Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

This study was to explore the relationship between plasma exosomes and Acute myocardial infarction (AMI).

Background

Acute myocardial infarction (AMI) is one of the most common cardiovascular complications. Recent studies have shown that exosomes play a crucial role in the development and progression of cardiovascular diseases. However, there is a lack of relevant research on the relationship between plasma exosomes and AMI.

Objective

This study was designed to explore the relationship between plasma exosomes and AMI.

Methods

This retrospective study collected the basic clinical data of patients with AMI (n = 10), stable angina pectoris (SAP, n = 10), and noncoronary heart disease (CON, n = 10) at the Department of Cardiovascular Medicine at Taizhou Hospital (Zhejiang, China, 2021.01 to 2021.12). Proteomics was used to systematically screen the differential proteins of plasma exosomes in patients with clinical AMI, SAP, and CON. Then, the results were further verified using parallel reaction monitoring (PRM).

Results

Five of all the differentially expressed proteins (DEPs) were quantified by PRM. Compared with the CON group, heparin cofactor 2 (SERPIND1), mannan-binding lectin serine protease 1 (MASP1), ficolin-2 (FCN2), and α1-Microglobulin/bikunin precursor (AMBP) were upregulated in patients with AMI and SAP, with a higher expression in AMI than in SAP. Additionally, human leukocyte antigen (HLA-C) was downregulated in both exosomes and plasma.

Conclusion

The expression of four plasma exosome biomarkers in AMI and SAP patients was higher than that in noncoronary heart disease (NCHD) patients. HLA-C was downregulated in both exosomes and plasma, showing a potential to serve as a new candidate target for the detection and therapy of AMI.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346007241113072114
2025-01-01
2025-10-23
Loading full text...

Full text loading...

