Skip to content
2000
Volume 33, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

This study aimed to establish a PANoptosis related prognostic signature and identify potential prognostic markers and therapeutic targets for HCC.

Background

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. The survival rate of patients with HCC remains relatively low. PANoptosis can be mediated by lncRNA to involve the pathophysiology of HCC, but the mechanism is still unclear.

Objective

TCGA and GEO hepatocellular carcinoma databases and previous research results were used to construct the PANoptosis related risk model.

Methods

Based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, this study identified long non-coding RNAs (lncRNAs) associated with PANoptosis in HCC. Univariate, LASSO-Cox, and multivariate COX analyses were employed to gradually screen prognostic lncRNAs and construct prognostic models. Further analysis was conducted on the core lncRNA-AC034229.4.

Results

A total of 8 differentially expressed lncRNAs closely correlated with HCC prognosis were discovered. A prognostic model comprising 6 lncRNAs (AC090192.2, LINC01703, AC034229.4, AC073352.1, AC004816.1, and AL136162.1) was established demonstrating good predictive ability for prognosis. Moreover, this prognostic model exhibited close associations with tumor immune microenvironment and immune checkpoints. Subsequent investigations revealed that AC034229.4 independently influenced HCC prognosis by regulating cell cycle progression and inhibiting the immune microenvironment response. Drug sensitivity analysis indicated that AC034229.4 displayed sensitivity to various anticancer drugs as well. In addition, inhibition of AC034229.4 expression suppressed HCC migration and invasion abilities.

Conclusion

This study generated a novel and efficient prognostic signature model while identifying AC034229.4 as a promising diagnostic and prognostic biomarker in HCC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358065250421072252
2025-05-22
2026-02-22
Loading full text...

Full text loading...

