing hypertension through various mechanisms, including inflammation reduction, modulation of lipopolysaccharide (LPS) production, activation of G-protein-coupled receptor 43 (GPR43), and increased levels of SCFAs. Given the significant public health implications of MetS, understanding curcumin's impact on gut microbiota presents an opportunity for developing novel therapeutic strategies that address this urgent health challenge. Despite its promise, further research is necessary to fully comprehend the underlying mechanisms involved. Additionally, determining the optimal dosage and duration of curcumin supplementation for achieving its effects on metabolic syndrome is crucial for future therapeutic applications. This review highlights curcumin's potential as a natural compound with multifaceted health benefits, particularly in the context of metabolic syndrome and its associated complications, emphasizing the pressing need for clinical studies to validate findings and inform evidence-based therapeutic applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673371503250210092741
2025-02-18
2025-10-18
Loading full text...

Full text loading...

References

  1. HouK. WuZ.X. ChenX.Y. WangJ.Q. ZhangD. XiaoC. ZhuD. KoyaJ.B. WeiL. LiJ. ChenZ.S. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑435461318
    [Google Scholar]
  2. The integrative human microbiome project.Nature2019569775864164810.1038/s41586‑019‑1238‑831142853
    [Google Scholar]
  3. LuZ. Microbiota research: From history to advances.E3S Web of Conferences.LondonEDP Sciences20200101410.1051/e3sconf/202014501014
    [Google Scholar]
  4. RochlaniY. PothineniN.V. KovelamudiS. MehtaJ.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds.Ther. Adv. Cardiovasc. Dis.201711821522510.1177/175394471771137928639538
    [Google Scholar]
  5. WangP.X. DengX.R. ZhangC.H. YuanH.J. Gut microbiota and metabolic syndrome.Chin. Med. J. (Engl.)2020133780881610.1097/CM9.000000000000069632106124
    [Google Scholar]
  6. FedericoA. DallioM. DI SarnoR. GiorgioV. MieleL. Gut microbiota, obesity and metabolic disorders.Minerva Gastroenterol. Dietol.201763433734410.1017/S002966511000181328927249
    [Google Scholar]
  7. ZmoraN. SuezJ. ElinavE. You are what you eat: Diet, health and the gut microbiota.Nat. Rev. Gastroenterol. Hepatol.2019161355610.1038/s41575‑018‑0061‑230262901
    [Google Scholar]
  8. Castro-BarqueroS. Ruiz-LeónA.M. Sierra-PérezM. EstruchR. CasasR. Dietary strategies for metabolic syndrome: A comprehensive review.Nutrients20201210298310.3390/nu1210298333003472
    [Google Scholar]
  9. Santos-MarcosJ.A. Perez-JimenezF. CamargoA. The role of diet and intestinal microbiota in the development of metabolic syndrome.J. Nutr. Biochem.20197012710.1016/j.jnutbio.2019.03.01731082615
    [Google Scholar]
  10. MatijašićB.B. ObermajerT. LipoglavšekL. GrabnarI. AvguštinG. RogeljI. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia.Eur. J. Nutr.20145341051106410.1007/s00394‑013‑0607‑624173964
    [Google Scholar]
  11. SharmaA. KaurM. KatnoriaJ.K. NagpalA.K. Polyphenols in food: Cancer prevention and apoptosis induction.Curr. Med. Chem.201825364740475710.2174/092986732466617100614420828990504
    [Google Scholar]
  12. PeiR. LiuX. BollingB. Flavonoids and gut health.Curr. Opin. Biotechnol.20206115315910.1016/j.copbio.2019.12.01831954357
