Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

Cyclin-dependent kinase 1 (CDK1) regulates the cell cycle and is highly expressed in most tumors. CDK1 expression has been associated with poor disease prognosis. This study aimed to identify the prognostic value of CDK1 in pan-cancer and investigate the association between CDK1 expression and immune cell infiltration.

Methods

CDK1 expression and its correlation with prognosis in pan-cancer were analyzed using online databases. Immune infiltration was assessed by ESTIMATE and CIBERSORT algorithms. We then evaluated the relationship between CDK1 expression and tumor mutational burden (TMB), microsatellite instability (MSI), or tumor-infiltrating immune cells. In addition, we performed the co-expression analysis of immune-related genes and GO analysis with CDK1 expression in pan-cancer. Finally, we compared the CDK1 expression profile with the immune-related genes in 30 pairs of clinical gastrointestinal tumor samples.

Results

Our analysis demonstrated overexpression of CDK1 in most tumor tissues, especially in gastrointestinal tumors. The high expression of CDK1 was associated with poor overall survival, disease-specific survival, disease-free interval, and progression-free interval in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), and sarcoma (SARC). Besides, CDK1 expression was significantly associated with TMB in 22 cancer types and MSI in 8 cancer types as well as greater frequencies of MSI-high (MSI-H) status and high tumor mutational burden (TMB-H) in uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), sarcoma (SARC), rectum adenocarcinoma (READ), mesothelioma (MESO), head and neck squamous cell carcinoma (HNSC), and colon adenocarcinoma (COAD). In addition, CDK1 expression correlated with immune cell infiltrating levels, such as M0, M1, or M2 macrophages, memory CD4 T cells, T follicular helper cells, and naive B cells. Our data showed that CDK1 was remarkably correlated with 47 immune-related and immune checkpoint genes in many cancer types. Furthermore, CDK1 was up-regulated in gastrointestinal tumor samples, especially in gastric cancer and intestinal cancer. CDK1 was positively correlated with IDO1 in gastric cancer and PD-1 in intestinal cancer.

Conclusion

Taken together, our data demonstrated the roles of CDK1 in oncogenesis and metastasis in pan-cancer. Thus, CDK1 is a potential prognostic biomarker and a target for tumor immunotherapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322212240620111356
2024-06-28
2025-10-23
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc323922437870
    [Google Scholar]
  3. TumehP.C. HarviewC.L. YearleyJ.H. ShintakuI.P. TaylorE.J.M. RobertL. ChmielowskiB. SpasicM. HenryG. CiobanuV. WestA.N. CarmonaM. KivorkC. SejaE. CherryG. GutierrezA.J. GroganT.R. MateusC. TomasicG. GlaspyJ.A. EmersonR.O. RobinsH. PierceR.H. ElashoffD.A. RobertC. RibasA. PD-1 blockade induces responses by inhibiting adaptive immune resistance.Nature2014515752856857110.1038/nature1395425428505
    [Google Scholar]
