Skip to content
2000
Volume 33, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Super-enhancer-associated long noncoding RNAs (SE-lncRNAs) play crucial roles in CRC pathogenesis.

Objective

RP11-803D5.4 and AC005592.2 were identified as SE-lncRNAs of interest microarray analysis, and our study aimed to evaluate their clinical value in CRC diagnosis and prognosis assessment.

Methods

Fluorescence quantitative real-time PCR (qRT-PCR) was used to measure the expression of RP11-803D5.4 and AC005592.2 in the tissues and serum of CRC patients. Receiver operating characteristic (ROC) curves were generated to determine the predictive value of the two SE-lncRNAs. Functional assays were applied to assess the ability of RP11-803D5.4 to promote the proliferation, migration, and invasion of CRC cells.

Results

The two SE-lncRNAs were significantly upregulated in CRC tissue and serum samples corresponding controls. ROC curve analysis indicated that RP11-803D5.4 (AUC=0.842) and AC005592.2 (AUC=0.811) had a high diagnostic performance for CRC. The combination of RP11-803D5.4, AC005592.2, and CEA had an AUC of 0.946 and distinguished CRC patients and healthy controls better than SE-lncRNA alone. The serum levels of RP11-803D5.4 and AC005592.2 were strongly correlated with their tissue expression levels. The expression levels of the two SE-lncRNAs were significantly lower in postoperative samples than in preoperative samples. Furthermore, similar to the findings of previous studies on AC005592.2, high RP11-803D5.4 expression promoted the proliferation, invasion, and migration of CRC cells.

Conclusion

The findings suggested that RP11-803D5.4 and AC005592.2 are upregulated in CRC and are crucial promoters of CRC progression. They also suggested that they might serve as noninvasive biomarkers for diagnosing CRC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346788250108080648
2025-01-27
2026-02-21
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. StormeG. Are We Losing the Final Fight against Cancer?Cancers (Basel)202416242110.3390/cancers1602042138275862
    [Google Scholar]
  3. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis.Cancers (Basel)20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  4. LiW. LiangH. WangW. LiuJ. LiuX. LaoS. LiangW. HeJ. Global cancer statistics for adolescents and young adults: population based study.J. Hematol. Oncol.20241719910.1186/s13045‑024‑01623‑939434099
    [Google Scholar]
  5. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: a systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  6. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: the MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  7. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x36695827
    [Google Scholar]
  8. RizzoA. NanniniM. NovelliM. Dalia RicciA. ScioscioV.D. PantaleoM.A. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis.Ther. Adv. Med. Oncol.202012175883592093693210.1177/175883592093693232684988
    [Google Scholar]
  9. JayasingheM. PrathirajaO. CalderaD. JenaR. Coffie-PierreJ.A. SilvaM.S. SiddiquiO.S. Colon Cancer Screening Methods: 2023 Update.Cureus2023154e3750937193451
    [Google Scholar]