    [Google Scholar]
  13. OteizaP.I. FragaC.G. MillsD.A. TaftD.H. Flavonoids and the gastrointestinal tract: Local and systemic effects.Mol. Aspects Med.201861414910.1016/j.mam.2018.01.00129317252
    [Google Scholar]
  14. Gil-CardosoK. GinésI. PinentM. ArdévolA. BlayM. TerraX. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.Nutr. Res. Rev.201629223424810.1017/S095442241600015927841104
    [Google Scholar]
  15. PriyadarsiniK. The chemistry of curcumin: From extraction to therapeutic agent.Molecules20141912200912011210.3390/molecules19122009125470276
    [Google Scholar]
  16. Abd WahabN.A. LajisN.H. AbasF. OthmanI. NaiduR. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer.Nutrients202012367910.3390/nu12030679
    [Google Scholar]
  17. ShabbirU. RubabM. DaliriE.B.M. ChelliahR. JavedA. OhD.H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota.Nutrients202113120610.3390/nu1301020633445760
    [Google Scholar]
  18. AggarwalB. DebL. PrasadS. curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses.Molecules201420118520510.3390/molecules2001018525547723
    [Google Scholar]
  19. LuK.H. LuP.W.A. LuE.W.H. LinC.W. YangS.F. curcumin and its analogs and carriers: Potential therapeutic strategies for human osteosarcoma.Int. J. Biol. Sci.20231941241126510.7150/ijbs.8059036923933
    [Google Scholar]
  20. GoertzS. de MenezesA.B. BirtlesR.J. FennJ. LoweA.E. MacCollA.D.C. PoulinB. YoungS. BradleyJ.E. TaylorC.H. Geographical location influences the composition of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial scale.PLoS One2019149e022250110.1371/journal.pone.022250131557179
    [Google Scholar]
  21. ZhangX. ZhongH. LiY. ShiZ. RenH. ZhangZ. ZhouX. TangS. HanX. LinY. YangF. WangD. FangC. FuZ. WangL. ZhuS. HouY. XuX. YangH. WangJ. KristiansenK. LiJ. JiL. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities.Nat. Aging2021118710010.1038/s43587‑020‑00014‑237118004
    [Google Scholar]
  22. Santos-MarcosJ.A. Rangel-ZuñigaO.A. Jimenez-LucenaR. Quintana-NavarroG.M. Garcia-CarpinteroS. MalagonM.M. LandaB.B. Tena-SempereM. Perez- MartinezP. Lopez-MirandaJ. Perez-JimenezF. CamargoA. Influence of gender and menopausal status on gut microbiota.Maturitas2018116435310.1016/j.maturitas.2018.07.00830244778
    [Google Scholar]
  23. LippertK. KedenkoL. AntonielliL. KedenkoI. GemeierC. LeitnerM. Kautzky-WillerA. PaulweberB. HacklE. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults.Benef. Microbes20178454555610.3920/BM2016.018428701081
    [Google Scholar]
  24. Kumar SinghA. CabralC. KumarR. GangulyR. Kumar RanaH. GuptaA. Rosaria LauroM. CarboneC. ReisF. PandeyA.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency.Nutrients2019119221610.3390/nu1109221631540270
    [Google Scholar]
  25. MerraG. NoceA. MarroneG. CintoniM. TarsitanoM.G. CapacciA. De LorenzoA. Influence of mediterranean diet on human gut microbiota.Nutrients2020131710.3390/nu1301000733375042
    [Google Scholar]
  26. OrgE. BlumY. KaselaS. MehrabianM. KuusistoJ. KangasA.J. SoininenP. WangZ. Ala-KorpelaM. HazenS.L. LaaksoM. LusisA.J. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort.Genome Biol.20171817010.1186/s13059‑017‑1194‑228407784
    [Google Scholar]