  4. CristescuR. MoggR. AyersM. AlbrightA. MurphyE. YearleyJ. SherX. LiuX.Q. LuH. NebozhynM. ZhangC. LuncefordJ.K. JoeA. ChengJ. WebberA.L. IbrahimN. PlimackE.R. OttP.A. SeiwertT.Y. RibasA. McClanahanT.K. TomassiniJ.E. LobodaA. KaufmanD. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy.Science20183626411eaar359310.1126/science.aar359330309915
    [Google Scholar]
  5. ZhaoP. LiL. JiangX. LiQ. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy.J. Hematol. Oncol.20191215410.1186/s13045‑019‑0738‑131151482
    [Google Scholar]
  6. AbidaW. ChengM.L. ArmeniaJ. MiddhaS. AutioK.A. VargasH.A. RathkopfD. MorrisM.J. DanilaD.C. SlovinS.F. CarboneE. BarnettE.S. HullingsM. HechtmanJ.F. ZehirA. ShiaJ. JonssonP. StadlerZ.K. SrinivasanP. LaudoneV.P. ReuterV. WolchokJ.D. SocciN.D. TaylorB.S. BergerM.F. KantoffP.W. SawyersC.L. SchultzN. SolitD.B. GopalanA. ScherH.I. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade.JAMA Oncol.20195447147810.1001/jamaoncol.2018.580130589920
    [Google Scholar]
  7. AggarwalC. Ben-ShacharR. GaoY. HyunS.W. RiversZ. EpsteinC. KanevaK. SangliC. NimeiriH. PatelJ. Assessment of tumor mutational burden and outcomes in patients with diverse advanced cancers treated with immunotherapy.JAMA Netw. Open202365e231118110.1001/jamanetworkopen.2023.1118137129893
    [Google Scholar]
  8. WangX. LambertiG. Di FedericoA. AlessiJ. FerraraR. ShollM.L. AwadM.M. VokesN. RicciutiB. Tumor mutational burden for the prediction of PD-(L)1 blockade efficacy in cancer: Challenges and opportunities.Ann. Oncol.202435650852210.1016/j.annonc.2024.03.00738537779
    [Google Scholar]
  9. RizviH. Sanchez-VegaF. LaK. ChatilaW. JonssonP. HalpennyD. PlodkowskiA. LongN. SauterJ.L. RekhtmanN. HollmannT. SchalperK.A. GainorJ.F. ShenR. NiA. ArbourK.C. MerghoubT. WolchokJ. SnyderA. ChaftJ.E. KrisM.G. RudinC.M. SocciN.D. BergerM.F. TaylorB.S. ZehirA. SolitD.B. ArcilaM.E. LadanyiM. RielyG.J. SchultzN. HellmannM.D. Molecular determinants of response to anti–programmed cell death (PD)-1 and anti–programmed death-ligand 1 (PD-L1) blockade in patients with non–small-cell lung cancer profiled with targeted next-generation sequencing.J. Clin. Oncol.201836763364110.1200/JCO.2017.75.338429337640
    [Google Scholar]
  10. ChanT.A. YarchoanM. JaffeeE. SwantonC. QuezadaS.A. StenzingerA. PetersS. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic.Ann. Oncol.2019301445610.1093/annonc/mdy49530395155
    [Google Scholar]
  11. MarcusL. Fashoyin-AjeL.A. DonoghueM. YuanM. RodriguezL. GallagherP.S. PhilipR. GhoshS. TheoretM.R. BeaverJ.A. PazdurR. LemeryS.J. FDA approval summary: Pembrolizumab for the treatment of tumor mutational burden–high solid tumors.Clin. Cancer Res.202127174685468910.1158/1078‑0432.CCR‑21‑032734083238
    [Google Scholar]
  12. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  13. WangZ. FanM. CandasD. ZhangT.Q. QinL. EldridgeA. Wachsmann-HogiuS. AhmedK.M. ChromyB.A. NantajitD. DuruN. HeF. ChenM. FinkelT. WeinsteinL.S. LiJ.J. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression.Dev. Cell201429221723210.1016/j.devcel.2014.03.01224746669
    [Google Scholar]
