Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

A classical approach is ineffective against diseases with a multi-factorial pathogenesis, such as Alzheimer's disease (AD). On the other hand, multi-target approaches can provide a higher level of pharmacological interference which can better affect the disease network. Acetylcholinesterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (β-secretase, BACE-1), glycogen synthase kinase 3 beta (GSK-3β), monoamine oxidases (MAOs), metal ions in the brain, N-methyl-D-aspartate (NMDA) receptor, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), and phosphodiesterases (PDEs) are the main major targets of this network whose connection are still far from being fully understood. Aware of this limitation, we herein focus on the main chemotypes employed for AChE/BACE-1 targeting. These include mostly bioactive compounds based on chalcones, triazines, triazoles, piperidines, and flavonoids.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673350086250310080327
2025-05-06
2026-01-07
Loading full text...

Full text loading...

References

  1. PanyatipP. TadtongS. SousaE. PuthongkingP. BACE1 inhibitor, neuroprotective, and neuritogenic activities of melatonin derivatives.Sci. Pharm.20208845810.3390/scipharm88040058
    [Google Scholar]
  2. AlagözM.A. KimS.M. OhJ.M. ArslanG. ÖzdemirZ. SariS. ÖzçelikA.B. ÖnkolT. TrisciuzziD. NicolottiO. KimH. MathewB. Inhibition of cholinesterases by benzothiazolone derivatives.Processes2022109187210.3390/pr10091872
    [Google Scholar]
  3. WattA.D. JenkinsN.L. McCollG. CollinsS. DesmondP.M. Ethical issues in the treatment of late-stage Alzheimer’s disease.J. Alzheimers Dis.20196841311131610.3233/JAD‑180865 30475773
    [Google Scholar]
  4. WatchmanK. JanickiM.P. SplaineM. LarsenF.K. GomieroT. LucchinoR. International summit consensus statement: Intellectual disability inclusion in national dementia plans.Am. J. Alzheimers Dis. Other Demen.201732423023710.1177/1533317517704082 28417674
    [Google Scholar]
  5. IrajiA. KhoshneviszadehM. FiruziO. KhoshneviszadehM. EdrakiN. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands.Bioorg. Chem.20209710364910.1016/j.bioorg.2020.103649 32101780
    [Google Scholar]
  6. TranT.S. TranT.D. TranT.H. MaiT.T. NguyenN.L. ThaiK.M. LeM.T. Synthesis, in silico and in vitro evaluation of some flavone derivatives for acetylcholinesterase and BACE-1 inhibitory activity.Molecules20202518406410.3390/molecules25184064 32899576
    [Google Scholar]
  7. SampsonE.L. RitchieC.W. LaiR. RavenP.W. BlanchardM.R. A systematic review of the scientific evidence for the efficacy of a palliative care approach in advanced dementia.Int. Psychogeriatr.2005171314010.1017/S1041610205001018 15945590
    [Google Scholar]
  8. CummingsJ.L. GoldmanD.P. Simmons-SternN.R. PontonE. The costs of developing treatments for Alzheimer’s disease: A retrospective exploration.Alzheimers Dement.202218346947710.1002/alz.12450 34581499
    [Google Scholar]
  9. YiL.X. TanE.K. ZhouZ.D. Passive immunotherapy for Alzheimer’s disease: Challenges & future directions.J. Transl. Med.202422143010.1186/s12967‑024‑05248‑x 38715084
    [Google Scholar]