  27. BaldiS. PagliaiG. DinuM. Di GloriaL. NanniniG. CuriniL. PallecchiM. RussoE. NiccolaiE. DanzaG. BenedettelliS. BalleriniG. ColombiniB. BartolucciG. RamazzottiM. SofiF. AmedeiA. Effect of ancient Khorasan wheat on gut microbiota, inflammation, and short-chain fatty acid production in patients with fibromyalgia.World J. Gastroenterol.202228181965198010.3748/wjg.v28.i18.196535664958
    [Google Scholar]
  28. MoughaizelM. DagherE. JablaouiA. ThorinC. RhimiM. DesfontisJ.C. MallemY. Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits.PLoS One2022172e026421510.1371/journal.pone.026421535196347
    [Google Scholar]
  29. SergeevI.N. AljutailyT. WaltonG. HuarteE. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity.Nutrients202012122210.3390/nu1201022231952249
    [Google Scholar]
  30. KassaianN. AminorroayaA. FeiziA. JafariP. AminiM. The effects of probiotic and synbiotic supplementation on metabolic syndrome indices in adults at risk of type 2 diabetes: Study protocol for a randomized controlled trial.Trials201718114810.1186/s13063‑017‑1885‑828356129
    [Google Scholar]
  31. Ghiamati YazdiF. Soleimanian-ZadS. van den WormE. FolkertsG. Turmeric extract: Potential use as a prebiotic and anti-inflammatory compound?Plant Foods Hum. Nutr.201974329329910.1007/s11130‑019‑00733‑x31098880
    [Google Scholar]
  32. ShenL. LiuL. JiH.F. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications.Food Nutr. Res.2017611136178010.1080/16546628.2017.136178028814952
    [Google Scholar]
  33. HongT. ZouJ. JiangX. YangJ. CaoZ. HeY. FengD. curcumin supplementation ameliorates bile cholesterol supersaturation in hamsters by modulating gut microbiota and cholesterol absorption.Nutrients2022149182810.3390/nu1409182835565795
    [Google Scholar]
  34. XuX. WangH. GuoD. ManX. LiuJ. LiJ. LuoC. ZhangM. ZhenL. LiuX. curcumin modulates gut microbiota and improves renal function in rats with uric acid nephropathy.Ren. Fail.20214311063107510.1080/0886022X.2021.194487534187292
    [Google Scholar]
  35. NeyrinckA.M. SánchezC.R. RodriguezJ. CaniP.D. BindelsL.B. DelzenneN.M. Prebiotic effect of berberine and curcumin is associated with the improvement of obesity in mice.Nutrients2021135143610.3390/nu1305143633923174
    [Google Scholar]
  36. Winiarska-MieczanA. TomaszewskaE. DonaldsonJ. JachimowiczK. The role of nutritional factors in the modulation of the composition of the gut microbiota in people with autoimmune diabetes.Nutrients20221412249810.3390/nu1412249835745227
    [Google Scholar]
  37. LiS. YouJ. WangZ. LiuY. WangB. DuM. ZouT. curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice.Food Res. Int.202114311027010.1016/j.foodres.2021.11027033992371
    [Google Scholar]
  38. LuoM. HanY. ChenY. DuH. ChenB. GaoZ. WangQ. CaoY. XiaoH. Unveiling the role of gut microbiota in curcumin metabolism using antibiotic-treated mice.Food Chem.2024460Pt 214070610.1016/j.foodchem.2024.14070639096800
    [Google Scholar]
  39. PlutaR. JanuszewskiS. Ułamek-KoziołM. Mutual two-way interactions of curcumin and gut microbiota.Int. J. Mol. Sci.2020213105510.3390/ijms2103105532033441
    [Google Scholar]
  40. ZamW. Gut microbiota as a prospective therapeutic target for curcumin: A review of mutual influence.J. Nutr. Metab.2018201811110.1155/2018/136798430647970
    [Google Scholar]