  14. AsgharU. WitkiewiczA.K. TurnerN.C. KnudsenE.S. The history and future of targeting cyclin-dependent kinases in cancer therapy.Nat. Rev. Drug Discov.201514213014610.1038/nrd450425633797
    [Google Scholar]
  15. MathurP. SathishkumarK. ChaturvediM. DasP. SudarshanK.L. SanthappanS. NallasamyV. JohnA. NarasimhanS. RoselindF.S. ICMR-NCDIR-NCRP Investigator Group Cancer statistics, 2020: Report from national cancer registry programme, India.JCO Glob. Oncol.2020661063107510.1200/GO.20.0012232673076
    [Google Scholar]
  16. HanZ. JiaQ. ZhangJ. ChenM. WangL. TongK. HeW. ZhangY. ZhuW. QinJ. WangT. LiuT. MaY. ChenY. ZhaS. ZhangC. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis.J. Exp. Clin. Cancer Res.202342122810.1186/s13046‑023‑02781‑337667382
    [Google Scholar]
  17. Ravindran MenonD. LuoY. ArcaroliJ.J. LiuS. KrishnanKuttyL.N. OsborneD.G. LiY. SamsonJ.M. BagbyS. TanA.C. RobinsonW.A. MessersmithW.A. FujitaM. CDK1 interacts with Sox2 and promotes tumor initiation in human melanoma.Cancer Res.201878236561657410.1158/0008‑5472.CAN‑18‑033030297536
    [Google Scholar]
  18. ZengK. LiW. WangY. ZhangZ. ZhangL. ZhangW. XingY. ZhouC. Inhibition of CDK1 overcomes oxaliplatin resistance by regulating ACSL4-mediated ferroptosis in colorectal cancer.Adv. Sci.20231025230108810.1002/advs.20230108837428466
    [Google Scholar]
  19. ZhangP. KawakamiH. LiuW. ZengX. StrebhardtK. TaoK. HuangS. SinicropeF.A. Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF- mutant human colorectal cancer.Mol. Cancer Res.201816337838910.1158/1541‑7786.MCR‑17‑040429233910
    [Google Scholar]
  20. ZhangY. ChenC. YuT. ChenT. Proteomic analysis of protein ubiquitination events in human primary and metastatic colon adenocarcinoma tissues.Front. Oncol.202010168410.3389/fonc.2020.0168433014840
    [Google Scholar]
  21. KangJ. SergioC.M. SutherlandR.L. MusgroveE.A. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells.BMC Cancer20141413210.1186/1471‑2407‑14‑3224444383
    [Google Scholar]
  22. Diaz-MoralliS. Tarrado-CastellarnauM. MirandaA. CascanteM. Targeting cell cycle regulation in cancer therapy.Pharmacol. Ther.2013138225527110.1016/j.pharmthera.2013.01.01123356980
    [Google Scholar]
  23. LiuH.Y. LiuY.Y. YangF. ZhangL. ZhangF.L. HuX. ShaoZ.M. LiD.Q. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer.Nucleic Acids Res.20204873638365610.1093/nar/gkaa13032112098
    [Google Scholar]
  24. XieB. WangS. JiangN. LiJ.J. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance.Cancer Lett.2019443566610.1016/j.canlet.2018.11.01930481564
    [Google Scholar]
  25. YasukawaM. AndoY. YamashitaT. MatsudaY. ShojiS. MoriokaM.S. KawajiH. ShiozawaK. MachitaniM. AbeT. YamadaS. KanekoM.K. KatoY. FurutaY. KondoT. ShirouzuM. HayashizakiY. KanekoS. MasutomiK. CDK1 dependent phosphorylation of hTERT contributes to cancer progression.Nat. Commun.2020111155710.1038/s41467‑020‑15289‑732214089
    [Google Scholar]
  26. MassaguéJ. G1 cell-cycle control and cancer.Nature2004432701529830610.1038/nature0309415549091
    [Google Scholar]
