Skip to content
2000
image of Construction of PANoptosis-related LncRNA Prognostic Signature and Functional Analysis of AC034229.4 in Hepatocellular Carcinoma

Abstract

Aims

This study aimed to establish a PANoptosis related prognostic signature and identify potential prognostic markers and therapeutic targets for HCC.

Background

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. The survival rate of patients with HCC remains relatively low. PANoptosis can be mediated by lncRNA to involve the pathophysiology of HCC, but the mechanism is still unclear.

Objective

TCGA and GEO hepatocellular carcinoma databases and previous research results were used to construct the PANoptosis related risk model.

Methods

Based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, this study identified long non-coding RNAs (lncRNAs) associated with PANoptosis in HCC. Univariate, LASSO-Cox, and multivariate COX analyses were employed to gradually screen prognostic lncRNAs and construct prognostic models. Further analysis was conducted on the core lncRNA-AC034229.4.

Results

A total of 8 differentially expressed lncRNAs closely correlated with HCC prognosis were discovered. A prognostic model comprising 6 lncRNAs (AC090192.2, LINC01703, AC034229.4, AC073352.1, AC004816.1, and AL136162.1) was established demonstrating good predictive ability for prognosis. Moreover, this prognostic model exhibited close associations with tumor immune microenvironment and immune checkpoints. Subsequent investigations revealed that AC034229.4 independently influenced HCC prognosis by regulating cell cycle progression and inhibiting the immune microenvironment response. Drug sensitivity analysis indicated that AC034229 .4 displayed sensitivity to various anticancer drugs as well. In addition, inhibition of AC034229 .4 expression suppressed HCC migration and invasion abilities.

Conclusion

This study generated a novel and efficient prognostic signature model while identifying AC034229 .4 as a promising diagnostic and prognostic biomarker in HCC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358065250421072252
2025-05-22
2025-09-10
Loading full text...

Full text loading...