  41. CuiC. HanY. LiH. YuH. ZhangB. LiG. Curcumin-driven reprogramming of the gut microbiota and metabolome ameliorates motor deficits and neuroinflammation in a mouse model of Parkinson’s disease.Front. Cell. Infect. Microbiol.20221288740710.3389/fcimb.2022.88740736034698
    [Google Scholar]
  42. HeL. Alterations of gut microbiota by overnutrition impact gluconeogenic gene expression and insulin signaling.Int. J. Mol. Sci.2021224212110.3390/ijms2204212133672754
    [Google Scholar]
  43. MotianiK.K. ColladoM.C. EskelinenJ.J. VirtanenK.A. LöyttyniemiE. SalminenS. NuutilaP. KalliokoskiK.K. HannukainenJ.C. Exercise training modulates gut microbiota profile and improves endotoxemia.Med. Sci. Sports Exerc.20205219410410.1249/MSS.000000000000211231425383
    [Google Scholar]
  44. HotamisligilG.S. Inflammation and metabolic disorders.Nature2006444712186086710.1038/nature0548517167474
    [Google Scholar]
  45. ShoelsonS.E. LeeJ. GoldfineA.B. Inflammation and insulin resistance.J. Clin. Invest.200611671793180110.1172/JCI2906916823477
    [Google Scholar]
  46. KernP.A. RanganathanS. LiC. WoodL. RanganathanG. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance.Am. J. Physiol. Endocrinol. Metab.20012805E745E75110.1152/ajpendo.2001.280.5.E74511287357
    [Google Scholar]
  47. KawanoY. NakaeJ. WatanabeN. KikuchiT. TateyaS. TamoriY. KanekoM. AbeT. OnoderaM. ItohH. Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner.Cell Metab.201624229531010.1016/j.cmet.2016.07.00927508875
    [Google Scholar]
  48. MurdoloG. NowotnyB. CeliF. DonatiM. BiniV. PapiF. GornitzkaG. CastellaniS. RodenM. FalorniA. HerderC. FalorniA. Inflammatory adipokines, high molecular weight adiponectin, and insulin resistance: A population-based survey in prepubertal school children.PLoS One201162e1726410.1371/journal.pone.001726421365005
    [Google Scholar]
  49. PhillipsA. CobboldC. A comparison of the effects of aerobic and intense exercise on the type 2 diabetes mellitus risk marker adipokines, adiponectin and retinol binding protein-4.Int. J. Chronic Dis.201420141510.1155/2014/35805826464853
    [Google Scholar]
  50. StrycharzJ. WróblewskiA. ZieleniakA. ŚwiderskaE. MatyjasT. RucińskaM. PomorskiL. CzarnyP. SzemrajJ. DrzewoskiJ. ŚliwińskaA. Visceral adipose tissue of prediabetic and diabetic females shares a set of similarly upregulated microRNAs functionally annotated to inflammation, oxidative stress and insulin signaling.Antioxidants202110110110.3390/antiox1001010133445738
    [Google Scholar]
  51. LiR. Andreu-SánchezS. KuipersF. FuJ. Gut microbiome and bile acids in obesity-related diseases.Best Pract. Res. Clin. Endocrinol. Metab.202135310149310.1016/j.beem.2021.10149333707081
    [Google Scholar]
  52. ZhongY. XiaoY. GaoJ. ZhengZ. ZhangZ. YaoL. LiD. curcumin improves insulin sensitivity in high- fat diet-fed mice through gut microbiota.Nutr. Metab. (Lond.)20221917610.1186/s12986‑022‑00712‑136348361
    [Google Scholar]
  53. Samarghandian, S.; Shoshtari, ME.; Sargolzaei, J.; Hossinimoghadam, H.; Farahzad, JA. Anti-tumor activity of safranal against neuroblastoma cells.Pharmacognosy Magazine201410Suppl 2S41910.1016/j.fitote.2020.10466532531320
    [Google Scholar]
  54. TsaiY.Z. TsaiM.L. HsuL.Y. HoC.T. LaiC.S. Tetrahydrocurcumin upregulates the adiponectin-AdipoR pathway and improves insulin signaling and pancreatic β- cell function in high-fat diet/streptozotocin-induced diabetic obese mice.Nutrients20211312455210.3390/nu1312455234960104