  27. AgarwalR. NarayanJ. BhattacharyyaA. SaraswatM. TomarA.K. Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets.Cancer Genet.2017216-217375110.1016/j.cancergen.2017.06.00229025594
    [Google Scholar]
  28. WuC.X. WangX.Q. ChokS.H. ManK. TsangS.H.Y. ChanA.C.Y. MaK.W. XiaW. CheungT.T. Blocking CDK1/PDK1/β-catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma.Theranostics20188143737375010.7150/thno.2548730083256
    [Google Scholar]
  29. LiJ. WangY. WangX. YangQ. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: Evidence from integrated bioinformatics analysis.World J. Surg. Oncol.20201815010.1186/s12957‑020‑01817‑832127012
    [Google Scholar]
  30. LiuX. LiuX. LiJ. RenF. Identification and integrated analysis of key biomarkers for diagnosis and prognosis of non-small cell lung cancer.Med. Sci. Monit.2019259280928910.12659/MSM.91862031805030
    [Google Scholar]
  31. LuX. PangY. CaoH. LiuX. TuL. ShenY. JiaX. LeeJ.C. WangY. Integrated screens identify CDK1 as a therapeutic target in advanced gastrointestinal stromal tumors.Cancer Res.20218192481249410.1158/0008‑5472.CAN‑20‑358033727226
    [Google Scholar]
  32. ChangJ.T. WangH.M. ChangK.W. ChenW.H. WenM.C. HsuY.M. YungB.Y.M. ChenI.H. LiaoC.T. HsiehL.L. ChengA.J. Identification of differentially expressed genes in oral squamous cell carcinoma (OSCC): Overexpression of NPM, CDK1 and NDRG1 and underexpression of CHES1.Int. J. Cancer2005114694294910.1002/ijc.2066315645429
    [Google Scholar]
  33. XiQ. HuangM. WangY. ZhongJ. LiuR. XuG. JiangL. WangJ. FangZ. YangS. The expression of CDK1 is associated with proliferation and can be a prognostic factor in epithelial ovarian cancer.Tumour Biol.20153674939494810.1007/s13277‑015‑3141‑825910705
    [Google Scholar]
  34. ShiL. ShangX. NieK. Identification of potential crucial genes associated with the pathogenesis and prognosis of liver hepatocellular carcinoma.J. Clin. Pathol.202033004423
    [Google Scholar]
  35. ShiY.X. ZhuT. ZouT. ZhuoW. ChenY.X. HuangM.S. ZhengW. WangC.J. LiX. MaoX.Y. ZhangW. ZhouH.H. YinJ.Y. LiuZ.Q. Prognostic and predictive values of CDK1 and MAD2L1 in lung adenocarcinoma.Oncotarget2016751852358524310.18632/oncotarget.1325227835911
    [Google Scholar]
  36. JiangP. ZhangM. GuiL. ZhangK. Expression patterns and prognostic values of the cyclin-dependent kinase 1 and cyclin A2 gene cluster in pancreatic adenocarcinoma.J. Int. Med. Res.2020481210.1177/030006052093011333290118
    [Google Scholar]
  37. SunY. LiS.H. ChengJ.W. ChenG. HuangZ.G. GuY.Y. YanH.B. HeM.L. Downregulation of miRNA-205 expression and biological mechanism in prostate cancer tumorigenesis and bone metastasis.BioMed Res. Int.2020202011710.1155/2020/603743433178832
    [Google Scholar]
  38. LiuJ. WuS. XieX. WangZ. LeiQ. Identification of potential crucial genes and key pathways in osteosarcoma.Hereditas202015712910.1186/s41065‑020‑00142‑032665038
    [Google Scholar]
  39. YuanL. ZengG. ChenL. WangG. WangX. CaoX. LuM. LiuX. QianG. XiaoY. WangX. Identification of key genes and pathways in human clear cell renal cell carcinoma (ccRCC) by co-expression analysis.Int. J. Biol. Sci.201814326627910.7150/ijbs.2357429559845
    [Google Scholar]