References

  1. VermaS. SahuB.D. MugaleM.N. Role of lncRNAs in hepatocellular carcinoma.Life Sci.202332512175110.1016/j.lfs.2023.12175137169145
    [Google Scholar]
  2. LinX.H. ZhangD.Y. LiuZ.Y. TangW. ChenR.X. LiD. WengS. DongL. lncRNA-AC079061.1/VIPR1 axis may suppress the development of hepatocellular carcinoma: A bioinformatics analysis and experimental validation.J. Transl. Med.202220137910.1186/s12967‑022‑03573‑736038907
    [Google Scholar]
  3. VogelA. MeyerT. SapisochinG. SalemR. SaborowskiA. Hepatocellular carcinoma.Lancet2022400103601345136210.1016/S0140‑6736(22)01200‑436084663
    [Google Scholar]
  4. HuangA. YangX.R. ChungW.Y. DennisonA.R. ZhouJ. Targeted therapy for hepatocellular carcinoma.Signal Transduct. Target. Ther.20205114610.1038/s41392‑020‑00264‑x32782275
    [Google Scholar]
  5. RizzoA. RicciA.D. BrandiG. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update.J. Pers. Med.20221211178810.3390/jpm1211178836579504
    [Google Scholar]
  6. RizzoA. RicciA.D. Challenges and future trends of hepatocellular carcinoma immunotherapy.Int. J. Mol. Sci.202223191136310.3390/ijms23191136336232663
    [Google Scholar]
  7. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. LucaD.R. RizzoA. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  8. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  9. JiangM. QiL. LiL. WuY. SongD. LiY. Caspase-8: A key protein of cross-talk signal way in “PANoptosis” in cancer.Int. J. Cancer202114971408142010.1002/ijc.3369834028029
    [Google Scholar]
  10. GaoJ. XiongA. LiuJ. LiX. WangJ. ZhangL. LiuY. XiongY. LiG. HeX. PANoptosis: Bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment.Cancer Gene Ther.202431797098310.1038/s41417‑024‑00765‑938553639
    [Google Scholar]
  11. LinC. LinP. YaoH. LiuS. LinX. HeR. TengZ. ZuoX. LiY. YeJ. ZhuG. Modulation of YBX1-mediated PANoptosis inhibition by PPM1B and USP10 confers chemoresistance to oxaliplatin in gastric cancer.Cancer Lett.202458721671210.1016/j.canlet.2024.21671238364962
    [Google Scholar]
  12. ZhangC. XiaJ. LiuX. LiZ. GaoT. ZhouT. HuK. Identifying prognostic genes related PANoptosis in lung adenocarcinoma and developing prediction model based on bioinformatics analysis.Sci. Rep.20231311795610.1038/s41598‑023‑45005‑637864090
    [Google Scholar]
  13. WangY. ZhouJ. ZhangN. ZhuY. ZhongY. WangZ. JinH. WangX. A novel defined panoptosis-related mirna signature for predicting the prognosis and immune characteristics in clear cell renal cell carcinoma: A mirna signature for the prognosis of ccRCC.Int. J. Mol. Sci.20232411939210.3390/ijms2411939237298343
    [Google Scholar]
  14. QiQ. ZhuM. LiP. MiQ. XieY. LiJ. WangC. Systematic analysis of PANoptosis-related genes identifies XIAP as a functional oncogene in breast cancer.Gene202491214835510.1016/j.gene.2024.14835538467314
    [Google Scholar]
  15. ZhangR. XiaL.Q. LuW.W. ZhangJ. ZhuJ.S. LncRNAs and cancer.Oncol. Lett.20161221233123910.3892/ol.2016.477027446422
    [Google Scholar]
  16. XuY. WangJ. QiuM. XuL. LiM. JiangF. YinR. XuL. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma.Tumour Biol.20153631643165110.1007/s13277‑014‑2763‑625366138
    [Google Scholar]
  17. ZhaoR. ZhangY. ZhangX. YangY. ZhengX. LiX. LiuY. ZhangY. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer.Mol. Cancer20181716810.1186/s12943‑018‑0817‑x29486794
    [Google Scholar]
  18. LiC. CuiY. LiuL.F. RenW.B. LiQ.Q. ZhouX. LiY.L. LiY. BaiX.Y. ZuX.B. High expression of long noncoding RNA MALAT1 indicates a poor prognosis and promotes clinical progression and metastasis in bladder cancer.Clin. Genitourin. Cancer201715557057610.1016/j.clgc.2017.05.00128648755
    [Google Scholar]
  19. SamirP. MalireddiR.K.S. KannegantiT.D. The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis).Front. Cell. Infect. Microbiol.20201023810.3389/fcimb.2020.0023832582562
    [Google Scholar]
  20. WangY. KannegantiT.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways.Comput. Struct. Biotechnol. J.2021194641465710.1016/j.csbj.2021.07.03834504660
    [Google Scholar]
  21. TangX-Y. ShiA-P. XiongY-L. ZhengK-F. LiuY-J. ShiX-G. JiangT. ZhaoJ-B. Clinical research on the mechanisms underlying immune checkpoints and tumor metastasis.Front. Oncol.20211119
    [Google Scholar]
  22. FangJ. ChenF. LiuD. GuF. ChenZ. WangY. Prognostic value of immune checkpoint molecules in breast cancer.Biosci. Rep.2020407BSR2020105410.1042/BSR2020105432602545