    [Google Scholar]
  55. XiaoQ.P. ZhongY.B. KangZ.P. HuangJ.Q. FangW.Y. WeiS.Y. LongJ. LiS.S. ZhaoH.M. LiuD.Y. curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis.Phytother. Res.20223641708172310.1002/ptr.740435234309
    [Google Scholar]
  56. GhoshS.S. BieJ. WangJ. GhoshS. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation.PLoS One201499e10857710.1371/journal.pone.010857725251395
    [Google Scholar]
  57. GhoshS.S. HeH. WangJ. GehrT.W. GhoshS. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.Tissue Barriers201861e142508510.1080/21688370.2018.142508529420166
    [Google Scholar]
  58. WangJ. GhoshS.S. GhoshS. curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions.Am. J. Physiol. Cell Physiol.20173124C438C44510.1152/ajpcell.00235.201628249988
    [Google Scholar]
  59. HuangJ. GuanB. LinL. WangY. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin.Bioengineered2021122119471195810.1080/21655979.2021.200932234818970
    [Google Scholar]
  60. TakikawaM. KurimotoY. TsudaT. curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation.Biochem. Biophys. Res. Commun.2013435216517010.1016/j.bbrc.2013.04.09223660191
    [Google Scholar]
  61. KatoM. NishikawaS. IkehataA. DochiK. TaniT. TakahashiT. ImaizumiA. TsudaT. curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion.Mol. Nutr. Food Res.2017613160047110.1002/mnfr.20160047127990751
    [Google Scholar]
  62. YangJ. MiaoX. YangF.J. CaoJ.F. LiuX. FuJ.L. SuG.F. Therapeutic potential of curcumin in diabetic retinopathy (Review).Int. J. Mol. Med.20214757510.3892/ijmm.2021.490833693955
    [Google Scholar]
  63. ServidaS. PanzeriE. TomainoL. MarfiaG. GarziaE. AppianiG.C. MoronciniG. ColonnaV.D.G. VecchiaC.L. VignaL. Overview of curcumin and piperine effects on glucose metabolism: The case of an insulinoma patient’s loss of consciousness.Int. J. Mol. Sci.2023247662110.3390/ijms2407662137047589
    [Google Scholar]
  64. XuZ. ZhuW. XuD. AmevorF.K. WuY. MaD. CaoX. WeiS. ShuG. ZhaoX. Supplementation of curcumin promotes the intestinal structure, immune barrier function and cecal microbiota composition of laying hens in early laying period.Poult. Sci.20241031210435510.1016/j.psj.2024.10435539423789
    [Google Scholar]
  65. LamichhaneG. OlawaleF. LiuJ. LeeD.Y. LeeS.J. ChaffinN. AlakeS. LucasE.A. ZhangG. EganJ.M. KimY. curcumin mitigates gut dysbiosis and enhances gut barrier function to alleviate metabolic dysfunction in obese, aged mice.Biology (Basel)2024131295510.3390/biology1312095539765622
    [Google Scholar]
  66. AzizM.A. El-AsmarM.F. RezqA.M. WassefM.A. FouadH. RoshdyN.K. AhmedH.H. RashedL.A. SabryD. TahaF.M. HassounaA. Effects of a novel curcumin derivative on insulin synthesis and secretion in streptozotocin-treated rat pancreatic islets in vitro.Chin. Med.201491310.1186/1749‑8546‑9‑324422903
    [Google Scholar]
  67. ThotaR.N. AcharyaS.H. GargM.L. curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial.Lipids Heal. Dis.20191813110.1186/s12944‑019‑0967‑x30684965
    [Google Scholar]
  68. MohammadiA. SahebkarA. IranshahiM. AminiM. KhojastehR. Ghayour-MobarhanM. FernsG.A. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: A randomized crossover trial.Phytother. Res.201327337437910.1002/ptr.471522610853
    [Google Scholar]