  10. ReulandD.S. O’LearyM.C. CrockettS.D. FarrD.E. FerrariR.M. MaloT.L. MooreA.A. RandolphC.M. RatnerS. StradtmanL.R. StylianouC. SuK. TanX. TangV. WheelerS.B. BrennerA.T. Centralized Colorectal Cancer Screening Outreach in Federally Qualified Health Centers.JAMA Netw. Open2024711e244669310.1001/jamanetworkopen.2024.4669339585696
    [Google Scholar]
  11. JainS. MaqueJ. GaloosianA. Osuna-GarciaA. MayF.P. Optimal Strategies for Colorectal Cancer Screening.Curr. Treat. Options Oncol.202223447449310.1007/s11864‑022‑00962‑435316477
    [Google Scholar]
  12. MannucciA. GoelA. Stool and blood biomarkers for colorectal cancer management: an update on screening and disease monitoring.Mol. Cancer202423125910.1186/s12943‑024‑02174‑w39558327
    [Google Scholar]
  13. KnudsenM.D. WangK. WangL. PolychronidisG. BerstadP. HjartåkerA. FangZ. OginoS. ChanA.T. SongM. Colorectal Cancer Incidence and Mortality After Negative Colonoscopy Screening Results.JAMA Oncol.2024e24522710.1001/jamaoncol.2024.522739602147
    [Google Scholar]
  14. SongJ.H. KimE.R. Strategies to improve screening colonoscopy quality for the prevention of colorectal cancer.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)202439454755410.3904/kjim.2023.33438247125
    [Google Scholar]
  15. LiaoZ. GuoJ.T. YangF. WangS.P. SunS.Y. Screening of colorectal cancer: Methods and strategies.World J. Clin. Oncol.202415779980510.5306/wjco.v15.i7.79939071460
    [Google Scholar]
  16. LinJ.S. PiperM.A. PerdueL.A. RutterC.M. WebberE.M. O’ConnorE. SmithN. WhitlockE.P. Screening for Colorectal Cancer.JAMA2016315232576259410.1001/jama.2016.333227305422
    [Google Scholar]
  17. MasoodU. BernshteynM. PavelockN. SinghK. SchadL.A. MorleyC.P. GuptaA. JastiV. MurthyU. Appropriateness of fecal immunochemical testing utilization for colorectal cancer screening at an academic center.Proc. Bayl. Univ. Med. Cent.2023361202310.1080/08998280.2022.212366736578591
    [Google Scholar]
  18. KubischC. H. CrispinA. MansmannU. GökeB. KolligsF. T. Screening for Colorectal Cancer Is Associated With Lower Disease Stage: A Population-Based Study.Clin Gastroenterol Hepatol.201614111612161810.1016/j.cgh.2016.04.008
    [Google Scholar]
  19. SeumT. NiedermaierT. HeisserT. HoffmeisterM. BrennerH. Next-Generation Multitarget Stool DNA vs Fecal Immunochemical Test in Colorectal Cancer Screening.JAMA Intern. Med.2024e24614910.1001/jamainternmed.2024.614939556364
    [Google Scholar]
  20. FrazzoniL. PecereS. HassanC. FuccioL. Del VecchioL.E. FabbriC. ArrigoniA. CassoniP. MazzuccoD. OrioneL. GibiinoG. RepiciA. SpadaC. IacopiniF. SenoreC. AntonelliG. A predictive model based on quantitative fecal immunochemical test can stratify the risk of CRC in an organized screening program.Clin. Gastroenterol. Hepatol.2024S1542-35652401041339566566
    [Google Scholar]
  21. ZygulskaA.L. PierzchalskiP. Novel Diagnostic Biomarkers in Colorectal Cancer.Int. J. Mol. Sci.202223285210.3390/ijms2302085235055034
    [Google Scholar]
  22. LoktionovA. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins?World J. Gastrointest. Oncol.202012212414810.4251/wjgo.v12.i2.12432104546
    [Google Scholar]
  23. How KitA. NielsenH.M. TostJ. DNA methylation based biomarkers: Practical considerations and applications.Biochimie201294112314233710.1016/j.biochi.2012.07.01422847185
