Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Neuroblastoma (NB) is a rare embryonal neuroendocrine tumor that primarily affects children aged 5 years old or younger. In advanced stages, NB requires a multifaceted treatment approach, including a combination of surgery, chemo, and radiation therapy. However, high-risk NB is still associated with poor prognosis, long-term side effects, and a high chance of relapse. To counter the drawbacks of conventional treatments, the antitumor properties of natural substances have been extensively studied in recent years. Curcumin (CUR) is a polyphenol of the plants of the species and is well-known for its potent biological activities, such as antioxidant, anti-inflammatory, and anticancer properties. CUR may function as a potential therapeutic compound in NB cells by decreasing cell viability, proliferation, and migration, while inducing oxidative stress and apoptosis in cancer cells. Different molecular pathways have been suggested for this anti-cancer activity of CUR, such as caspase-3 activation, p53 and Bcl-2 signaling pathways, inhibition of AKT and FOXO3 nuclear translocation, and regulation of the chaperoning system proteins. Despite its favorable effects, CUR faces several challenges in treating cancer, such as low bioavailability and bioactivity. Consequently, recent studies have focused on the development of CUR nanoformulations and new drug delivery systems, aiming to overcome these barriers. This review provides an updated summary of the recent literature regarding CUR’s protective role in NB and the potential underlying mechanisms. In conclusion, CUR and its nanoformulations show great potential for NB management, and we suggest additional well-designed basic and preclinical studies to explore CUR's efficiency in detail, especially its therapeutic effectiveness in humans.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345693241218070409
2025-01-17
2025-12-17
Loading full text...

Full text loading...

References

  1. BiemarF. FotiM. Global progress against cancer-challenges and opportunities.Cancer Biol. Med.201310418318624349827
    [Google Scholar]
  2. ParkerA.L. BenguiguiM. FornettiJ. GoddardE. LucottiS. Insua-RodríguezJ. WiegmansA.P. Current challenges in metastasis research and future innovation for clinical translation.Clin. Exp. Metastasis202239226327710.1007/s10585‑021‑10144‑535072851
    [Google Scholar]
  3. NewmanE.A. AbdessalamS. AldrinkJ.H. AustinM. HeatonT.E. BrunyJ. EhrlichP. DasguptaR. BaertschigerR.M. LautzT.B. RheeD.S. LanghamM.R.Jr MalekM.M. MeyersR.L. NathanJ.D. WeilB.R. PolitesS. MadonnaM.B. Update on neuroblastoma.J. Pediatr. Surg.201954338338910.1016/j.jpedsurg.2018.09.00430305231
    [Google Scholar]
  4. SmithM.A. SeibelN.L. AltekruseS.F. RiesL.A.G. MelbertD.L. O’LearyM. SmithF.O. ReamanG.H. Outcomes for children and adolescents with cancer: challenges for the twenty-first century.J. Clin. Oncol.201028152625263410.1200/JCO.2009.27.042120404250
    [Google Scholar]
  5. ValterK. ZhivotovskyB. GogvadzeV. Cell death-based treatment of neuroblastoma.Cell Death Dis.20189211310.1038/s41419‑017‑0060‑129371588
    [Google Scholar]
  6. ZhaiK. BrockmüllerA. KubatkaP. ShakibaeiM. BüsselbergD. Curcumin’s beneficial effects on neuroblastoma: mechanisms, challenges, and potential solutions.Biomolecules20201011146910.3390/biom1011146933105719
    [Google Scholar]
  7. FarahzadJ.A. SamarghandianS. ShoshtariM.E. SargolzaeiJ. HossinimoghadamH. Anti-tumor activity of safranal against neuroblastoma cells.Pharmacogn. Mag.20141038Suppl. 241910.4103/0973‑1296.13329624991121
    [Google Scholar]
  8. QiuB. MatthayK.K. Advancing therapy for neuroblastoma.Nat. Rev. Clin. Oncol.202219851553310.1038/s41571‑022‑00643‑z35614230