  69. VamanuE. GateaF. SârbuI. PelinescuD. An in vitro study of the influence of Curcuma longa extracts on the microbiota modulation process, in patients with hypertension.Pharmaceutics201911419110.3390/pharmaceutics1104019131003502
    [Google Scholar]
  70. MariadasonJ.M. CornerG.A. AugenlichtL.H. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: Comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer.Cancer Res.200060164561457210969808
    [Google Scholar]
  71. FengW. WangH. ZhangP. GaoC. TaoJ. GeZ. ZhuD. BiY. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats.Biochim. Biophys. Acta, Gen. Subj.2017186171801181210.1016/j.bbagen.2017.03.01728341485
    [Google Scholar]
  72. RecharlaN. BalasubramanianB. SongM. PuligundlaP. KimS. JeongJ.Y. ParkS. Dietary turmeric (Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets.J. Anim. Sci. Technol.202163357559210.5187/jast.2021.e5534189506
    [Google Scholar]
  73. AlvaroA. SolàR. RosalesR. RibaltaJ. AngueraA. MasanaL. VallvéJ.C. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids.IUBMB Life2008601175776410.1002/iub.11018642346
    [Google Scholar]
  74. ZhaoY. HeZ. HaoW. ZhuH. LiuJ. MaK.Y. HeW.S. ChenZ.Y. Cholesterol-lowering activity of protocatechuic acid is mediated by increasing the excretion of bile acids and modulating gut microbiota and producing short-chain fatty acids.Food Funct.20211222115571156710.1039/D1FO02906A34709262
    [Google Scholar]
  75. MüllerM. HernándezM.A.G. GoossensG.H. ReijndersD. HolstJ.J. JockenJ.W.E. van EijkH. CanforaE.E. BlaakE.E. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans.Sci. Rep.2019911251510.1038/s41598‑019‑48775‑031467327
    [Google Scholar]
  76. MoroC. BajpeyiS. SmithS.R. Determinants of intramyocellular triglyceride turnover: Implications for insulin sensitivity.Am. J. Physiol. Endocrinol. Metab.20082942E203E21310.1152/ajpendo.00624.200718003718
    [Google Scholar]
  77. Farkhondeh, T.; Mehrpour, O.; Buhrmann, C.; Pourbagher-Shahri, AM.; Shakibaei, M.; Samarghandian, S. Organophosphorus compounds and MAPK signaling pathways.Int. J. Mol. Sci.202015;2112425810.1073/pnas.263700210014722361
    [Google Scholar]
  78. ZhangW. KongL. ZhongZ. LinL. LiJ. ZhengG. Short chain fatty acids increase fat oxidation and promote browning through β3-adrenergic receptor/AMP-activated protein kinase α signaling pathway in 3T3-L1 adipocytes.J. Funct. Foods202310310548810.1016/j.jff.2023.105488
    [Google Scholar]
  79. den BestenG. GerdingA. van DijkT.H. CiapaiteJ. BleekerA. van EunenK. HavingaR. GroenA.K. ReijngoudD.J. BakkerB.M. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1.PLoS One2015108e013636410.1371/journal.pone.013636426292284
    [Google Scholar]
  80. LiuL. FuQ. LiT. ShaoK. ZhuX. CongY. ZhaoX. Gut microbiota and butyrate contribute to nonalcoholic fatty liver disease in premenopause due to estrogen deficiency.PLoS One2022172e026285510.1371/journal.pone.026285535108315
    [Google Scholar]
  81. De VadderF. Kovatcheva-DatcharyP. GoncalvesD. VineraJ. ZitounC. DuchamptA. BäckhedF. MithieuxG. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits.Cell20141561-2849610.1016/j.cell.2013.12.01624412651
    [Google Scholar]
  82. AmabebeE. RobertF.O. AgbalalahT. OrubuE.S.F. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism.Br. J. Nutr.2020123101127113710.1017/S000711452000038032008579
    [Google Scholar]