References

  1. MechanicO.J. GavinM. GrossmanS.A. Acute myocardial infarctionStatPearlsStatPearls Publishing2024
    [Google Scholar]
  2. FramptonJ. OrtengrenA.R. ZeitlerE.P. Arrhythmias after acute myocardial infarction.Yale J. Biol. Med.2023961839410.59249/LSWK857837009192
    [Google Scholar]
  3. XuemeiL. Periostin as a potential biomarker of acute myocardial infarction.J. Biol. Regul. Homeost. Agents202337315611571
    [Google Scholar]
  4. OldgrenJ. WallentinL. GripL. LinderR. NørgaardB.L. SiegbahnA. Myocardial damage, inflammation and thrombin inhibition in unstable coronary artery disease.Eur. Heart J.2003241869310.1016/S0195‑668X(02)00312‑312559940
    [Google Scholar]
  5. NewbyL.K. GoldmannB.U. OhmanE.M. Troponin: An important prognostic marker and risk-stratification tool in non–ST-segment elevation acute coronary syndromes.J. Am. Coll. Cardiol.2003414Suppl. SS31S3610.1016/S0735‑1097(02)02832‑212644338
    [Google Scholar]
  6. ColletJ.P. MontalescotG. VicautE. AnkriA. WalyloF. LestyC. ChoussatR. BeyguiF. BorentainM. VignollesN. ThomasD. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality.Circulation2003108439139410.1161/01.CIR.0000083471.33820.3C12860898
    [Google Scholar]
  7. YuliangX. Serum exosomal MicroRNA-31 serves as a potential biomarker for colorectal cancer and colorectal adenomatous polyps.J. Biol. Regul. Homeost. Agents202337524292437
    [Google Scholar]
  8. QuanX. MaX. LiG. FuX. LiJ. ZengL. Exploring exosomes to provide evidence for the treatment and prediction of Alzheimer’s disease.Biocell202347102163217610.32604/biocell.2023.031226
    [Google Scholar]
  9. PanfoliI. BruschiM. CandianoG. Exosomes: Key tools for cancer liquid biopsy.Biocell202246102167217610.32604/biocell.2022.020154
    [Google Scholar]
  10. ZamaniP. FereydouniN. ButlerA.E. NavashenaqJ.G. SahebkarA. The therapeutic and diagnostic role of exosomes in cardiovascular diseases.Trends Cardiovasc. Med.201929631332310.1016/j.tcm.2018.10.01030385010
    [Google Scholar]
  11. LalozeJ.E. DesmoulideA.L.E.X.I.S. Exosomes from adipose tissue-derived stem/stromal cells: A key to future regenerative medicine.Biocell202246122701270410.32604/biocell.2022.022229
    [Google Scholar]
  12. GalletR. DawkinsJ. ValleJ. SimsoloE. de CoutoG. MiddletonR. TseliouE. LuthringerD. KrekeM. SmithR.R. MarbánL. GhalehB. MarbánE. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction.Eur. Heart J.201738320121128158410
    [Google Scholar]
  13. SongY. WangB. ZhuX. HuJ. SunJ. XuanJ. GeZ. Human umbilical cord blood–derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice.Cell Biol. Toxicol.2021371516410.1007/s10565‑020‑09530‑832535745
    [Google Scholar]
  14. GongZ. WenM. ZhangW. YuL. HuangC. XuY. XiaZ. XuM. XuJ. LiangQ. BaoH. ChengX. Plasma exosomes induce inflammatory immune response in patients with acute myocardial infarction.Arch. Physiol. Biochem.202312951168117610.1080/13813455.2021.191210233950771
    [Google Scholar]
  15. WangW. ZhaoY. ZhuP. JiaX. WangC. ZhangQ. LiH. WangJ. HouY. Differential proteomic profiles of coronary serum exosomes in acute myocardial infarction patients with or without Diabetes mellitus: ANGPTL6 accelerates regeneration of endothelial cells treated with rapamycin via MAPK pathways.Cardiovasc. Drugs Ther.2024381132910.1007/s10557‑022‑07365‑535821539
    [Google Scholar]
  16. HeG. HuangY. LiuL. HuangJ. LoK. YuY. ChenC. ZhangB. FengY. Association of circulating, inflammatory-response exosomal mRNAs with acute myocardial infarction.Front. Cardiovasc. Med.2021871206110.3389/fcvm.2021.71206134490374