    [Google Scholar]
  9. WhittleS.B. SmithV. DohertyE. ZhaoS. McCartyS. ZageP.E. Overview and recent advances in the treatment of neuroblastoma.Expert Rev. Anticancer Ther.201717436938610.1080/14737140.2017.128523028142287
    [Google Scholar]
  10. HaqueA. BrazeauD. AminA.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds.Eur. J. Cancer202114916518310.1016/j.ejca.2021.03.00933865202
    [Google Scholar]
  11. AsmaS.T. AcarozU. ImreK. MorarA. ShahS.R.A. HussainS.Z. Arslan-AcarozD. DemirbasH. Hajrulai-MusliuZ. IstanbullugilF.R. SoleimanzadehA. MorozovD. ZhuK. HermanV. AyadA. AthanassiouC. InceS. Natural products/bioactive compounds as a source of anticancer drugs.Cancers (Basel)20221424620310.3390/cancers1424620336551687
    [Google Scholar]
  12. KiskovaT. KubatkaP. BüsselbergD. KassayovaM. The plant-derived compound resveratrol in brain cancer: a review.Biomolecules202010116110.3390/biom1001016131963897
    [Google Scholar]
  13. KlingerN.V. MittalS. Therapeutic potential of curcumin for the treatment of brain tumors.Oxid. Med. Cell. Longev.201620161932408510.1155/2016/932408527807473
    [Google Scholar]
  14. ZhouY. ZhengJ. LiY. XuD.P. LiS. ChenY.M. LiH.B. Natural polyphenols for prevention and treatment of cancer.Nutrients20168851510.3390/nu808051527556486
    [Google Scholar]
  15. BriguglioG. CostaC. PollicinoM. GiambòF. CataniaS. FengaC. Polyphenols in cancer prevention: new insights.Int. J. Funct. Nutr.202012910.3892/ijfn.2020.9
    [Google Scholar]
  16. KafoudA. SalahuddinZ. IbrahimR.S. Al-JanahiR. MazurakovaA. KubatkaP. BüsselbergD. Potential treatment options for neuroblastoma with polyphenols through anti-proliferative and apoptotic mechanisms.Biomolecules202313356310.3390/biom1303056336979499
    [Google Scholar]
  17. AhmadiS.S. BagherzadehO. SargaziM. KalantarF. NajafiM.A.E. VahediM.M. AfshariA.R. SahebkarA. Harnessing the therapeutic potential of phytochemicals in neuroblastoma.Biofactors2024biof.211510.1002/biof.211539189819
    [Google Scholar]
  18. Pulido-MoranM. Moreno-FernandezJ. Ramirez-TortosaC. Ramirez-TortosaM.C. Curcumin and health.Molecules201621326410.3390/molecules2103026426927041
    [Google Scholar]
  19. UroševićM. NikolićL. GajićI. NikolićV. DinićA. MiljkovićV. Curcumin: biological activities and modern pharmaceutical forms.Antibiotics (Basel)202211213510.3390/antibiotics1102013535203738
    [Google Scholar]
  20. Jafari-NozadA.M. JafariA. YousefiS. BakhshiH. FarkhondehT. SamarghandianS. Anti-gout and urate-lowering potentials of curcumin: A review from bench to beside.Curr. Med. Chem.202431243715373237488765
    [Google Scholar]
  21. BahramiA. Jafari-NozadA.M. KarbasiS. AyadilordM. FernsG.A. Efficacy of curcumin on cognitive function scores in women with premenstrual syndrome and dysmenorrhea: a triple-blind, placebo-controlled clinical trial.Chin. J. Integr. Med.202329538739310.1007/s11655‑023‑3732‑337119345
    [Google Scholar]
  22. Abdollahi-KariznoM. ChahkandiM. RajabiS. RoshanravanB. Jafari-NozadA.M. AschnerM. SamargahndianS. FarkhondehT. The protective effect of curcumin against cardiotoxic effects induced by chronic exposure to chlorpyrifos.Curr. Mol. Med.202424567668210.2174/011566524025164623091910092037877145
    [Google Scholar]
  23. Jafari-NozadA.M. JafariA. ZangooieA. BehdadfardM. ZangoueiA.S. AschnerM. FarkhondehT. SamarghandianS. Curcumin combats against gastrointestinal cancer: a review of current knowledge regarding epigenetics mechanisms with a focus on DNA methylation.Curr. Med. Chem.202330384374438810.2174/092986733066623011209280236644869
    [Google Scholar]
  24. Jafari-NozadA.M. JafariA. AschnerM. FarkhondehT. SamarghandianS. Curcumin combats against organophosphate pesticides toxicity: a review of the current evidence and molecular pathways.Curr. Med. Chem.202330202312233910.2174/092986732966622081712580035980068