  10. InestrosaN.C. DinamarcaM.C. AlvarezA. Amyloid–cholinesterase interactions.FEBS J.2008275462563210.1111/j.1742‑4658.2007.06238.x 18205831
    [Google Scholar]
  11. HampelH. VassarR. De StrooperB. HardyJ. WillemM. SinghN. ZhouJ. YanR. VanmechelenE. De VosA. NisticòR. CorboM. ImbimboB.P. StrefferJ. VoytyukI. TimmersM. Tahami MonfaredA.A. IrizarryM. AlbalaB. KoyamaA. WatanabeN. KimuraT. YarenisL. ListaS. KramerL. VergalloA. The β-Secretase BACE1 in Alzheimer’s disease.Biol. Psychiatry202189874575610.1016/j.biopsych.2020.02.001 32223911
    [Google Scholar]
  12. BayerT.A. Pyroglutamate Aβ cascade as drug target in Alzheimer’s disease.Mol. Psychiatry20222741880188510.1038/s41380‑021‑01409‑2 34880449
    [Google Scholar]
  13. YuZ. JiH. ShenJ. KanR. ZhaoW. LiJ. DingL. LiuJ. Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors.Food Funct.20201176643665110.1039/D0FO00971G 32656560
    [Google Scholar]
  14. Hernández-RodríguezM. Correa-BasurtoJ. GutiérrezA. VitoricaJ. Rosales-HernándezM.C. Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations.Eur. J. Med. Chem.20161241142115410.1016/j.ejmech.2016.08.028 27639619
    [Google Scholar]
  15. SternN. GacsA. TátraiE. FlachnerB. HajdúI. DobiK. BágyiI. DormánG. LőrinczZ. CsehS. KígyósA. TóváriJ. GoldblumA. Dual inhibitors of AChE and BACE-1 for reducing Aβ in Alzheimer’s disease: From in silico to in vivo.Int. J. Mol. Sci.202223211309810.3390/ijms232113098 36361906
    [Google Scholar]
  16. TcwJ. GoateA.M. Genetics of β-amyloid precursor protein in Alzheimer’s disease.Cold Spring Harb. Perspect. Med.201776a02453910.1101/cshperspect.a024539 28003277
    [Google Scholar]
  17. JastrzębskiM.K. WójcikP. StępnickiP. KaczorA.A. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation.Acta Pharm. Sin. B20231412037
    [Google Scholar]
  18. IbaM. GuoJ.L. McBrideJ.D. ZhangB. TrojanowskiJ.Q. LeeV.M.Y. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy.J. Neurosci.20133331024103710.1523/JNEUROSCI.2642‑12.2013 23325240
    [Google Scholar]
  19. MayP.C. DeanR.A. LoweS.L. MartenyiF. SheehanS.M. BoggsL.N. MonkS.A. MathesB.M. MergottD.J. WatsonB.M. StoutS.L. TimmD.E. Smith LaBellE. GonzalesC.R. NakanoM. JheeS.S. YenM. EreshefskyL. LindstromT.D. CalligaroD.O. CockeP.J. Greg HallD. FriedrichS. CitronM. AudiaJ.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor.J. Neurosci.20113146165071651610.1523/JNEUROSCI.3647‑11.2011 22090477
    [Google Scholar]
  20. TimmersM. Van BroeckB. RamaelS. SlemmonJ. De WaepenaertK. RussuA. BogertJ. StieltjesH. ShawL.M. EngelborghsS. MoecharsD. MerckenM. LiuE. SinhaV. KempJ. Van NuetenL. TritsmansL. StrefferJ.R. Profiling the dynamics of CSF and plasma Aβ reduction after treatment with JNJ‐54861911, a potent oral BACE inhibitor.Alzheimers Dement.20162320221210.1016/j.trci.2016.08.001 29067308
    [Google Scholar]
  21. SakamotoK. MatsukiS. MatsugumaK. YoshiharaT. UchidaN. AzumaF. RussellM. HughesG. HaeberleinS.B. AlexanderR.C. EketjällS. KuglerA.R. BACE1 inhibitor Lanabecestat (AZD3293) in a phase 1 study of healthy Japanese subjects: Pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides.J. Clin. Pharmacol.201757111460147110.1002/jcph.950 28618005
    [Google Scholar]