  40. LiY QuanJ ChenF. MiR-31-5p acts as a tumor suppressor in renal cell carcinoma by targeting cyclin-dependent kinase 1 (CDK1).Biomed. Pharmacother.2019111517526
    [Google Scholar]
  41. SamsteinR.M. LeeC.H. ShoushtariA.N. HellmannM.D. ShenR. JanjigianY.Y. BarronD.A. ZehirA. JordanE.J. OmuroA. KaleyT.J. KendallS.M. MotzerR.J. HakimiA.A. VossM.H. RussoP. RosenbergJ. IyerG. BochnerB.H. BajorinD.F. Al-AhmadieH.A. ChaftJ.E. RudinC.M. RielyG.J. BaxiS. HoA.L. WongR.J. PfisterD.G. WolchokJ.D. BarkerC.A. GutinP.H. BrennanC.W. TabarV. MellinghoffI.K. DeAngelisL.M. AriyanC.E. LeeN. TapW.D. GounderM.M. D’AngeloS.P. SaltzL. StadlerZ.K. ScherH.I. BaselgaJ. RazaviP. KlebanoffC.A. YaegerR. SegalN.H. KuG.Y. DeMatteoR.P. LadanyiM. RizviN.A. BergerM.F. RiazN. SolitD.B. ChanT.A. MorrisL.G.T. Tumor mutational load predicts survival after immunotherapy across multiple cancer types.Nat. Genet.201951220220610.1038/s41588‑018‑0312‑830643254
    [Google Scholar]
  42. LeeM. SamsteinR.M. ValeroC. ChanT.A. MorrisL.G.T. Tumor mutational burden as a predictive biomarker for checkpoint inhibitor immunotherapy.Hum. Vaccin. Immunother.202016111211510.1080/21645515.2019.163113631361563
    [Google Scholar]
  43. LiX. ZhangW. ChenK. Tumor mutation load and frequently mutated genes in gastric cancer-in reply.JAMA Oncol.20195457757810.1001/jamaoncol.2019.013530844035
    [Google Scholar]
  44. YangG. ZhengR. JinZ. Correlations between microsatellite instability and the biological behaviour of tumours.J. Cancer Res. Clin. Oncol.2019145122891289910.1007/s00432‑019‑03053‑431617076
    [Google Scholar]
  45. KimC.G. AhnJ.B. JungM. BeomS.H. KimC. KimJ.H. HeoS.J. ParkH.S. KimJ.H. KimN.K. MinB.S. KimH. KoomW.S. ShinS.J. Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers.Br. J. Cancer20161151253310.1038/bjc.2016.16127228287
    [Google Scholar]
  46. MarrelliD. PolomK. PascaleV. VindigniC. PiagnerelliR. De FrancoL. FerraraF. RovielloG. GarosiL. PetrioliR. RovielloF. Strong prognostic value of microsatellite instability in intestinal type non-cardia gastric cancer.Ann. Surg. Oncol.201623394395010.1245/s10434‑015‑4931‑326530444
    [Google Scholar]
  47. HauseR.J. PritchardC.C. ShendureJ. SalipanteS.J. Classification and characterization of microsatellite instability across 18 cancer types.Nat. Med.201622111342135010.1038/nm.419127694933
    [Google Scholar]
  48. HinshawD.C. ShevdeL.A. The tumor microenvironment innately modulates cancer progression.Cancer Res.201979184557456610.1158/0008‑5472.CAN‑18‑396231350295
    [Google Scholar]
  49. ChengF. XiaoJ. ShaoC. HuangF. WangL. JuY. JiaH. Burden of thyroid cancer from 1990 to 2019 and projections of incidence and mortality until 2039 in China: Findings from global burden of disease study.Front. Endocrinol.20211273821310.3389/fendo.2021.73821334690931
    [Google Scholar]
  50. SharmaM.D. ShindeR. McGahaT.L. HuangL. HolmgaardR.B. WolchokJ.D. MautinoM.R. CelisE. SharpeA.H. FranciscoL.M. PowellJ.D. YagitaH. MellorA.L. BlazarB.R. MunnD.H. The PTEN pathway in T regs is a critical driver of the suppressive tumor microenvironment.Sci. Adv.2015110e150084510.1126/sciadv.150084526601142