References

  1. Verma S. Sahu B.D. Mugale M.N. Role of lncRNAs in hepatocellular carcinoma. Life Sci. 2023 325 121751 10.1016/j.lfs.2023.121751 37169145
    [Google Scholar]
  2. Lin X.H. Zhang D.Y. Liu Z.Y. Tang W. Chen R.X. Li D. Weng S. Dong L. lncRNA-AC079061.1/VIPR1 axis may suppress the development of hepatocellular carcinoma: A bioinformatics analysis and experimental validation. J. Transl. Med. 2022 20 1 379 10.1186/s12967‑022‑03573‑7 36038907
    [Google Scholar]
  3. Vogel A. Meyer T. Sapisochin G. Salem R. Saborowski A. Hepatocellular carcinoma. Lancet 2022 400 10360 1345 1362 10.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  4. Huang A. Yang X.R. Chung W.Y. Dennison A.R. Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther. 2020 5 1 146 10.1038/s41392‑020‑00264‑x 32782275
    [Google Scholar]
  5. Rizzo A. Ricci A.D. Brandi G. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update. J. Pers. Med. 2022 12 11 1788 10.3390/jpm12111788 36579504
    [Google Scholar]
  6. Rizzo A. Ricci A.D. Challenges and future trends of hepatocellular carcinoma immunotherapy. Int. J. Mol. Sci. 2022 23 19 11363 10.3390/ijms231911363 36232663
    [Google Scholar]
  7. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. Luca D.R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Support. Care Cancer 2023 31 11 624 10.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  8. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  9. Jiang M. Qi L. Li L. Wu Y. Song D. Li Y. Caspase-8: A key protein of cross-talk signal way in “PANoptosis” in cancer. Int. J. Cancer 2021 149 7 1408 1420 10.1002/ijc.33698 34028029
    [Google Scholar]
  10. Gao J. Xiong A. Liu J. Li X. Wang J. Zhang L. Liu Y. Xiong Y. Li G. He X. PANoptosis: Bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther. 2024 31 7 970 983 10.1038/s41417‑024‑00765‑9 38553639
    [Google Scholar]
  11. Lin C. Lin P. Yao H. Liu S. Lin X. He R. Teng Z. Zuo X. Li Y. Ye J. Zhu G. Modulation of YBX1-mediated PANoptosis inhibition by PPM1B and USP10 confers chemoresistance to oxaliplatin in gastric cancer. Cancer Lett. 2024 587 216712 10.1016/j.canlet.2024.216712 38364962
    [Google Scholar]
  12. Zhang C. Xia J. Liu X. Li Z. Gao T. Zhou T. Hu K. Identifying prognostic genes related PANoptosis in lung adenocarcinoma and developing prediction model based on bioinformatics analysis. Sci. Rep. 2023 13 1 17956 10.1038/s41598‑023‑45005‑6 37864090
    [Google Scholar]
  13. Wang Y. Zhou J. Zhang N. Zhu Y. Zhong Y. Wang Z. Jin H. Wang X. A novel defined panoptosis-related mirna signature for predicting the prognosis and immune characteristics in clear cell renal cell carcinoma: A mirna signature for the prognosis of ccRCC. Int. J. Mol. Sci. 2023 24 11 9392 10.3390/ijms24119392 37298343
    [Google Scholar]
  14. Qi Q. Zhu M. Li P. Mi Q. Xie Y. Li J. Wang C. Systematic analysis of PANoptosis-related genes identifies XIAP as a functional oncogene in breast cancer. Gene 2024 912 148355 10.1016/j.gene.2024.148355 38467314
    [Google Scholar]
  15. Zhang R. Xia L.Q. Lu W.W. Zhang J. Zhu J.S. LncRNAs and cancer. Oncol. Lett. 2016 12 2 1233 1239 10.3892/ol.2016.4770 27446422
    [Google Scholar]
  16. Xu Y. Wang J. Qiu M. Xu L. Li M. Jiang F. Yin R. Xu L. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumour Biol. 2015 36 3 1643 1651 10.1007/s13277‑014‑2763‑6 25366138
    [Google Scholar]
  17. Zhao R. Zhang Y. Zhang X. Yang Y. Zheng X. Li X. Liu Y. Zhang Y. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol. Cancer 2018 17 1 68 10.1186/s12943‑018‑0817‑x 29486794