    [Google Scholar]
  17. ZhengM.L. LiuX.Y. HanR.J. YuanW. SunK. ZhongJ.C. YangX.C. Circulating exosomal long non-coding RNAs in patients with acute myocardial infarction.J. Cell. Mol. Med.202024169388939610.1111/jcmm.1558932649009
    [Google Scholar]
  18. WangB. CaoC. HanD. BaiJ. GuoJ. GuoQ. LiD. ZhangJ. ZhangZ. WangY. TangJ. ShenD. ZhangJ. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair.Biomed. Pharmacother.202114211205610.1016/j.biopha.2021.11205634435593
    [Google Scholar]
  19. Chiva-BlanchG. SuadesR. CrespoJ. VilahurG. ArderiuG. PadróT. CorellaD. Salas-SalvadóJ. ArósF. Martínez-GonzálezM.A. RosE. FitóM. EstruchR. BadimonL. CD3+/CD45+ and SMA-α+ circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event.Int. J. Cardiol.201620814714910.1016/j.ijcard.2016.01.21126859321
    [Google Scholar]
  20. KranendonkM.E.G. de KleijnD.P.V. KalkhovenE. KanhaiD.A. UiterwaalC.S.P.M. van der GraafY. PasterkampG. VisserenF.L.J. SMART Study Group Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease.Cardiovasc. Diabetol.20141313710.1186/1475‑2840‑13‑3724498934
    [Google Scholar]
  21. LiW. LiY. ZhiW. LiuC. FanW. MiaoQ. GuX. Diagnostic value of using exosome-derived cysteine-rich protein 61 as biomarkers for acute coronary syndrome.Exp. Ther. Med.2021226143710.3892/etm.2021.1087234721679
    [Google Scholar]
  22. XieY. ZhangH. HuangT. Quantitative proteomics reveal three potential biomarkers for risk assessment of acute myocardial infarction.Bioengineered20221334939495010.1080/21655979.2022.203736535156527
    [Google Scholar]
  23. TakamoriN. AzumaH. KatoM. HashizumeS. AiharaK. AkaikeM. TamuraK. MatsumotoT. High plasma heparin cofactor II activity is associated with reduced incidence of in-stent restenosis after percutaneous coronary intervention.Circulation2004109448148610.1161/01.CIR.0000109695.39671.3714744972
    [Google Scholar]
  24. ThygesenK. AlpertJ.S. JaffeA.S. ChaitmanB.R. BaxJ.J. MorrowD.A. WhiteH.D. Executive group on behalf of the joint european society of cardiology (ESC)/American college of cardiology (ACC)/American heart association (AHA)/world heart federation (WHF) task force for the universal definition of myocardial infarction Fourth universal definition of myocardial infarction (2018).J. Am. Coll. Cardiol.201872182231226410.1016/j.jacc.2018.08.103830153967
    [Google Scholar]
  25. ViraniS.S. NewbyL.K. ArnoldS.V. BittnerV. BrewerL.C. DemeterS.H. DixonD.L. FearonW.F. HessB. JohnsonH.M. KaziD.S. KolteD. KumbhaniD.J. LoFasoJ. MahttaD. MarkD.B. MinissianM. NavarA.M. PatelA.R. PianoM.R. RodriguezF. TalbotA.W. TaquetiV.R. ThomasR.J. van DiepenS. WigginsB. WilliamsM.S. Peer review committee members 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: A report of the American heart association/American college of cardiology joint committee on clinical practice guidelines.Circulation20231489e9e11910.1161/CIR.000000000000116837471501
    [Google Scholar]
  26. LiuH.M. NieL. Quantitative analysis combined with chromatographic fingerprint for comprehensive evaluation of Xiaoer Chaigui Tuire granules by HPLC-DAD.J. Chromatogr. Sci.201553574975610.1093/chromsci/bmu11925234384
    [Google Scholar]
  27. ZaràM. CampodonicoJ. CosentinoN. BiondiM.L. AmadioP. MilanesiG. AssanelliE. CerriS. BiggiogeraM. SandriniL. TedescoC.C. VegliaF. TrabattoniD. BlandiniF. TremoliE. MarenziG. BarbieriS.S. Plasma exosome profile in ST-elevation myocardial infarction patients with and without out-of-hospital cardiac arrest.Int. J. Mol. Sci.20212215806510.3390/ijms2215806534360827
    [Google Scholar]