  22. PratiF. BottegoniG. BolognesiM.L. CavalliA. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s disease.Miniperspective. J. Med. Chem.201861361963710.1021/acs.jmedchem.7b00393 28749667
    [Google Scholar]
  23. BolognesiM.L. CavalliA. MelchiorreC. Memoquin: A multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer’s disease.Neurotherapeutics20096115216210.1016/j.nurt.2008.10.042 19110206
    [Google Scholar]
  24. BajdaM. GuziorN. IgnasikM. MalawskaB. Multi-target-directed ligands in Alzheimer’s disease treatment.Curr. Med. Chem.201118324949497510.2174/092986711797535245 22050745
    [Google Scholar]
  25. PathakC. KabraU.D. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer’s disease.Bioorg. Chem.202414410715210.1016/j.bioorg.2024.107152 38290187
    [Google Scholar]
  26. BaoL.Q. BaeckerD. Mai DungD.T. Phuong NhungN. Thi ThuanN. NguyenP.L. Phuong DungP.T. HuongT.T.L. RasulevB. Casanola-MartinG.M. NamN.H. Pham-TheH. Development of activity rules and chemical fragment design for in silico discovery of AChE and BACE1 dual inhibitors against Alzheimer’s disease.Molecules2023288358810.3390/molecules28083588 37110831
    [Google Scholar]
  27. DrozdowskaD. MaliszewskiD. WróbelA. RatkiewiczA. SienkiewiczM. New benzamides as multi-targeted compounds: A study on synthesis, AChE and BACE1 inhibitory activity and molecular docking.Int. J. Mol. Sci.202324191490110.3390/ijms241914901 37834347
    [Google Scholar]
  28. KaurB. KaurR. Vivesh RaniS. BhattiR. SinghP. Small peptides targeting BACE-1, AChE, and A-β reversing scopolamine-induced memory impairment: A multitarget approach against Alzheimer’s disease.ACS Omega2024911128961291310.1021/acsomega.3c09069 38524457
    [Google Scholar]
  29. FerreiraJ.P.S. AlbuquerqueH.M.T. CardosoS.M. SilvaA.M.S. SilvaV.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR).Eur. J. Med. Chem.202122111349210.1016/j.ejmech.2021.113492 33984802
    [Google Scholar]
  30. LemboV. BottegoniG. Systematic investigation of dual-target-directed ligands.J. Med. Chem.20246712103741038510.1021/acs.jmedchem.4c00838 38843874
    [Google Scholar]
  31. EganM.F. KostJ. VossT. MukaiY. AisenP.S. CummingsJ.L. TariotP.N. VellasB. van DyckC.H. BoadaM. ZhangY. LiW. FurtekC. MahoneyE. Harper MozleyL. MoY. SurC. MichelsonD. Randomized trial of verubecestat for prodromal Alzheimer’s disease.N. Engl. J. Med.2019380151408142010.1056/NEJMoa1812840 30970186
    [Google Scholar]
  32. KoriyamaY. HoriA. ItoH. YonezawaS. BabaY. TanimotoN. UenoT. YamamotoS. YamamotoT. AsadaN. MorimotoK. EinaruS. SakaiK. KanazuT. MatsudaA. YamaguchiY. OgumaT. TimmersM. TritsmansL. KusakabeK. KatoA. SakaguchiG. Discovery of atabecestat (JNJ-54861911): A thiazine-based β-Amyloid precursor protein cleaving enzyme 1 inhibitor advanced to the phase 2b/3 early clinical trial.J. Med. Chem.20216441873188810.1021/acs.jmedchem.0c01917 33588527
    [Google Scholar]
  33. ZimmerJ.A. ShcherbininS. DevousM.D.Sr BraggS.M. SelzlerK.J. WesselsA.M. SheringC. MullenJ. LandryJ. AndersenS.W. DowningA.M. FleisherA.S. SvaldiD.O. SimsJ.R. Lanabecestat: Neuroimaging results in early symptomatic Alzheimer’s disease.Alzheimers Dement.202171e1212310.1002/trc2.12123 33614894
    [Google Scholar]