    [Google Scholar]
  18. Li C. Cui Y. Liu L.F. Ren W.B. Li Q.Q. Zhou X. Li Y.L. Li Y. Bai X.Y. Zu X.B. High expression of long noncoding RNA MALAT1 indicates a poor prognosis and promotes clinical progression and metastasis in bladder cancer. Clin. Genitourin. Cancer 2017 15 5 570 576 10.1016/j.clgc.2017.05.001 28648755
    [Google Scholar]
  19. Samir P. Malireddi R.K.S. Kanneganti T.D. The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 2020 10 238 10.3389/fcimb.2020.00238 32582562
    [Google Scholar]
  20. Wang Y. Kanneganti T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J. 2021 19 4641 4657 10.1016/j.csbj.2021.07.038 34504660
    [Google Scholar]
  21. Tang X-Y. Shi A-P. Xiong Y-L. Zheng K-F. Liu Y-J. Shi X-G. Jiang T. Zhao J-B. Clinical research on the mechanisms underlying immune checkpoints and tumor metastasis. Front. Oncol. 2021 11 1 9
    [Google Scholar]
  22. Fang J. Chen F. Liu D. Gu F. Chen Z. Wang Y. Prognostic value of immune checkpoint molecules in breast cancer. Biosci. Rep. 2020 40 7 BSR20201054 10.1042/BSR20201054 32602545
    [Google Scholar]
  23. Xu Q. Wang Y. Huang W. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int. Immunopharmacol. 2021 92 107333 10.1016/j.intimp.2020.107333 33486322
    [Google Scholar]
  24. Brown Z.J. Tsilimigras D.I. Ruff S.M. Mohseni A. Kamel I.R. Cloyd J.M. Pawlik T.M. Management of hepatocellular carcinoma. JAMA Surg. 2023 158 4 410 420 10.1001/jamasurg.2022.7989 36790767
    [Google Scholar]
  25. Nahon P. Vibert E. Nault J.C. Ganne-Carrié N. Ziol M. Seror O. Optimizing curative management of hepatocellular carcinoma. Liver Int. 2020 40 S1 Suppl. 1 109 115 10.1111/liv.14345 32077602
    [Google Scholar]
  26. Cai H. Lv M. Wang T. PANoptosis in cancer, the triangle of cell death. Cancer Med. 2023 12 24 22206 22223 10.1002/cam4.6803 38069556
    [Google Scholar]
  27. Banoth B. Tuladhar S. Karki R. Sharma B.R. Briard B. Kesavardhana S. Burton A. Kanneganti T.D. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J. Biol. Chem. 2020 295 52 18276 18283 10.1074/jbc.RA120.015924 33109609
    [Google Scholar]
  28. Malireddi R.K.S. Kesavardhana S. Karki R. Kancharana B. Burton A.R. Kanneganti T.D. RIPK1 distinctly regulates Yersinia -induced inflammatory cell death, PANoptosis. Immunohorizons 2020 4 12 789 796 10.4049/immunohorizons.2000097 33310881
    [Google Scholar]
  29. Place D.E. Kanneganti T.D. The innate immune system and cell death in autoinflammatory and autoimmune disease. Curr. Opin. Immunol. 2020 67 95 105 10.1016/j.coi.2020.10.013 33242752
    [Google Scholar]
  30. Huarte M. The emerging role of lncRNAs in cancer. Nat. Med. 2015 21 11 1253 1261 10.1038/nm.3981 26540387
    [Google Scholar]
  31. Slack F.J. Chinnaiyan A.M. The role of non-coding RNAs in oncology. Cell 2019 179 5 1033 1055 10.1016/j.cell.2019.10.017 31730848
    [Google Scholar]
  32. Rinn J.L. Kertesz M. Wang J.K. Squazzo S.L. Xu X. Brugmann S.A. Goodnough L.H. Helms J.A. Farnham P.J. Segal E. Chang H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007 129 7 1311 1323 10.1016/j.cell.2007.05.022 17604720
    [Google Scholar]
  33. Hosono Y. Niknafs Y.S. Prensner J.R. Iyer M.K. Dhanasekaran S.M. Mehra R. Pitchiaya S. Tien J. Escara-Wilke J. Poliakov A. Chu S.-C. Saleh S. Sankar K. Su F. Guo S. Qiao Y. Freier S.M. Bui H.-H. Cao X. Malik R. Johnson T.M. Beer D.G. Feng F.Y. Zhou W. Chinnaiyan A.M. Oncogenic role of THOR, a conserved cancer/testis long non-coding RNA. Cell 2017 171 7 1559 1572 10.1016/j.cell.2017.11.040