    [Google Scholar]
  23. XuQ. WangY. HuangW. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma.Int. Immunopharmacol.20219210733310.1016/j.intimp.2020.10733333486322
    [Google Scholar]
  24. BrownZ.J. TsilimigrasD.I. RuffS.M. MohseniA. KamelI.R. CloydJ.M. PawlikT.M. Management of hepatocellular carcinoma.JAMA Surg.2023158441042010.1001/jamasurg.2022.798936790767
    [Google Scholar]
  25. NahonP. VibertE. NaultJ.C. Ganne-CarriéN. ZiolM. SerorO. Optimizing curative management of hepatocellular carcinoma.Liver Int.202040S1Suppl. 110911510.1111/liv.1434532077602
    [Google Scholar]
  26. CaiH. LvM. WangT. PANoptosis in cancer, the triangle of cell death.Cancer Med.20231224222062222310.1002/cam4.680338069556
    [Google Scholar]
  27. BanothB. TuladharS. KarkiR. SharmaB.R. BriardB. KesavardhanaS. BurtonA. KannegantiT.D. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis).J. Biol. Chem.202029552182761828310.1074/jbc.RA120.01592433109609
    [Google Scholar]
  28. MalireddiR.K.S. KesavardhanaS. KarkiR. KancharanaB. BurtonA.R. KannegantiT.D. RIPK1 distinctly regulates Yersinia -induced inflammatory cell death, PANoptosis.Immunohorizons202041278979610.4049/immunohorizons.200009733310881
    [Google Scholar]
  29. PlaceD.E. KannegantiT.D. The innate immune system and cell death in autoinflammatory and autoimmune disease.Curr. Opin. Immunol.2020679510510.1016/j.coi.2020.10.01333242752
    [Google Scholar]
  30. HuarteM. The emerging role of lncRNAs in cancer.Nat. Med.201521111253126110.1038/nm.398126540387
    [Google Scholar]
  31. SlackF.J. ChinnaiyanA.M. The role of non-coding RNAs in oncology.Cell201917951033105510.1016/j.cell.2019.10.01731730848
    [Google Scholar]
  32. RinnJ.L. KerteszM. WangJ.K. SquazzoS.L. XuX. BrugmannS.A. GoodnoughL.H. HelmsJ.A. FarnhamP.J. SegalE. ChangH.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.Cell200712971311132310.1016/j.cell.2007.05.02217604720
    [Google Scholar]
  33. HosonoY. NiknafsY.S. PrensnerJ.R. IyerM.K. DhanasekaranS.M. MehraR. PitchiayaS. TienJ. Escara-WilkeJ. PoliakovA. ChuS.-C. SalehS. SankarK. SuF. GuoS. QiaoY. FreierS.M. BuiH.-H. CaoX. MalikR. JohnsonT.M. BeerD.G. FengF.Y. ZhouW. ChinnaiyanA.M. Oncogenic role of THOR, a conserved cancer/testis long non-coding RNA.Cell201717171559157210.1016/j.cell.2017.11.040
    [Google Scholar]
  34. ZhangY. PitchiayaS. CieślikM. NiknafsY.S. TienJ.C.Y. HosonoY. IyerM.K. YazdaniS. SubramaniamS. ShuklaS.K. JiangX. WangL. LiuT.Y. UhlM. GawronskiA.R. QiaoY. XiaoL. DhanasekaranS.M. JucketteK.M. KunjuL.P. CaoX. PatelU. BatishM. ShuklaG.C. PaulsenM.T. LjungmanM. JiangH. MehraR. BackofenR. SahinalpC.S. FreierS.M. WattA.T. GuoS. WeiJ.T. FengF.Y. MalikR. ChinnaiyanA.M. Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression.Nat. Genet.201850681482410.1038/s41588‑018‑0120‑129808028
    [Google Scholar]
  35. LuK. LiW. LiuX. SunM. ZhangM. WuW. XieW. HouY. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression.BMC Cancer201313146110.1186/1471‑2407‑13‑46124098911
    [Google Scholar]
  36. MondalT. SubhashS. VaidR. EnrothS. UdayS. ReiniusB. MitraS. MohammedA. JamesA.R. HobergE. MoustakasA. GyllenstenU. JonesS.J.M. GustafssonC.M. SimsA.H. WesterlundF. GorabE. KanduriC. Author Correction: MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures.Nat. Commun.2019101529010.1038/s41467‑019‑13200‑731754097
    [Google Scholar]
  37. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: A new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  38. ZhangZ. ZhuZ. WatabeK. ZhangX. BaiC. XuM. WuF. MoY-Y. Negative regulation of lncRNA GAS5 by miR-21.Cell Death Differ.201320111558156810.1038/cdd.2013.11023933812
    [Google Scholar]
  39. XuY. JiaK. ZhaoX. LiY. ZhangZ. LncRNA LINC01703 promotes the proliferation, migration, and invasion of colorectal cancer by activating PI3K/AKT pathway.J. Biochem. Mol. Toxicol.2023381e2359410.1002/jbt.2359438050438
    [Google Scholar]
  40. WangZ. ZhangX. ZhangX. JiangX. LiW. NoncodingL.R.N.A. Long noncoding RNA LINC01703 exacerbates the malignant properties of non-small cell lung cancer by upregulating MACC1 in a microrna-605-3p-mediated manner.Oncol. Res.202128991392710.3727/096504021X1631005775101634493358
    [Google Scholar]
  41. KongX. LiJ. LiY. DuanW. QiQ. WangT. YangQ. DuL. MaoH. WangC. A novel long non-coding RNA AC073352.1 promotes metastasis and angiogenesis via interacting with YBX1 in breast cancer.Cell Death Dis.202112767010.1038/s41419‑021‑03943‑x34218256