  34. LoA.C. EvansC.D. ManciniM. WangH. ShcherbininS. LuM. NatanegaraF. WillisB.A. Phase II (NAVIGATE-AD study) results of LY3202626 effects on patients with mild Alzheimer’s disease dementia.J. Alzheimers Dis. Rep.20215132133610.3233/ADR‑210296 34113788
    [Google Scholar]
  35. NeumannU. UferM. JacobsonL.H. Rouzade-DominguezM.L. HuledalG. KollyC. LüöndR.M. MachauerR. VeenstraS.J. HurthK. RueegerH. Tintelnot-BlomleyM. StaufenbielM. ShimshekD.R. PerrotL. FrieauffW. DubostV. SchillerH. VoggB. BeltzK. AvrameasA. KretzS. PezousN. RondeauJ.M. BeckmannN. HartmannA. VormfeldeS. DavidO.J. GalliB. RamosR. GrafA. Lopez LopezC. The BACE ‐1 inhibitor CNP 520 for prevention trials in Alzheimer’s disease.EMBO Mol. Med.20181011e931610.15252/emmm.201809316 30224383
    [Google Scholar]
  36. HitgeR. SmitS. PetzerA. PetzerJ.P. Evaluation of nitrocatechol chalcone and pyrazoline derivatives as inhibitors of catechol-O-methyltransferase and monoamine oxidase.Bioorg. Med. Chem. Lett.2020301212718810.1016/j.bmcl.2020.127188 32299731
    [Google Scholar]
  37. KongZ. SunD. JiangY. HuY. Design, synthesis, and evaluation of 1, 4-benzodioxan-substituted chalcones as selective and reversible inhibitors of human monoamine oxidase B.J. Enzyme Inhib. Med. Chem.20203511513152310.1080/14756366.2020.1797711 32705910
    [Google Scholar]
  38. ParambiD.G.T. AljoufiF. MurugaiyahV. MathewG.E. DevS. LakshminarayananB. HendawyO.M. MathewB. Cholinesterase inhibitory activities of selected halogenated thiophene chalcones.Cent. Nerv. Syst. Agents Med. Chem.2019191677110.2174/1871524918666181119114016 30451121
    [Google Scholar]
  39. HuJ. JiX. SuF. ZhaoQ. ZhangG. ZhaoM. LaiM. Synthesis, odor characteristics and biological evaluation of N -substituted pyrrolyl chalcones.Org. Biomol. Chem.202220448747875510.1039/D2OB01561G 36314252
    [Google Scholar]
  40. MathewB. OhJ.M. BatyR.S. BatihaG.E.S. ParambiD.G.T. GambacortaN. NicolottiO. KimH. Piperazine-substituted chalcones: A new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders.Environ. Sci. Pollut. Res. Int.20212829388553886610.1007/s11356‑021‑13320‑y 33743158
    [Google Scholar]
  41. MottinM. CaesarL.K. BrodskyD. MesquitaN.C.M.R. de OliveiraK.Z. NoskeG.D. SousaB.K.P. RamosP.R.P.S. JarmerH. LohB. ZornK.M. FoilD.H. TorresP.M. GuidoR.V.C. OlivaG. ScholleF. EkinsS. CechN.B. AndradeC.H. LasterS.M. Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins.Bioorg. Chem.202212010564910.1016/j.bioorg.2022.105649 35124513
    [Google Scholar]
  42. XiaoG. LiY. QiangX. XuR. ZhengY. CaoZ. LuoL. YangX. SangZ. SuF. DengY. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20172531030104110.1016/j.bmc.2016.12.013 28011206
    [Google Scholar]
  43. GeorgeG. KoyiparambathV.P. SukumaranS. NairA.S. PappachanL.K. Al-SehemiA.G. KimH. MathewB. Structural modifications on chalcone framework for developing new class of cholinesterase inhibitors.Int. J. Mol. Sci.2022236312110.3390/ijms23063121 35328542
    [Google Scholar]
  44. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  45. VishalV.P. OhJ.M. KhamesA. AbdelgawadM.A. NairA.S. NathL.R. GambacortaN. CiriacoF. NicolottiO. KimH. MathewB. Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for the treatment of neurodegenerative disorders.Pharmaceutics202113685010.3390/pharmaceutics13060850 34201128