  83. IslamT. KobozievI. Albracht-SchulteK. MistrettaB. ScogginS. YosofvandM. MoussaH. Zabet-MoghaddamM. RamalingamL. GunaratneP.H. Moustaid-MoussaN. curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice.Mol. Nutr. Food Res.20216522210027410.1002/mnfr.20210027434510720
    [Google Scholar]
  84. LiH.B. XuM.L. DuM.M. YuX.J. BaiJ. XiaW.J. DaiZ.M. LiC.X. LiY. SuQ. WangX.M. DongY.Y. KangY.M. curcumin ameliorates hypertension via gut-brain communication in spontaneously hypertensive rat.Toxicol. Appl. Pharmacol.202142911570110.1016/j.taap.2021.11570134453990
    [Google Scholar]
  85. MatsubaraF. UenoH. TadanoK. Effects of GABA supplementation on blood pressure and safety in adults with mild hypertension.Jpn. Pharmacol. Ther.200230963972
    [Google Scholar]
  86. Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey.Biomedicine & Pharmacotherapy.2020113011059010.1007/s00424‑019‑02322‑y31728701
    [Google Scholar]
  87. NajmanováI. PourováJ. VopršalováM. PilařováV. SemeckýV. NovákováL. MladěnkaP. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats.Mol. Nutr. Food Res.201660598199110.1002/mnfr.20150076126790841
    [Google Scholar]
  88. GryllsA. SeidlerK. NeilJ. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics.Biomed. Pharmacother.202113711133410.1016/j.biopha.2021.11133433556874
    [Google Scholar]
  89. Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Samarghandian, S. Nrf2 a molecular therapeutic target for Astaxanthin.Biomedicine & Pharmacotherapy.2021113711137410.1038/labinvest.2010.6020212458
    [Google Scholar]
  90. EjazA. WuD. KwanP. MeydaniM. curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.J. Nutr.2009139591992510.3945/jn.108.10096619297423
    [Google Scholar]
  91. HanZ. YaoL. ZhongY. XiaoY. GaoJ. ZhengZ. FanS. ZhangZ. GongS. ChangS. CuiX. CaiJ. Gut microbiota mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity.Food Funct.202112146558657510.1039/D1FO00671A34096956
    [Google Scholar]
  92. GaoX. JiaR. XieL. KuangL. FengL. WanC. Obesity in school-aged children and its correlation with Gut E.coli and Bifidobacteria: A case–control study.BMC Pediatr.20151516410.1186/s12887‑015‑0384‑x26024884
    [Google Scholar]
  93. AdamczakA. OżarowskiM. KarpińskiT.M. Curcumin, a natural antimicrobial agent with strain-specific activity.Pharmaceuticals (Basel)202013715310.3390/ph1307015332708619
    [Google Scholar]
  94. PackiavathyI.A.S.V. PriyaS. PandianS.K. RaviA.V. Inhibition of biofilm development of uropathogens by curcumin – An anti-quorum sensing agent from Curcuma longa.Food Chem.201414845346010.1016/j.foodchem.2012.08.00224262582
    [Google Scholar]
  95. AdeyemiO.S. Obeme-ImomJ.I. AkporB.O. RotimiD. BatihaG.E. OwolabiA. Altered redox status, DNA damage and modulation of L-tryptophan metabolism contribute to antimicrobial action of curcumin.Heliyon202063e0349510.1016/j.heliyon.2020.e0349532154425
    [Google Scholar]
  96. WikeneK.O. HeggeA.B. BruzellE. TønnesenH.H. Formulation and characterization of lyophilized curcumin solid dispersions for antimicrobial photodynamic therapy (aPDT): Studies on curcumin and curcuminoids LII.Drug Dev. Ind. Pharm.201541696997710.3109/03639045.2014.91931524842546
    [Google Scholar]
  97. MounceB.C. CesaroT. CarrauL. ValletT. VignuzziM. curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.Antiviral Res.201714214815710.1016/j.antiviral.2017.03.01428343845