    [Google Scholar]
  34. Zhang Y. Pitchiaya S. Cieślik M. Niknafs Y.S. Tien J.C.Y. Hosono Y. Iyer M.K. Yazdani S. Subramaniam S. Shukla S.K. Jiang X. Wang L. Liu T.Y. Uhl M. Gawronski A.R. Qiao Y. Xiao L. Dhanasekaran S.M. Juckette K.M. Kunju L.P. Cao X. Patel U. Batish M. Shukla G.C. Paulsen M.T. Ljungman M. Jiang H. Mehra R. Backofen R. Sahinalp C.S. Freier S.M. Watt A.T. Guo S. Wei J.T. Feng F.Y. Malik R. Chinnaiyan A.M. Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat. Genet. 2018 50 6 814 824 10.1038/s41588‑018‑0120‑1 29808028
    [Google Scholar]
  35. Lu K. Li W. Liu X. Sun M. Zhang M. Wu W. Xie W. Hou Y. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 2013 13 1 461 10.1186/1471‑2407‑13‑461 24098911
    [Google Scholar]
  36. Mondal T. Subhash S. Vaid R. Enroth S. Uday S. Reinius B. Mitra S. Mohammed A. James A.R. Hoberg E. Moustakas A. Gyllensten U. Jones S.J.M. Gustafsson C.M. Sims A.H. Westerlund F. Gorab E. Kanduri C. Author Correction: MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat. Commun. 2019 10 1 5290 10.1038/s41467‑019‑13200‑7 31754097
    [Google Scholar]
  37. Bhan A. Soleimani M. Mandal S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res. 2017 77 15 3965 3981 10.1158/0008‑5472.CAN‑16‑2634 28701486
    [Google Scholar]
  38. Zhang Z. Zhu Z. Watabe K. Zhang X. Bai C. Xu M. Wu F. Mo Y-Y. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ. 2013 20 11 1558 1568 10.1038/cdd.2013.110 23933812
    [Google Scholar]
  39. Xu Y. Jia K. Zhao X. Li Y. Zhang Z. LncRNA LINC01703 promotes the proliferation, migration, and invasion of colorectal cancer by activating PI3K/AKT pathway. J. Biochem. Mol. Toxicol. 2023 38 1 e23594 10.1002/jbt.23594 38050438
    [Google Scholar]
  40. Wang Z. Zhang X. Zhang X. Jiang X. Li W. Noncoding L.R.N.A. Long noncoding RNA LINC01703 exacerbates the malignant properties of non-small cell lung cancer by upregulating MACC1 in a microrna-605-3p-mediated manner. Oncol. Res. 2021 28 9 913 927 10.3727/096504021X16310057751016 34493358
    [Google Scholar]
  41. Kong X. Li J. Li Y. Duan W. Qi Q. Wang T. Yang Q. Du L. Mao H. Wang C. A novel long non-coding RNA AC073352.1 promotes metastasis and angiogenesis via interacting with YBX1 in breast cancer. Cell Death Dis. 2021 12 7 670 10.1038/s41419‑021‑03943‑x 34218256
    [Google Scholar]
  42. Zhang J. Xiao F. Qiang G. Zhang Z. Ma Q. Hao Y. Xing H. Liang C. Huang T. Novel lncRNA panel as for prognosis in esophageal squamous cell carcinoma based on cerna network mechanism. Comput. Math. Methods Med. 2021 2021 1 12 10.1155/2021/8020879 34603485
    [Google Scholar]
  43. Gao C. Zhou G. Cheng M. Feng L. Cao P. Zhou G. Identification of senescence-associated long non-coding RNAs to predict prognosis and immune microenvironment in patients with hepatocellular carcinoma. Front. Genet. 2022 13 956094 10.3389/fgene.2022.956094 36330438
    [Google Scholar]
  44. Guan Q. Pan J. Ren N. Qiao C. Wei M. Li Z. Identification of novel lactate metabolism signatures and molecular subtypes for prognosis in hepatocellular carcinoma. Front. Cell Dev. Biol. 2022 10 960277 10.3389/fcell.2022.960277 36147735
    [Google Scholar]
  45. Yu Y. Xu L. Qi L. Wang C. Xu N. Liu S. Li S. Tian H. Liu W. Xu Y. Li Z. ABT737 induces mitochondrial pathway apoptosis and mitophagy by regulating DRP1-dependent mitochondrial fission in human ovarian cancer cells. Biomed. Pharmacother. 2017 96 22 29 10.1016/j.biopha.2017.09.111 28963947