    [Google Scholar]
  46. TranT-S. LeM-T. NguyenT-C-V. TranT-H. TranT-D. Synthesis, in silico and in vitro evaluation for Acetylcholinesterase and BACE-1 inhibitory activity of some N-Substituted-4-Phenothiazine-Chalcones.Molecules202025
    [Google Scholar]
  47. MphahleleM.J. AgboE.N. GildenhuysS. Synthesis and evaluation of the 4-substituted 2-hydroxy-5-iodochalcones and their 7-substituted 6-iodoflavonol derivatives for inhibitory effect on cholinesterases and β-secretase.Int. J. Mol. Sci.20181912411210.3390/ijms19124112 30567381
    [Google Scholar]
  48. NalçaoğluA. SarıC. Değirmencioğluİ. EyüpoğluF.C. Novel piperazine-substituted silicon phthalocyanines exert anti-cancer effects against breast cancer cells.Photodiagn. Photodyn. Ther.20223710273410.1016/j.pdpdt.2022.102734 35066132
    [Google Scholar]
  49. ZangY. GongY. ChenX. WenH. QiC. ChenC. LiuJ. LuoZ. WangJ. ZhuH. ZhangY. Piperazine-2,5-dione derivatives and an α-pyrone polyketide from Penicillium griseofulvum and their immunosuppression activity.Phytochemistry202118611270810.1016/j.phytochem.2021.112708 33857795
    [Google Scholar]
  50. BuranK. ReisR. SipahiH. Önen BayramF.E. Piperazine and piperidine‐substituted 7‐hydroxy coumarins for the development of anti‐inflammatory agents.Arch. Pharm.20213547200035410.1002/ardp.202000354 33749005
    [Google Scholar]
  51. YuanT. WangZ. LiuD. ZengH. LiangJ. HuD. GanX. Ferulic acid derivatives with piperazine moiety as potential antiviral agents.Pest Manag. Sci.20227841749175810.1002/ps.6794 35001496
    [Google Scholar]
  52. RehumanN.A. OhJ.M. NathL.R. KhamesA. AbdelgawadM.A. GambacortaN. NicolottiO. JatR.K. KimH. MathewB. Halogenated coumarin–chalcones as multifunctional monoamine oxidase-B and Butyrylcholinesterase inhibitors.ACS Omega2021642281822819310.1021/acsomega.1c04252 34723016
    [Google Scholar]
  53. NajafiZ. MahdaviM. SaeediM. Karimpour-RazkenariE. EdrakiN. SharifzadehM. KhanaviM. AkbarzadehT. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study.Bioorg. Chem.20198330331610.1016/j.bioorg.2018.10.056 30396115
    [Google Scholar]
  54. PratiF. De SimoneA. BisignanoP. ArmirottiA. SummaM. PizziraniD. ScarpelliR. PerezD.I. AndrisanoV. Perez-CastilloA. MontiB. MassenzioF. PolitoL. RacchiM. FaviaA.D. BottegoniG. MartinezA. BolognesiM.L. CavalliA. Multitarget drug discovery for Alzheimer’s disease: Triazinones as BACE-1 and GSK-3β inhibitors.Angew. Chem. Int. Ed.20155451578158210.1002/anie.201410456 25504761
    [Google Scholar]
  55. MaliszewskiD. WróbelA. KolesińskaB. FrączykJ. DrozdowskaD. 1,3,5-Triazine nitrogen mustards with different peptide group as innovative candidates for AChE and BACE1 inhibitors.Molecules20212613394210.3390/molecules26133942 34203347
    [Google Scholar]
  56. YazdaniM. EdrakiN. BadriR. KhoshneviszadehM. IrajiA. FiruziO. 5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents.Mol. Divers.202024364165410.1007/s11030‑019‑09970‑3 31327094
    [Google Scholar]