    [Google Scholar]
  24. DiehlD. HesselE. OesterleD. Renner-MüllerI. ElmlingerM. LanghammerM. GöttlicherM. WolfE. LahmH. HoeflichA. IGFBP-2 overexpression reduces the appearance of dysplastic aberrant crypt foci and inhibits growth of adenomas in chemically induced colorectal carcinogenesis.Int. J. Cancer200912492220222510.1002/ijc.2419319142966
    [Google Scholar]
  25. XuM. QiP. DuX. Long non-coding RNAs in colorectal cancer: implications for pathogenesis and clinical application.Mod. Pathol.201427101310132010.1038/modpathol.2014.3324603586
    [Google Scholar]
  26. LinX. ZhuangS. ChenX. DuJ. ZhongL. DingJ. WangL. YiJ. HuG. TangG. LuoX. LiuW. YeF. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling.Mol. Ther.202230268870210.1016/j.ymthe.2021.08.01134371180
    [Google Scholar]
  27. NiW. YaoS. ZhouY. LiuY. HuangP. ZhouA. LiuJ. CheL. LiJ. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3.Mol. Cancer201918114310.1186/s12943‑019‑1079‑y31619268
    [Google Scholar]
  28. DongL. LinW. QiP. XuM. WuX. NiS. HuangD. WengW. TanC. ShengW. ZhouX. DuX. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer.Cancer Epidemiol. Biomarkers Prev.20162571158116610.1158/1055‑9965.EPI‑16‑000627197301
    [Google Scholar]
  29. SausE. Brunet-VegaA. Iraola-GuzmánS. PeguerolesC. GabaldónT. PericayC. Long Non-Coding RNAs As Potential Novel Prognostic Biomarkers in Colorectal Cancer.Front. Genet.201675410.3389/fgene.2016.0005427148353
    [Google Scholar]
  30. ZhaoW. SongM. ZhangJ. KuerbanM. WangH. Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma.Int. J. Clin. Exp. Pathol.2015811141311414026823726
    [Google Scholar]
  31. LiuH. YeD. ChenA. TanD. ZhangW. JiangW. WangM. ZhangX. A pilot study of new promising non-coding RNA diagnostic biomarkers for early-stage colorectal cancers.Clinical Chemistry and Laboratory Medicine (CCLM)20195771073108310.1515/cclm‑2019‑005230978169
    [Google Scholar]
  32. AbediniP. FattahiA. AgahS. TalebiA. BeygiA.H. AminiS.M. MirzaeiA. AkbariA. Expression analysis of circulating plasma long noncoding RNAs in colorectal cancer: The relevance of lncRNAs ATB and CCAT1 as potential clinical hallmarks.J. Cell. Physiol.201923412220282203310.1002/jcp.2876531093977
    [Google Scholar]
  33. WangM. LiuH. WuW. ZhaoJ. SongG. ChenX. WangR. ShaoC. LiJ. WangH. WangQ. FengX. Identification of Differentially Expressed Plasma lncRNAs As Potential Biomarkers for Breast Cancer.Clin. Breast Cancer2022222e135e14110.1016/j.clbc.2021.05.00334119428
    [Google Scholar]
  34. OunzainS. MichelettiR. ArnanC. PlaisanceI. CecchiD. SchroenB. ReverterF. AlexanianM. GonzalesC. NgS.Y. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis.J. Mol. Cell. Cardiol.201589Pt A98112
    [Google Scholar]
  35. PengL. JiangB. YuanX. QiuY. PengJ. HuangY. ZhangC. ZhangY. LinZ. LiJ. YaoW. DengW. ZhangY. MengM. PanX. LiC. YinD. BiX. LiG. LinD.C. Super-Enhancer–Associated Long Noncoding RNA HCCL5 Is Activated by ZEB1 and Promotes the Malignancy of Hepatocellular Carcinoma.Cancer Res.201979357258410.1158/0008‑5472.CAN‑18‑036730482773
    [Google Scholar]