    [Google Scholar]
  51. GuJ. ZhangJ. HuangW. TaoT. HuangY. YangL. YangJ. FanY. WangH. Activating miRNA-mRNA network in gemcitabine-resistant pancreatic cancer cell associates with alteration of memory CD4+ T cells.Ann. Transl. Med.20208627910.21037/atm.2020.03.5332355723
    [Google Scholar]
  52. DengL. LuD. BaiY. WangY. BuH. ZhengH. Immune profiles of tumor microenvironment and clinical prognosis among women with triple-negative breast cancer.Cancer Epidemiol. Biomarkers Prev.201928121977198510.1158/1055‑9965.EPI‑19‑046931533938
    [Google Scholar]
  53. YunnaC. MengruH. LeiW. WeidongC. Macrophage M1/M2 polarization.Eur. J. Pharmacol.202087717309010.1016/j.ejphar.2020.17309032234529
    [Google Scholar]
  54. KooshkakiO. DerakhshaniA. HosseinkhaniN. TorabiM. SafaeiS. BrunettiO. RacanelliV. SilvestrisN. BaradaranB. Combination of ipilimumab and nivolumab in cancers: From clinical practice to ongoing clinical trials.Int. J. Mol. Sci.20202112442710.3390/ijms2112442732580338
    [Google Scholar]
  55. EspositoG. PalumboG. CarillioG. ManzoA. MontaninoA. SforzaV. CostanzoR. SandomenicoC. La MannaC. MartucciN. La RoccaA. De LucaG. PiccirilloM.C. De CecioR. BottiG. TotaroG. MutoP. PiconeC. NormannoN. MorabitoA. Immunotherapy in small cell lung cancer.Cancers2020129252210.3390/cancers1209252232899891
    [Google Scholar]
  56. IñarrairaeguiM. MeleroI. SangroB. Immunotherapy of hepatocellular carcinoma: Facts and hopes.Clin. Cancer Res.20182471518152410.1158/1078‑0432.CCR‑17‑028929138342
    [Google Scholar]
  57. LarkinJ. Chiarion-SileniV. GonzalezR. GrobJ.J. RutkowskiP. LaoC.D. CoweyC.L. SchadendorfD. WagstaffJ. DummerR. FerrucciP.F. SmylieM. HoggD. HillA. Márquez-RodasI. HaanenJ. GuidoboniM. MaioM. SchöffskiP. CarlinoM.S. LebbéC. McArthurG. AsciertoP.A. DanielsG.A. LongG.V. BastholtL. RizzoJ.I. BaloghA. MoshykA. HodiF.S. WolchokJ.D. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma.N. Engl. J. Med.2019381161535154610.1056/NEJMoa191083631562797
    [Google Scholar]
  58. FehrenbacherL. SpiraA. BallingerM. KowanetzM. VansteenkisteJ. MazieresJ. ParkK. SmithD. Artal-CortesA. LewanskiC. BraitehF. WaterkampD. HeP. ZouW. ChenD.S. YiJ. SandlerA. RittmeyerA. POPLAR Study Group Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial.Lancet2016387100301837184610.1016/S0140‑6736(16)00587‑026970723
    [Google Scholar]
  59. KeirM.E. ButteM.J. FreemanG.J. SharpeA.H. PD-1 and its ligands in tolerance and immunity.Annu. Rev. Immunol.200826167770410.1146/annurev.immunol.26.021607.09033118173375
    [Google Scholar]
  60. SharpeA.H. PaukenK.E. The diverse functions of the PD1 inhibitory pathway.Nat. Rev. Immunol.201818315316710.1038/nri.2017.10828990585
    [Google Scholar]
  61. SunC. MezzadraR. SchumacherT.N. Regulation and function of the PD-L1 checkpoint.Immunity201848343445210.1016/j.immuni.2018.03.01429562194
    [Google Scholar]
  62. LiuM. WangX. WangL. MaX. GongZ. ZhangS. LiY. Targeting the IDO1 pathway in cancer: From bench to bedside.J. Hematol. Oncol.201811110010.1186/s13045‑018‑0644‑y30068361
    [Google Scholar]