  57. FukuyamaK. KakioS. NakazawaY. KobataK. Funakoshi-TagoM. SuzukiT. TamuraH. Roasted coffee reduces β‐Amyloid production by increasing Proteasomal β‐secretase degradation in human neuroblastoma SH‐SY5Y cells.Mol. Nutr. Food Res.20186221180023810.1002/mnfr.201800238 30144352
    [Google Scholar]
  58. Abd El-AzizN.M. Eldin AwadO.M. ShehataM.G. El-SohaimyS.A. Antioxidant and anti-acetylcholinesterase potential of artichoke phenolic compounds.Food Biosci.20214110100610.1016/j.fbio.2021.101006
    [Google Scholar]
  59. Abdullah AsifH.M. KamalS. RehmanA. RasoolS. Hamid AkashM.S. Synthesis, characterization, and enzyme inhibition properties of 1,2,4-Triazole bearing azinane analogues.ACS Omega2022736323603236810.1021/acsomega.2c03779 36119993
    [Google Scholar]
  60. SharmaM. SharmaA. NuthakkiV.K. BhattS. NandiU. BharateS.B. Design, synthesis, and structure–activity relationship of caffeine‐based triazoles as dual AChE and BACE‐1 inhibitors.Drug Dev. Res.20228381803182110.1002/ddr.21998 36161804
    [Google Scholar]
  61. IrajiA. FiruziO. KhoshneviszadehM. TavakkoliM. MahdaviM. NadriH. EdrakiN. MiriR. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease.Eur. J. Med. Chem.201714169070210.1016/j.ejmech.2017.09.057 29107423
    [Google Scholar]
  62. RastegariA. NadriH. MahdaviM. MoradiA. MirfazliS.S. EdrakiN. MoghadamF.H. LarijaniB. AkbarzadehT. SaeediM. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives.Bioorg. Chem.20198339140110.1016/j.bioorg.2018.10.065 30412794
    [Google Scholar]
  63. PeaugerL. AzzouzR. GembusV. ŢînţaşM.L. Sopková-de Oliveira SantosJ. BohnP. PapamicaëlC. LevacherV. Donepezil-based central acetylcholinesterase inhibitors by means of a “bio-oxidizable” prodrug strategy: Design, synthesis, and in vitro biological evaluation.J. Med. Chem.201760135909592610.1021/acs.jmedchem.7b00702 28613859
    [Google Scholar]
  64. SharmaP. TripathiA. TripathiP.N. SinghS.S. SinghS.P. ShrivastavaS.K. Novel molecular hybrids of N-Benzylpiperidine and 1,3,4-Oxadiazole as multitargeted therapeutics to treat Alzheimer’s disease.ACS Chem. Neurosci.201910104361438410.1021/acschemneuro.9b00430 31491074
    [Google Scholar]
  65. SaeediM. Mohtadi-HaghighiD. MirfazliS.S. MahdaviM. HaririR. LotfianH. EdrakiN. IrajiA. FiruziO. AkbarzadehT. Design and synthesis of selective Acetylcholinesterase inhibitors: Arylisoxazole‐Phenylpiperazine derivatives.Chem. Biodivers.2019162e180043310.1002/cbdv.201800433 30460743
    [Google Scholar]
  66. SharmaP. TripathiA. TripathiP.N. PrajapatiS.K. SethA. TripathiM.K. SrivastavaP. TiwariV. KrishnamurthyS. ShrivastavaS.K. Design and development of multitarget-directed N-Benzylpiperidine analogs as potential candidates for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201916751052410.1016/j.ejmech.2019.02.030 30784883
    [Google Scholar]
  67. GargS. MalhotraR.K. KhanS.I. SarkarS. SusruthaP.N. SinghV. GoyalS. NagT.C. RayR. BhatiaJ. AryaD.S. Fisetin attenuates isoproterenol-induced cardiac ischemic injury in vivo by suppressing RAGE/NF-κB mediated oxidative stress, apoptosis and inflammation.Phytomedicine20195614715510.1016/j.phymed.2018.09.187 30668335
    [Google Scholar]
  68. ChoI. SongH.O. ChoJ.H. Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling.Food Sci. Nutr.20208126633664210.1002/fsn3.1956 33312547