  36. HuX. WuJ. FengY. MaH. ZhangE. ZhangC. SunQ. WangT. GeY. ZongD. ChenW. HeX. METTL3-stabilized super enhancers-lncRNA SUCLG2-AS1 mediates the formation of a long-range chromatin loop between enhancers and promoters of SOX2 in metastasis and radiosensitivity of nasopharyngeal carcinoma.Clin. Transl. Med.2023139e136110.1002/ctm2.136137658588
    [Google Scholar]
  37. SuT. ZhangN. WangT. ZengJ. LiW. HanL. YangM. Super enhancer-regulated lncRNA LINC01089 induces alternative splicing of DIAPH3 to drive hepatocellular carcinoma metastasis.Cancer Res.202383244080409410.1158/0008‑5472.CAN‑23‑054437756562
    [Google Scholar]
  38. FengY. ZhangT. ZhangZ. LiangY. WangH. ChenY. YuX. SongX. MaoQ. XiaW. ChenB. XuL. DongG. JiangF. The super-enhancer-driven lncRNA LINC00880 acts as a scaffold between CDK1 and PRDX1 to sustain the malignance of lung adenocarcinoma.Cell Death Dis.202314855110.1038/s41419‑023‑06047‑w37620336
    [Google Scholar]
  39. YanL. ChenH. TangL. JiangP. YanF. Super-enhancer-associated long noncoding RNA AC005592.2 promotes tumor progression by regulating OLFM4 in colorectal cancer.BMC Cancer202121118710.1186/s12885‑021‑07900‑x33622275
    [Google Scholar]
  40. LinM.F. JungreisI. KellisM. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions.Bioinformatics20112713i275i28210.1093/bioinformatics/btr20921685081
    [Google Scholar]
  41. WangL. ParkH.J. DasariS. WangS. KocherJ.P. LiW. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model.Nucleic Acids Res.2013416e7410.1093/nar/gkt00623335781
    [Google Scholar]
  42. VizcaínoJ.A. CsordasA. del-ToroN. DianesJ.A. GrissJ. LavidasI. MayerG. Perez-RiverolY. ReisingerF. TernentT. XuQ.W. WangR. HermjakobH. 2016 update of the PRIDE database and its related tools.Nucleic Acids Res.201644221103310.1093/nar/gkw88027683222
    [Google Scholar]
  43. LeeS. LiuB. LeeS. HuangS.X. ShenB. QianS.B. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution.Proc. Natl. Acad. Sci. USA201210937E2424E243210.1073/pnas.120784610922927429
    [Google Scholar]
  44. BazziniA.A. JohnstoneT.G. ChristianoR. MackowiakS.D. ObermayerB. FlemingE.S. VejnarC.E. LeeM.T. RajewskyN. WaltherT.C. GiraldezA.J. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation.EMBO J.201433998199310.1002/embj.20148841124705786
    [Google Scholar]
  45. SegalD. CoulombeS. SimJ. DostieJ. A conserved HOTAIRM1-HOXA1 regulatory axis contributes early to neuronal differentiation.RNA Biol.20232011523153910.1080/15476286.2023.225802837743644
    [Google Scholar]
  46. BaidyaA.K. TiwaryB.K. A combination of conserved and stage-specific lncRNA biomarkers to detect lung adenocarcinoma progression.J. Biomol. Struct. Dyn.202411310.1080/07391102.2024.243119039601689
    [Google Scholar]
  47. HashemiM. KhoushabS. AghmiuniM.H. AnarakiS.N. AlimohammadiM. TaheriazamA. FarahaniN. EntezariM. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier.Heliyon20241021e4009610.1016/j.heliyon.2024.e4009639583806
    [Google Scholar]
  48. SethiS.C. SinghR. SahayO. BarikG.K. KalitaB. Unveiling the hidden gem: A review of long non-coding RNA NBAT-1 as an emerging tumor suppressor and prognostic biomarker in cancer.Cell. Signal.202512611152510.1016/j.cellsig.2024.11152539592019
    [Google Scholar]
  49. TononF. GrassiC. TiernoD. BiasinA. GrassiM. GrassiG. DapasB. Non-Coding RNAs as Potential Diagnostic/Prognostic Markers for Hepatocellular Carcinoma.Int. J. Mol. Sci.202425221223510.3390/ijms25221223539596302