  63. MellorA.L. MunnD.H. Ido expression by dendritic cells: Tolerance and tryptophan catabolism.Nat. Rev. Immunol.200441076277410.1038/nri145715459668
    [Google Scholar]
  64. ThakerAI RaoMS BishnupuriKS. IDO1 metabolites activate beta-catenin signaling to promote cancer cell proliferation and colon tumorigenesis in mice.Gastroenterology20131452416425
    [Google Scholar]
  65. WerfelT.A. ElionD.L. RahmanB. HicksD.J. SanchezV. Gonzales-EricssonP.I. NixonM.J. JamesJ.L. BalkoJ.M. ScherleP.A. KoblishH.K. CookR.S. Treatment-induced tumor cell apoptosis and secondary necrosis drive tumor progression in the residual tumor microenvironment through MerTK and IDO1.Cancer Res.201979117118210.1158/0008‑5472.CAN‑18‑110630413412
    [Google Scholar]
  66. ColeJ.E. AstolaN. CribbsA.P. GoddardM.E. ParkI. GreenP. DaviesA.H. WilliamsR.O. FeldmannM. MonacoC. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development.Proc. Natl. Acad. Sci. USA201511242130331303810.1073/pnas.151782011226438837
    [Google Scholar]
  67. ChenB. AlvaradoD.M. IticoviciM. KauN.S. ParkH. ParikhP.J. ThotalaD. CiorbaM.A. Interferon-induced IDO1 mediates radiation resistance and is a therapeutic target in colorectal cancer.Cancer Immunol. Res.20208445146410.1158/2326‑6066.CIR‑19‑028232127391
    [Google Scholar]
  68. RoskoskiR.Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs.Pharmacol. Res.201913947148810.1016/j.phrs.2018.11.03530508677
    [Google Scholar]
  69. BuryM. Le CalvéB. FerbeyreG. BlankV. LessardF. New insights into CDK regulators: Novel opportunities for cancer therapy.Trends Cell Biol.202131533134410.1016/j.tcb.2021.01.01033676803
    [Google Scholar]
  70. LiuD. ZhouZ. GuoY. DuQ. LiL. CircCDK1 knockdown reduces CDK1 expression by targeting miR-489-3p to suppress the development of breast cancer and strengthen the sensitivity of Tamoxifen.Anticancer Drugs202233328629910.1097/CAD.000000000000126634924499
    [Google Scholar]
  71. BarascuA. BessonP. LeflochO. BougnouxP. JourdanM. CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells.Int. J. Biochem. Cell Biol.200638219620810.1016/j.biocel.2005.08.01516194618
    [Google Scholar]
  72. XieD. SongH. WuT. LiD. HuaK. XuH. ZhaoB. WuC. HuJ. JiC. DengY. FangL. MicroRNA-424 serves an anti-oncogenic role by targeting cyclin-dependent kinase 1 in breast cancer cells.Oncol. Rep.20184063416342610.3892/or.2018.674130272324
    [Google Scholar]
  73. HedblomA. LaursenK. MiftakhovaR. SarwarM. AnagnostakiL. BredbergA. MonganN. GudasL.J. PerssonJ. CDK1 interacts with RARγ and plays an important role in treatment response of acute myeloid leukemia.Cell Cycle20131281251126610.4161/cc.2431323518499
    [Google Scholar]
  74. TongW. HanT.C. WangW. ZhaoJ. LncRNA CASC11 promotes the development of lung cancer through targeting microRNA-302/CDK1 axis.Eur. Rev. Med. Pharmacol. Sci.201923156539654731378894
    [Google Scholar]
  75. KuangY. GuoW. LingJ. XuD. LiaoY. ZhaoH. DuX. WangH. XuM. SongH. WangT. JingB. LiK. HuM. WuW. DengJ. WangQ. Iron-dependent CDK1 activity promotes lung carcinogenesis via activation of the GP130/STAT3 signaling pathway.Cell Death Dis.201910429710.1038/s41419‑019‑1528‑y30931929