    [Google Scholar]
  69. HanJ. JiY. YounK. LimG. LeeJ. KimD.H. JunM. Baicalein as a potential inhibitor against BACE1 and AChE: Mechanistic comprehension through in vitro and computational approaches.Nutrients20191111269410.3390/nu11112694 31703329
    [Google Scholar]
  70. ChenR. SunG. XuL. ZhangX. ZengW. SunX. Didymin attenuates doxorubicin-induced cardiotoxicity by inhibiting oxidative stress.Chin. Herb. Med.20211417078 36120130
    [Google Scholar]
  71. UllahH. KhanA. BaigM.W. UllahN. AhmedN. TipuM.K. AliH. KhanS. Poncirin attenuates CCL4-induced liver injury through inhibition of oxidative stress and inflammatory cytokines in mice.BMC Complementary Medicine and Therapies202020111510.1186/s12906‑020‑02906‑7 32307011
    [Google Scholar]
  72. KimD.S. LimS.B. Semi-continuous subcritical water extraction of flavonoids from Citrus unshiu peel: Their antioxidant and enzyme inhibitory activities.Antioxidants20209536010.3390/antiox9050360 32344942
    [Google Scholar]
  73. AliM.Y. ZaibS. RahmanM.M. JannatS. IqbalJ. ParkS.K. ChangM.S. Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells.Chem. Biol. Interact.201930518019410.1016/j.cbi.2019.03.018 30928401
    [Google Scholar]
  74. Yousof AliM. ZaibS. Mizanur RahmanM. JannatS. IqbalJ. Kyu ParkS. Seog ChangM. Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating PI3K/Akt signaling pathway in insulin resistant C2C12 cells with anti-glycation capacities.Bioorg. Chem.202010210406110.1016/j.bioorg.2020.104061 32653611
    [Google Scholar]
  75. JungH.A. AliM.Y. BhaktaH.K. MinB.S. ChoiJ.S. Prunin is a highly potent flavonoid from Prunus davidiana stems that inhibits protein tyrosine phosphatase 1B and stimulates glucose uptake in insulin-resistant HepG2 cells.Arch. Pharm. Res.2017401374810.1007/s12272‑016‑0852‑3 27798765
    [Google Scholar]
  76. PangL. XiongY. FengZ. LiC. FangB. HuangQ. LinX. Integrative analysis of transcriptome and metabolome to illuminate the protective effects of didymin against acute hepatic injury.Mediators Inflamm.2023202312210.1155/2023/6051946 36687218
    [Google Scholar]
  77. UllahH. KhanA. BibiT. AhmadS. ShehzadO. AliH. SeoE.K. KhanS. Comprehensive in vivo and in silico approaches to explore the hepatoprotective activity of poncirin against paracetamol toxicity.Naunyn Schmiedebergs Arch. Pharmacol.2022395219521510.1007/s00210‑021‑02192‑1 34994820
    [Google Scholar]
  78. AliM.Y. JannatS. EdrakiN. DasS. ChangW.K. KimH.C. ParkS.K. ChangM.S. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway.Chem. Biol. Interact.201930910870710.1016/j.cbi.2019.06.020 31194956
    [Google Scholar]
  79. TranT.S. LeM.T. TranT.D. TranT.H. ThaiK.M. Design of curcumin and flavonoid derivatives with acetylcholinesterase and beta-secretase inhibitory activities using in silico approaches.Molecules20202516364410.3390/molecules25163644 32785161
    [Google Scholar]
  80. LopezS.M.M. AguilarJ.S. FernandezJ.B.B. LaoA.G.J. EstrellaM.R.R. DevanaderaM.K.P. RamonesC.M.V. VillarazaA.J.L. GuevarraL.A.Jr Santiago-BautistaM.R. SantiagoL.A. Neuroactive venom compounds obtained from Phlogiellus bundokalbo as potential leads for neurodegenerative diseases: Insights on their acetylcholinesterase and beta-secretase inhibitory activities in vitro.J. Venom. Anim. Toxins Incl. Trop. Dis.202127e2021000910.1590/1678‑9199‑jvatitd‑2021‑0009 34249120