    [Google Scholar]
  46. Du P. Cao H. Wu H.R. Zhu B.S. Wang H.W. Gu C.W. Xing C.G. Chen W. Blocking Bcl-2 leads to autophagy activation and cell death of the HEPG2 liver cancer cell line. Asian Pac. J. Cancer Prev. 2013 14 10 5849 5854 10.7314/APJCP.2013.14.10.5849 24289588
    [Google Scholar]
  47. Huang F. Liang J. Lin Y. Chen Y. Hu F. Feng J. Zeng Q. Han Z. Lin Q. Li Y. Li J. Wu L. Li L. Repurposing of ibrutinib and quizartinib as potent inhibitors of necroptosis. Commun. Biol. 2023 6 1 972 10.1038/s42003‑023‑05353‑5 37741898
    [Google Scholar]
  48. Garcia P.L. Miller A.L. Gamblin T.L. Council L.N. Christein J.D. Arnoletti J.P. Heslin M.J. Reddy S. Richardson J.H. Cui X. Waardenburg V.R.C.A.M. Bradner J.E. Yang E.S. Yoon K.J. JQ1 induces DNA damage and apoptosis, and inhibits tumor growth in a patient-derived xenograft model of cholangiocarcinoma. Mol. Cancer Ther. 2018 17 1 107 118 10.1158/1535‑7163.MCT‑16‑0922 29142067
    [Google Scholar]
  49. Anuar M.N.N. Hisam N.N.S. Liew S.L. Ugusman A. Clinical review: Navitoclax as a pro-apoptotic and anti-fibrotic agent. Front. Pharmacol. 2020 11 564108 10.3389/fphar.2020.564108 33381025
    [Google Scholar]
  50. Choi H.N. Jin H.O. Kim J.H. Hong S.E. Kim H.A. Kim E.K. Lee J.K. Park I.C. Noh W.C. Inhibition of S6K1 enhances glucose deprivation-induced cell death via downregulation of anti-apoptotic proteins in MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun. 2013 432 1 123 128 10.1016/j.bbrc.2013.01.074 23376066
    [Google Scholar]
  51. Jane E.P. Premkumar D.R. Rajasundaram D. Thambireddy S. Reslink M.C. Agnihotri S. Pollack I.F. Reversing tozasertib resistance in glioma through inhibition of pyruvate dehydrogenase kinases. Mol. Oncol. 2022 16 1 219 249 10.1002/1878‑0261.13025 34058053
    [Google Scholar]
  52. Abed M.N. Abdullah M.I. Richardson A. Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells. J. Ovarian Res. 2016 9 1 25 10.1186/s13048‑016‑0234‑y 27080533
    [Google Scholar]
  53. Ouyang F.Z. Wu R.Q. Wei Y. Liu R.X. Yang D. Xiao X. Zheng L. Li B. Lao X.M. Kuang D.M. Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma. Nat. Commun. 2016 7 1 13453 10.1038/ncomms13453 27853178
    [Google Scholar]
  54. Gonzalez E.M. Volk-Draper L. Bhattarai N. Wilber A. Ran S. Th2 cytokines IL-4, IL-13, and IL-10 promote differentiation of pro-lymphatic progenitors derived from bone marrow myeloid precursors. Stem Cells Dev. 2022 31 11-12 322 333 10.1089/scd.2022.0004 35442077
    [Google Scholar]
  55. Dubinski D. Wölfer J. Hasselblatt M. Schneider-Hohendorf T. Bogdahn U. Stummer W. Wiendl H. Grauer O.M. CD4 + T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro-oncol. 2016 18 6 807 818 10.1093/neuonc/nov280 26578623
    [Google Scholar]
  56. Kuang D.M. Zhao Q. Peng C. Xu J. Zhang J.P. Wu C. Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 2009 206 6 1327 1337 10.1084/jem.20082173 19451266
    [Google Scholar]
  57. Kuang D.M. Peng C. Zhao Q. Wu Y. Chen M.S. Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 2010 51 1 154 164 10.1002/hep.23291 19902483
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358065250421072252
Loading
/content/journals/cmc/10.2174/0109298673358065250421072252
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: PANoptosis ; LncRNA ; non-coding RNA ; TME ; prognosis ; hepatocellular carcinoma ; biomarker
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test