    [Google Scholar]
  25. MenonV.P. SudheerA.R. Antioxidant and anti-inflammatory properties of curcumin.Adv. Exp. Med. Biol.200759510512510.1007/978‑0‑387‑46401‑5_317569207
    [Google Scholar]
  26. FadusM.C. LauC. BikhchandaniJ. LynchH.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent.J. Tradit. Complement. Med.20177333934610.1016/j.jtcme.2016.08.00228725630
    [Google Scholar]
  27. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  28. TiwariR. SiddiquiM.H. MahmoodT. FarooquiA. BaggaP. AhsanF. ShamimA. An exploratory analysis on the toxicity & safety profile of Polyherbal combination of curcumin, quercetin and rutin.Clinical Phytoscience2020618210.1186/s40816‑020‑00228‑2
    [Google Scholar]
  29. ParkJ.R. EggertA. CaronH. Neuroblastoma: biology, prognosis, and treatment.Pediatr. Clin. North Am.200855197120, x10.1016/j.pcl.2007.10.01418242317
    [Google Scholar]
  30. AraT. DeClerckY.A. Mechanisms of invasion and metastasis in human neuroblastoma.Cancer Metastasis Rev.200725464565710.1007/s10555‑006‑9028‑917160711
    [Google Scholar]
  31. LiuS. YinW. LinY. HuangS. XueS. SunG. WangC. Metastasis pattern and prognosis in children with neuroblastoma.World J. Surg. Oncol.202321113010.1186/s12957‑023‑03011‑y37046344
    [Google Scholar]
  32. TakitaJ. Molecular basis and clinical features of neuroblastoma.Japan Med. Assoc. J.202144321331
    [Google Scholar]
  33. CarénH. KryhH. NethanderM. SjöbergR.M. TrägerC. NilssonS. AbrahamssonJ. KognerP. MartinssonT. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset.Proc. Natl. Acad. Sci. USA201010794323432810.1073/pnas.091068410720145112
    [Google Scholar]
  34. IrwinM.S. ParkJ.R. Neuroblastoma.Pediatr. Clin. North Am.201562122525610.1016/j.pcl.2014.09.01525435121
    [Google Scholar]
  35. ParkJ.R. BagatellR. LondonW.B. MarisJ.M. CohnS.L. MattayK.M. HogartyM. Children’s Oncology Group’s 2013 blueprint for research: Neuroblastoma.Pediatr. Blood Cancer201360698599310.1002/pbc.2443323255319
    [Google Scholar]
  36. ZafarA. WangW. LiuG. WangX. XianW. McKeonF. FosterJ. ZhouJ. ZhangR. Molecular targeting therapies for neuroblastoma: Progress and challenges.Med. Res. Rev.2021412961102110.1002/med.2175033155698
    [Google Scholar]
  37. SmithV. FosterJ. High-risk neuroblastoma treatment review.Children (Basel)20185911410.3390/children509011430154341
    [Google Scholar]
  38. SwiftC.C. EklundM.J. KravekaJ.M. AlazrakiA.L. Updates in diagnosis, management, and treatment of neuroblastoma.Radiographics201838256658010.1148/rg.201817013229528815
    [Google Scholar]
  39. Patiño-MoralesC.C. Jaime-CruzR. Sánchez-GómezC. CoronaJ.C. Hernández-CruzE.Y. Kalinova-JelezovaI. Pedraza-ChaverriJ. MaldonadoP.D. Silva-IslasC.A. Salazar-GarcíaM. Antitumor effects of natural compounds derived from Allium sativum on neuroblastoma: an overview.Antioxidants20211114810.3390/antiox1101004835052552
    [Google Scholar]
  40. KurodaT. SaekiM. HonnaT. KumagaiM. MasakiH. Late complications after surgery in patients with neuroblastoma.J. Pediatr. Surg.200641122037204010.1016/j.jpedsurg.2006.08.00317161200
    [Google Scholar]
  41. HasanM.K. NafadyA. TakatoriA. KishidaS. OhiraM. SuenagaY. HossainS. AkterJ. OguraA. NakamuraY. KadomatsuK. NakagawaraA. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma.Sci. Rep.201331345010.1038/srep0345024356251
    [Google Scholar]
  42. SauterE.R. Cancer prevention and treatment using combination therapy with natural compounds.Expert Rev. Clin. Pharmacol.202013326528510.1080/17512433.2020.173821832154753
    [Google Scholar]
  43. NiedzwieckiA. RoomiM. KalinovskyT. RathM. Anticancer efficacy of polyphenols and their combinations.Nutrients20168955210.3390/nu809055227618095