    [Google Scholar]
  50. Luo, Y.; Morgan, S.L.; Wang, K.C. PICSAR: LongNoncoding RNA in Cutaneous Squamous Cell Carcinoma.J. Invest. Dermatol.201613681541154210.1016/j.jid.2016.04.01327450499
    [Google Scholar]
  51. GaoY. WangX. LuoH. ChenC. LiJ. SunR. LiD. SunZ. Exosomal long non-coding ribonucleic acid ribonuclease component of mitochondrial ribonucleic acid processing endoribonuclease is defined as a potential non-invasive diagnostic biomarker for bladder cancer and facilitates tumorigenesis via the miR-206/G6PD axis.Cancers (Basel)20231521530510.3390/cancers1521530537958478
    [Google Scholar]
  52. XuW. ZhouG. WangH. LiuY. ChenB. ChenW. LinC. WuS. GongA. XuM. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer.Int. J. Cancer2020146102901291210.1002/ijc.3274731633800
    [Google Scholar]
  53. SongP. HanR. YangF. Super enhancer lncRNAs: a novel hallmark in cancer.Cell Commun. Signal.202422120710.1186/s12964‑024‑01599‑638566153
    [Google Scholar]
  54. TangF. YangZ. TanY. LiY. Super-enhancer function and its application in cancer targeted therapy.NPJ Precis. Oncol.202041210.1038/s41698‑020‑0108‑z32128448
    [Google Scholar]
  55. YuanJ. JiangY.Y. MayakondaA. HuangM. DingL.W. LinH. YuF. LuY. LohT.K.S. ChowM. SavageS. TynerJ.W. LinD.C. KoefflerH.P. Super-Enhancers Promote Transcriptional Dysregulation in Nasopharyngeal Carcinoma.Cancer Res.201777236614662610.1158/0008‑5472.CAN‑17‑114328951465
    [Google Scholar]
  56. ZhangT. XiaW. SongX. MaoQ. HuangX. ChenB. LiangY. WangH. ChenY. YuX. ZhangZ. YangW. XuL. DongG. JiangF. Super-enhancer hijacking LINC01977 promotes malignancy of early-stage lung adenocarcinoma addicted to the canonical TGF-β/SMAD3 pathway.J. Hematol. Oncol.202215111410.1186/s13045‑022‑01331‑235982471
    [Google Scholar]
  57. LiangW. ShiC. HongW. LiP. ZhouX. FuW. LinL. ZhangJ. Super-enhancer-driven lncRNA-DAW promotes liver cancer cell proliferation through activation of Wnt/β-catenin pathway.Mol. Ther. Nucleic Acids2021261351136310.1016/j.omtn.2021.10.02834853732
    [Google Scholar]
  58. LiJ. WangJ. WangY. ZhaoX. SuT. E2F1 combined with LINC01004 super-enhancer to promote hepatocellular carcinoma cell proliferation and metastasis.Clin. Epigenetics20231511710.1186/s13148‑023‑01428‑636721155
    [Google Scholar]
  59. YuanX.Q. ZhouN. WangJ.P. YangX.Z. WangS. ZhangC.Y. LiG.C. PengL. Anchoring super-enhancer-driven oncogenic lncRNAs for anti-tumor therapy in hepatocellular carcinoma.Mol. Ther.20233161756177410.1016/j.ymthe.2022.11.01336461633
    [Google Scholar]
  60. NagasawaM. TomimatsuK. TeradaK. KondoK. MiyazakiK. MiyazakiM. MotookaD. OkuzakiD. YoshidaT. KageyamaS. KawamotoH. KawauchiA. AgataY. Long non-coding RNA MANCR is a target of BET bromodomain protein BRD4 and plays a critical role in cellular migration and invasion abilities of prostate cancer.Biochem. Biophys. Res. Commun.2020526112813410.1016/j.bbrc.2020.03.04332199616
    [Google Scholar]
  61. WenS. HeY. WangL. ZhangJ. QuanC. NiuY. HuangH. Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer.Oncogene202039426556657110.1038/s41388‑020‑01456‑z32917955
    [Google Scholar]