    [Google Scholar]
  81. Ortega-ForteE. RoviraA. GandiosoA. BonelliJ. BoschM. RuizJ. MarchánV. COUPY coumarins as novel mitochondria-targeted photodynamic therapy anticancer agents.J. Med. Chem.20216423172091722010.1021/acs.jmedchem.1c01254 34797672
    [Google Scholar]
  82. OsmanH. YusufzaiS.K. KhanM.S. Abd RazikB.M. SulaimanO. MohamadS. GansauJ.A. EzzatM.O. ParumasivamT. HassanM.Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation.J. Mol. Struct.2018116614715410.1016/j.molstruc.2018.04.031
    [Google Scholar]
  83. IshitaI.J. Nurul IslamM. KimY.S. ChoiR.J. SohnH.S. JungH.A. ChoiJ.S. Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells.Arch. Pharm. Res.201639111512610.1007/s12272‑015‑0668‑6 26474585
    [Google Scholar]
  84. MaQ.G. WeiR.R. SangZ.P. DongJ.H. Structurally diverse coumarin-homoisoflavonoid derivatives with hepatoprotective activities from the fruits of Cucumis bisexualis.Fitoterapia202114910481210.1016/j.fitote.2020.104812 33359423
    [Google Scholar]
  85. AliM.Y. SeongS.H. JungH.A. JannatS. ChoiJ.S. Kinetics and molecular docking of dihydroxanthyletin-type coumarins from Angelica decursiva that inhibit cholinesterase and BACE1.Arch. Pharm. Res.201841775376410.1007/s12272‑018‑1056‑9 30047040
    [Google Scholar]
  86. QiC. ZhouQ. GaoW. LiuM. ChenC. LiX.N. LaiY. ZhouY. LiD. HuZ. ZhuH. ZhangY. Anti-BACE1 and anti-AchE activities of undescribed spiro-dioxolane-containing meroterpenoids from the endophytic fungus Aspergillus terreus Thom.Phytochemistry201916511204110.1016/j.phytochem.2019.05.014 31203103
    [Google Scholar]
  87. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  88. KumarS. BhowmikR. OhJ.M. AbdelgawadM.A. GhoneimM.M. Al-SerwiR.H. KimH. MathewB. Machine learning driven web-based app platform for the discovery of monoamine oxidase B inhibitors.Sci. Rep.2024141486810.1038/s41598‑024‑55628‑y 38418571
    [Google Scholar]
  89. KhanA. Chandra KaushikA. AliS.S. AhmadN. WeiD.Q. Deep-learning-based target screening and similarity search for the predicted inhibitors of the pathways in Parkinson’s disease.RSC Advances2019918103261033910.1039/C9RA01007F 35520925
    [Google Scholar]
  90. CattoM. TrisciuzziD. AlbergaD. MangiatordiG.F. NicolottiO. Multitarget drug design for neurodegenerative diseases.Multi-Target Drug Design Using Chem-Bioinformatic Approaches.New YorkHumana Press201993105
    [Google Scholar]
  91. Vittoria TogoM. MastroloritoF. OrfinoA. GrapsE.A. TondoA.R. AltomareC.D. Where developmental toxicity meets explainable artificial intelligence: State-of-the-art and perspectives.Expert Opin. Drug Metab. Toxicol.2023117 38141160
    [Google Scholar]
  92. DomenicoA. NicolaG. DanielaT. FulvioC. NicolaA. OrazioN. De novo drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization.J. Chem. Inf. Model.202060104582459310.1021/acs.jcim.0c00517 32845150
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673350086250310080327
Loading
/content/journals/cmc/10.2174/0109298673350086250310080327
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test