  28. ChouR.H. WenH.C. LiangW.G. LinS.C. YuanH.W. WuC.W. ChangW.S. Suppression of the invasion and migration of cancer cells by SERPINB family genes and their derived peptides.Oncol. Rep.201227123824521993616
    [Google Scholar]
  29. ReinC.M. DesaiU.R. ChurchF.C. Serpin–Glycosaminoglycan interactions.Methods Enzymol.201150110513710.1016/B978‑0‑12‑385950‑1.00007‑922078533
    [Google Scholar]
  30. LomasD.A. Molecular mousetraps, α1-antitrypsin deficiency and the serpinopathies.Clin. Med. (Lond.)20055324925710.7861/clinmedicine.5‑3‑24916011217
    [Google Scholar]
  31. HuangP.H. LeuH.B. ChenJ.W. WuT.C. LuT.M. Yu-An DingP. LinS.J. Decreased heparin cofactor II activity is associated with impaired endothelial function determined by brachial ultrasonography and predicts cardiovascular events.Int. J. Cardiol.2007114215215810.1016/j.ijcard.2005.12.00916650906
    [Google Scholar]
  32. HuangS.S. HuangP.H. ChenY.H. SungS.H. ChiangK.H. ChenJ.W. LinS.J. Plasma heparin cofactor II activity is an independent predictor of future cardiovascular events in patients after acute myocardial infarction.Coron. Artery Dis.200819859760210.1097/MCA.0b013e328315557918971786
    [Google Scholar]
  33. GrandochM. KohlmorgenC. Melchior-BeckerA. FeldmannK. HomannS. MüllerJ. KieneL.S. Zeng-BrouwersJ. SchmitzF. NagyN. PolzinA. GowertN.S. ElversM. SkroblinP. YinX. MayrM. SchaeferL. TannockL.R. FischerJ.W. Loss of Biglycan enhances thrombin generation in Apolipoprotein E -deficient mice.Arterioscler. Thromb. Vasc. Biol.2016365e41e5010.1161/ATVBAHA.115.30697327034473
    [Google Scholar]
  34. AiharaK. AzumaH. AkaikeM. SataM. MatsumotoT. Heparin cofactor II as a novel vascular protective factor against atherosclerosis.J. Atheroscler. Thromb.200916552353110.5551/jat.155219729870
    [Google Scholar]
  35. DobóJ. PálG. CervenakL. GálP. The emerging roles of mannose-binding lectin-associated serine proteases ( MASP s) in the lectin pathway of complement and beyond.Immunol. Rev.201627419811110.1111/imr.1246027782318
    [Google Scholar]
  36. FrauenknechtV. ThielS. StormL. MeierN. ArnoldM. SchmidJ-P. SanerH. SchroederV. Plasma levels of mannan-binding lectin (MBL)-associated serine proteases (MASPs) and MBL-associated protein in cardio- and cerebrovascular diseases.Clin. Exp. Immunol.2013173111212010.1111/cei.1209323607747
    [Google Scholar]
  37. HoltC.B. ThielS. MunkK. ØstergaardJ.A. BøtkerH.E. HansenT.K. Association between endogenous complement inhibitor and myocardial salvage in patients with myocardial infarction.Eur. Heart J. Acute Cardiovasc. Care2014313910.1177/204887261350700424562799
    [Google Scholar]
  38. SongR.X. ZouQ.M. LiX.H. XuN.P. ZhangT. FuJ. CuiX.D. Plasma MASP-1 concentration and its relationship to recovery from coronary artery lesion in children with Kawasaki disease.Pediatr. Res.201679230130710.1038/pr.2015.22326536449
    [Google Scholar]
  39. LacroixM. Dumestre-PérardC. SchoehnG. HouenG. CesbronJ.Y. ArlaudG.J. ThielensN.M. Residue Lys57 in the collagen-like region of human L-ficolin and its counterpart Lys47 in H-ficolin play a key role in the interaction with the mannan-binding lectin-associated serine proteases and the collectin receptor calreticulin.J. Immunol.2009182145646510.4049/jimmunol.182.1.45619109177
    [Google Scholar]
  40. MaglingerB. FrankJ.A. McLouthC.J. TroutA.L. RobertsJ.M. GrupkeS. Turchan-CholewoJ. StoweA.M. FraserJ.F. PennypackerK.R. Proteomic changes in intracranial blood during human ischemic stroke.J. Neurointerv. Surg.202113439539910.1136/neurintsurg‑2020‑01611832641418
    [Google Scholar]