    [Google Scholar]
  98. ŠudomováM. HassanS.T.S. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: Mechanisms and pathways.Microorganisms20219229210.3390/microorganisms902029233572685
    [Google Scholar]
  99. Samarghandian, S.; Hadjzadeh, MA.; Afshari, JT.; Hosseini, M. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line.BMC complementary and alternative medicine2014141910.1016/j.jchromb.2015.01.01425658514
    [Google Scholar]
  100. SunZ.Z. LiX.Y. WangS. ShenL. JiH.F. Bidirectional interactions between curcumin and gut microbiota in transgenic mice with Alzheimer’s disease.Appl. Microbiol. Biotechnol.202010483507351510.1007/s00253‑020‑10461‑x32095862
    [Google Scholar]
  101. GanjiA. FarahaniI. SaeedifarA.M. MosayebiG. GhazaviA. MajeedM. JamialahmadiT. SahebkarA. Protective effects of curcumin against lipopolysaccharide-induced toxicity.Curr. Med. Chem.202128336915693010.2174/092986732866621052512470734036908
    [Google Scholar]
  102. JinB. LiY.P. curcumin prevents lipopolysaccharide-induced atrogin-1/MAFbx upregulation and muscle mass loss.J. Cell. Biochem.2007100496096910.1002/jcb.2106017131360
    [Google Scholar]
  103. PivariF. MingioneA. PiazziniG. CeccaraniC. OttavianoE. BrasacchioC. Dei CasM. VischiM. CozzolinoM.G. FogagnoloP. RivaA. PetrangoliniG. BarreaL. Di RenzoL. BorghiE. SignorelliP. ParoniR. SoldatiL. curcumin supplementation (Meriva®) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease.Nutrients202214123110.3390/nu1401023135011106
    [Google Scholar]
  104. PetersonC.T. VaughnA.R. SharmaV. Effects of turmeric and curcumin dietary supplementation on human gut microbiota: A double-blind, randomized, placebo-controlled pilot study.J. Evid.-Bas. Integra. Med.20182372510.1177/2515690X18790725
    [Google Scholar]
  105. BereswillS. MuñozM. FischerA. PlickertR. HaagL.M. OttoB. KühlA.A. LoddenkemperC. GöbelU.B. HeimesaatM.M. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation.PLoS One2010512e1509910.1371/journal.pone.001509921151942
    [Google Scholar]
  106. LiY. Effects of curcumin on gut microbiota of interval sleep deprivation rats.Chin. Tradit. Herbal Drugs20162479479810.7501/j.issn.0253‑2670.2016.05.018
    [Google Scholar]
  107. McFaddenR.M.T. LarmonierC.B. ShehabK.W. Midura-KielaM. RamalingamR. HarrisonC.A. BesselsenD.G. ChaseJ.H. CaporasoJ.G. JobinC. GhishanF.K. KielaP.R. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention.Inflamm. Bowel Dis.201521112483249410.1097/MIB.000000000000052226218141
    [Google Scholar]
  108. CampbellM.S. CarliniN.A. FleenorB.S. Influence of curcumin on performance and post-exercise recovery.Crit. Rev. Food Sci. Nutr.20216171152116210.1080/10408398.2020.175475432319320
    [Google Scholar]
  109. ZhangZ. ChenY. XiangL. WangZ. XiaoG. HuJ. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats.Nutrients2017910114610.3390/nu910114629048369
    [Google Scholar]
  110. RedaF.M. El-SaadonyM.T. ElnesrS.S. AlagawanyM. TufarelliV. Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails.Animals (Basel)202010575410.3390/ani1005075432357410
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673371503250210092741
Loading
/content/journals/cmc/10.2174/0109298673371503250210092741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test