    [Google Scholar]
  76. PiaoJ. ZhuL. SunJ. LiN. DongB. YangY. ChenL. High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma.Gene2019701152210.1016/j.gene.2019.02.08130898709
    [Google Scholar]
  77. HuangJ. ChenP. LiuK. LiuJ. ZhouB. WuR. PengQ. LiuZ.X. LiC. KroemerG. LotzeM. ZehH. KangR. TangD. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer.Gut202170589089910.1136/gutjnl‑2019‑32044132816920
    [Google Scholar]
  78. TongY. HuangY. ZhangY. ZengX. YanM. XiaZ. LaiD. DPP3/CDK1 contributes to the progression of colorectal cancer through regulating cell proliferation, cell apoptosis, and cell migration.Cell Death Dis.202112652910.1038/s41419‑021‑03796‑434023852
    [Google Scholar]
  79. TianZ. CaoS. LiC. XuM. WeiH. YangH. SunQ. RenQ. ZhangL. LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/ CDK1.J. Cell. Physiol.201923444799481110.1002/jcp.2727930317572
    [Google Scholar]
  80. YangW. ChoH. ShinH.Y. ChungJ.Y. KangE.S. LeeE. KimJ.H. Accumulation of cytoplasmic Cdk1 is associated with cancer growth and survival rate in epithelial ovarian cancer.Oncotarget2016731494814949710.18632/oncotarget.1037327385216
    [Google Scholar]
  81. YinS. YangS. LuoY. LuJ. HuG. WangK. ShaoY. ZhouS. KooS. QiuY. WangT. YuH. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma.Biochem. Pharmacol.202119311480610.1016/j.bcp.2021.11480634673013
    [Google Scholar]
  82. TangJ. PanH. WangW. QiC. GuC. ShangA. ZhuJ. MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the development of cervical cancer.Clin. Transl. Oncol.202123112323233410.1007/s12094‑021‑02687‑634387848
    [Google Scholar]
  83. YingX. CheX. WangJ. ZouG. YuQ. ZhangX. CDK1 serves as a novel therapeutic target for endometrioid endometrial cancer.J. Cancer20211282206221510.7150/jca.5113933758599
    [Google Scholar]
  84. WillderJ.M. HengS.J. McCallP. AdamsC.E. TannahillC. FyffeG. SeywrightM. HorganP.G. LeungH.Y. UnderwoodM.A. EdwardsJ. Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients.Br. J. Cancer2013108113914810.1038/bjc.2012.48023321516
    [Google Scholar]
  85. ZhengH.P. HuangZ.G. HeR.Q. LuH.P. DangY.W. LinP. WenD.Y. QinY.Y. LuoB. LiX.J. MoW.J. YangH. HeY. ChenG. Integrated assessment of CDK1 upregulation in thyroid cancer.Am. J. Transl. Res.201911127233725431934275
    [Google Scholar]
  86. ChenH. HuangQ. ZhaiD.Z. DongJ. WangA.D. LanQ. CDK1 expression and effects of CDK1 silencing on the malignant phenotype of glioma cells.Zhonghua Zhong Liu Za Zhi200729748448818069625
    [Google Scholar]
  87. ChenX. ZhangF.H. ChenQ.E. WangY.Y. WangY.L. HeJ.C. ZhouJ. The clinical significance of CDK1 expression in oral squamous cell carcinoma.Med. Oral Patol. Oral Cir. Bucal2015201e7e1210.4317/medoral.1984125129248
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322212240620111356
Loading
/content/journals/cmc/10.2174/0109298673322212240620111356
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cancer immunotherapy; CDK1; gastric cancer; immune infiltration; pan-cancer; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test