  41. BadarukhiyaJ.A. TupperwarN. NizamuddinS. MulpurA.K. ThangarajK. Novel FCN2 variants and haplotypes are associated with rheumatic heart disease.DNA Cell Biol.202140101338134810.1089/dna.2021.047834529517
    [Google Scholar]
  42. PanY. WangL. XieY. TanY. ChangC. QiuX. LiX. Characterization of differentially expressed plasma proteins in patients with acute myocardial infarction.J. Proteomics202022710392310.1016/j.jprot.2020.10392332736138
    [Google Scholar]
  43. MayK. RosenlöfL. OlssonM.G. CentlowM. MörgelinM. LarssonI. CederlundM. RutardottirS. SiegmundW. SchneiderH. ÅkerströmB. HanssonS.R. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by α1-microglobulin.Placenta201132432333210.1016/j.placenta.2011.01.01721356557
    [Google Scholar]
  44. CubedoJ. PadróT. FormigaF. FerrerA. PadrósG. PeñaE. BadimonL. Inflammation and hemostasis in older octogenarians: implication in 5-year survival.Transl. Res.20171853446.e910.1016/j.trsl.2017.04.00328506697
    [Google Scholar]
  45. AhmedS. AhmedA. RådegranG. Plasma tumour and metabolism related biomarkers AMBP, LPL and Glyoxalase I differentiate heart failure with preserved ejection fraction with pulmonary hypertension from pulmonary arterial hypertension.Int. J. Cardiol.2021345687610.1016/j.ijcard.2021.10.13634710494
    [Google Scholar]
  46. ChenJ.X. HuaL. ZhaoC.H. JiaQ.W. ZhangJ. YuanJ.X. ZhangY.J. JinJ.L. GuM.F. MaoZ.Y. SunH.J. WangL.S. MaW.Z. JiaE.Z. Quantitative proteomics reveals the regulatory networks of circular RNA BTBD7_hsa_circ_0000563 in human coronary artery.J. Clin. Lab. Anal.20203411e2349510.1002/jcla.2349532710445
    [Google Scholar]
  47. ShaoB. ZelnickL.R. WimbergerJ. HimmelfarbJ. BrunzellJ. DavidsonW.S. Snell-BergeonJ.K. BornfeldtK.E. de BoerI.H. HeineckeJ.W. Albuminuria, the high-density lipoprotein proteome, and coronary artery calcification in type 1 diabetes mellitus.Arterioscler. Thromb. Vasc. Biol.20193971483149110.1161/ATVBAHA.119.31255631092010
    [Google Scholar]
  48. FerreiraJ.P. SharmaA. MehtaC. BakrisG. RossignolP. WhiteW.B. ZannadF. Multi-proteomic approach to predict specific cardiovascular events in patients with diabetes and myocardial infarction: findings from the EXAMINE trial.Clin. Res. Cardiol.202111071006101910.1007/s00392‑020‑01729‑332789678
    [Google Scholar]
  49. WatanabeY. YamadaN. YokoiH. FujiwaraY. MokunoH. DaidaH. YamaguchiH. Relationship between HLA-C locus and restenosis after coronary artery balloon angioplasty.JAMA19972771298398410.1001/jama.1997.035403600510309091671
    [Google Scholar]
  50. BanerjeeS. PondeC.K. RajaniR.M. AshavaidT.F. Differential methylation pattern in patients with coronary artery disease: pilot study.Mol. Biol. Rep.201946154155010.1007/s11033‑018‑4507‑y30470965
    [Google Scholar]
  51. McPhersonR. DaviesR.W. Inflammation and coronary artery disease: insights from genetic studies.Can. J. Cardiol.201228666266610.1016/j.cjca.2012.05.01422902153
    [Google Scholar]
  52. DaviesR.W. WellsG.A. StewartA.F.R. ErdmannJ. ShahS.H. FergusonJ.F. HallA.S. AnandS.S. BurnettM.S. EpsteinS.E. DandonaS. ChenL. NahrstaedtJ. LoleyC. KönigI.R. KrausW.E. GrangerC.B. EngertJ.C. HengstenbergC. WichmannH.E. SchreiberS. TangW.H.W. EllisS.G. RaderD.J. HazenS.L. ReillyM.P. SamaniN.J. SchunkertH. RobertsR. McPhersonR. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex.Circ. Cardiovasc. Genet.20125221722510.1161/CIRCGENETICS.111.96124322319020
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346007241113072114
Loading
/content/journals/cmc/10.2174/0109298673346007241113072114
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test