  62. YangZ. ZhengY. WuH. XieH. ZhaoJ. ChenZ. LiL. YueX. ZhaoB. BianE. Integrative analysis of a novel super-enhancer-associated lncRNA prognostic signature and identifying LINC00945 in aggravating glioma progression.Hum. Genomics20231713310.1186/s40246‑023‑00480‑w37004060
    [Google Scholar]
  63. BianE. ChenX. ChengL. ChengM. ChenZ. YueX. ZhangZ. ChenJ. SunL. HuangK. HuangC. FangZ. ZhaoB. LiJ. Super-enhancer-associated TMEM44-AS1 aggravated glioma progression by forming a positive feedback loop with Myc.J. Exp. Clin. Cancer Res.202140133710.1186/s13046‑021‑02129‑934696771
    [Google Scholar]
  64. ChenZ. TianD. ChenX. ChengM. XieH. ZhaoJ. LiuJ. FangZ. ZhaoB. BianE. Super-enhancer-driven lncRNA LIMD1-AS1 activated by CDK7 promotes glioma progression.Cell Death Dis.202314638310.1038/s41419‑023‑05892‑z37385987
    [Google Scholar]
  65. WangX. ZhangR. WuS. ShenL. KeM. OuyangY. LinM. LyuY. SunB. ZhengZ. YangJ. YangJ. LuW. YangY. LiD. ZouY. HuangH. NanA. Super-Enhancer LncRNA LINC00162 Promotes Progression of Bladder Cancer.iScience2020231210185710.1016/j.isci.2020.10185733344916
    [Google Scholar]
  66. RopriA.S. DeVauxR.S. EngJ. ChitturS.V. HerschkowitzJ.I. Cis-acting super-enhancer lncRNAs as biomarkers to early-stage breast cancer.Breast Cancer Res.202123110110.1186/s13058‑021‑01479‑834717732
    [Google Scholar]
  67. MianoV. FerreroG. RostiV. ManittaE. ElhasnaouiJ. BasileG. De BortoliM. Luminal lncRNAs Regulation by ERα-Controlled Enhancers in a Ligand-Independent Manner in Breast Cancer Cells.Int. J. Mol. Sci.201819259310.3390/ijms1902059329462945
    [Google Scholar]
  68. ZhangX. ZhangQ. LiuG. Genome-wide analysis of the FOXA1 transcriptional regulatory network identifies super enhancer associated LncRNAs in tamoxifen resistance.Front. Genet.20221399244410.3389/fgene.2022.99244436204307
    [Google Scholar]
  69. XiangJ.F. YinQ.F. ChenT. ZhangY. ZhangX.O. WuZ. ZhangS. WangH.B. GeJ. LuX. YangL. ChenL.L. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus.Cell Res.201424551353110.1038/cr.2014.3524662484
    [Google Scholar]
  70. ChenH. ZhengJ. YanL. ZhouX. JiangP. YanF. Super-enhancer–associated long noncoding RNA RP11-569A11.1 inhibited cell progression and metastasis by regulating IFIT2 in colorectal cancer.J. Clin. Lab. Anal.2021356e2378010.1002/jcla.2378033942366
    [Google Scholar]
  71. StricklerJ.H. YoshinoT. GrahamR.P. SienaS. Bekaii-SaabT. Diagnosis and Treatment of ERBB2-Positive Metastatic Colorectal Cancer.JAMA Oncol.20228576076910.1001/jamaoncol.2021.819635238866
    [Google Scholar]
  72. BillerL.H. SchragD. Diagnosis and Treatment of Metastatic Colorectal Cancer.JAMA2021325766968510.1001/jama.2021.010633591350
    [Google Scholar]
  73. SchreudersE.H. RucoA. RabeneckL. SchoenR.E. SungJ.J.Y. YoungG.P. KuipersE.J. Colorectal cancer screening: a global overview of existing programmes.Gut201564101637164910.1136/gutjnl‑2014‑30908626041752
    [Google Scholar]
  74. RobbinsA.S. SiegelR.L. JemalA. Racial disparities in stage-specific colorectal cancer mortality rates from 1985 to 2008.J. Clin. Oncol.201230440140510.1200/JCO.2011.37.552722184373
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346788250108080648
Loading
/content/journals/cmc/10.2174/0109298673346788250108080648
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test