    [Google Scholar]
  42. ZhangJ. XiaoF. QiangG. ZhangZ. MaQ. HaoY. XingH. LiangC. HuangT. Novel lncRNA panel as for prognosis in esophageal squamous cell carcinoma based on cerna network mechanism.Comput. Math. Methods Med.2021202111210.1155/2021/802087934603485
    [Google Scholar]
  43. GaoC. ZhouG. ChengM. FengL. CaoP. ZhouG. Identification of senescence-associated long non-coding RNAs to predict prognosis and immune microenvironment in patients with hepatocellular carcinoma.Front. Genet.20221395609410.3389/fgene.2022.95609436330438
    [Google Scholar]
  44. GuanQ. PanJ. RenN. QiaoC. WeiM. LiZ. Identification of novel lactate metabolism signatures and molecular subtypes for prognosis in hepatocellular carcinoma.Front. Cell Dev. Biol.20221096027710.3389/fcell.2022.96027736147735
    [Google Scholar]
  45. YuY. XuL. QiL. WangC. XuN. LiuS. LiS. TianH. LiuW. XuY. LiZ. ABT737 induces mitochondrial pathway apoptosis and mitophagy by regulating DRP1-dependent mitochondrial fission in human ovarian cancer cells.Biomed. Pharmacother.201796222910.1016/j.biopha.2017.09.11128963947
    [Google Scholar]
  46. DuP. CaoH. WuH.R. ZhuB.S. WangH.W. GuC.W. XingC.G. ChenW. Blocking Bcl-2 leads to autophagy activation and cell death of the HEPG2 liver cancer cell line.Asian Pac. J. Cancer Prev.201314105849585410.7314/APJCP.2013.14.10.584924289588
    [Google Scholar]
  47. HuangF. LiangJ. LinY. ChenY. HuF. FengJ. ZengQ. HanZ. LinQ. LiY. LiJ. WuL. LiL. Repurposing of ibrutinib and quizartinib as potent inhibitors of necroptosis.Commun. Biol.20236197210.1038/s42003‑023‑05353‑537741898
    [Google Scholar]
  48. GarciaP.L. MillerA.L. GamblinT.L. CouncilL.N. ChristeinJ.D. ArnolettiJ.P. HeslinM.J. ReddyS. RichardsonJ.H. CuiX. WaardenburgV.R.C.A.M. BradnerJ.E. YangE.S. YoonK.J. JQ1 induces DNA damage and apoptosis, and inhibits tumor growth in a patient-derived xenograft model of cholangiocarcinoma.Mol. Cancer Ther.201817110711810.1158/1535‑7163.MCT‑16‑092229142067
    [Google Scholar]
  49. AnuarM.N.N. HisamN.N.S. LiewS.L. UgusmanA. Clinical review: Navitoclax as a pro-apoptotic and anti-fibrotic agent.Front. Pharmacol.20201156410810.3389/fphar.2020.56410833381025
    [Google Scholar]
  50. ChoiH.N. JinH.O. KimJ.H. HongS.E. KimH.A. KimE.K. LeeJ.K. ParkI.C. NohW.C. Inhibition of S6K1 enhances glucose deprivation-induced cell death via downregulation of anti-apoptotic proteins in MCF-7 breast cancer cells.Biochem. Biophys. Res. Commun.2013432112312810.1016/j.bbrc.2013.01.07423376066
    [Google Scholar]
  51. JaneE.P. PremkumarD.R. RajasundaramD. ThambireddyS. ReslinkM.C. AgnihotriS. PollackI.F. Reversing tozasertib resistance in glioma through inhibition of pyruvate dehydrogenase kinases.Mol. Oncol.202216121924910.1002/1878‑0261.1302534058053
    [Google Scholar]
  52. AbedM.N. AbdullahM.I. RichardsonA. Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells.J. Ovarian Res.2016912510.1186/s13048‑016‑0234‑y27080533
    [Google Scholar]
  53. OuyangF.Z. WuR.Q. WeiY. LiuR.X. YangD. XiaoX. ZhengL. LiB. LaoX.M. KuangD.M. Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma.Nat. Commun.2016711345310.1038/ncomms1345327853178
    [Google Scholar]
  54. GonzalezE.M. Volk-DraperL. BhattaraiN. WilberA. RanS. Th2 cytokines IL-4, IL-13, and IL-10 promote differentiation of pro-lymphatic progenitors derived from bone marrow myeloid precursors.Stem Cells Dev.20223111-1232233310.1089/scd.2022.000435442077
    [Google Scholar]
  55. DubinskiD. WölferJ. HasselblattM. Schneider-HohendorfT. BogdahnU. StummerW. WiendlH. GrauerO.M. CD4 + T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients.Neuro-oncol.201618680781810.1093/neuonc/nov28026578623
    [Google Scholar]
  56. KuangD.M. ZhaoQ. PengC. XuJ. ZhangJ.P. WuC. ZhengL. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1.J. Exp. Med.200920661327133710.1084/jem.2008217319451266
    [Google Scholar]
  57. KuangD.M. PengC. ZhaoQ. WuY. ChenM.S. ZhengL. Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells.Hepatology201051115416410.1002/hep.2329119902483
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358065250421072252
Loading
/content/journals/cmc/10.2174/0109298673358065250421072252
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomarker; hepatocellular carcinoma; LncRNA; non-coding RNA; PANoptosis; prognosis; TME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test