    [Google Scholar]
  44. LeisK. BaskaA. BereźnickaW. MarjańskaA. MazurE. LewandowskiB.T. KałużnyK. GałązkaP. Resveratrol in the treatment of neuroblastoma: a review.Rev. Neurosci.202031887388110.1515/revneuro‑2020‑002132920543
    [Google Scholar]
  45. NaveenC.R. GaikwadS. Agrawal-RajputR. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells.Phytomedicine201623773674410.1016/j.phymed.2016.03.01327235712
    [Google Scholar]
  46. DasA. BanikN.L. RayS.K. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids.Int. J. Cancer2006119112575258510.1002/ijc.2222816988947
    [Google Scholar]
  47. SinghalJ. NagaprashanthaL.D. VatsyayanR. Ashutosh AwasthiS. SinghalS.S. Didymin induces apoptosis by inhibiting N-Myc and upregulating RKIP in neuroblastoma.Cancer Prev. Res. (Phila.)20125347348310.1158/1940‑6207.CAPR‑11‑031822174364
    [Google Scholar]
  48. PisanoM. PagnanG. DettoriM.A. CossuS. CaffaI. SassuI. EmioniteL. FabbriD. CilliM. PastorinoF. PalmieriG. DeloguG. PonzoniM. RozzoC. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells.Mol. Cancer20109113710.1186/1476‑4598‑9‑13720525240
    [Google Scholar]
  49. YenC.M. TsaiC.W. ChangW.S. YangY.C. HungY.W. LeeH.T. ShenC.C. SheuM.L. WangJ.Y. GongC.L. ChengW.Y. BauD.T. Novel combination of arsenic trioxide (As2O3) plus resveratrol in inducing programmed cell death of human neuroblastoma SK-N-SH cells.Canc. Geno. Proteo.201815645346010.21873/cgp.2010430343279
    [Google Scholar]
  50. JantovaS. CipakL. LetasiovaS. Berberine induces apoptosis through a mitochondrial/caspase pathway in human promonocytic U937 cells.Toxicol. In Vitro2007211253110.1016/j.tiv.2006.07.01517011159
    [Google Scholar]
  51. AfzalA. OriqatG. Akram KhanM. JoseJ. AfzalM. Chemistry and biochemistry of terpenoids from Curcuma and related species.JBAPN20133115510.1080/22311866.2013.782757
    [Google Scholar]
  52. El-SaadonyM.T. YangT. KormaS.A. SitohyM. Abd El-MageedT.A. SelimS. Al JaouniS.K. SalemH.M. MahmmodY. SolimanS.M. Mo’menS.A.A. MosaW.F.A. El-WafaiN.A. Abou-AlyH.E. SitohyB. Abd El-HackM.E. El-TarabilyK.A. SaadA.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review.Front. Nutr.20239104025910.3389/fnut.2022.104025936712505
    [Google Scholar]
  53. LestariM.L.A.D. IndrayantoG. Curcumin.Profiles Drug Subst. Excip. Relat. Methodol.20143911320410.1016/B978‑0‑12‑800173‑8.00003‑924794906
    [Google Scholar]
  54. AzarkarS. AbediM. LavasaniA.S.O. AmmamehA.H. GoharipanahF. BaloochiK. BakhshiH. JafariA. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review.Phytother. Res.20243863080312110.1002/ptr.811938613154
    [Google Scholar]
  55. GopinathH. KarthikeyanK. Turmeric: A condiment, cosmetic and cure.Indian J. Dermatol. Venereol. Leprol.2018841162110.4103/ijdvl.IJDVL_1143_1629243674
    [Google Scholar]
  56. Pourbagher-ShahriA.M. FarkhondehT. AshrafizadehM. TalebiM. SamargahndianS. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades.Biomed. Pharmacother.202113611121410.1016/j.biopha.2020.11121433450488
    [Google Scholar]
  57. FarkhondehT. SamarghandianS. Pourbagher-ShahriA.M. SedaghatM. The impact of curcumin and its modified formulations on Alzheimer’s disease.J. Cell. Physiol.201923410169531696510.1002/jcp.2841130847942
    [Google Scholar]
  58. KhamarT. JahaniN. Jafari-NozadA.M. FarkhondehT. SamarghandianS. Beneficial effects of curcumin in polycystic ovary syndrome: a review of recent literature and underlying mechanisms.Curr. Med. Chem.20243210.2174/010929867332050224100207542739421997
    [Google Scholar]
  59. SamarghandianS. Azimi-NezhadM. BorjiA. FarkhondehT. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.Phytother. Res.20163081345135310.1002/ptr.563827279282
    [Google Scholar]
  60. VallianouN.G. EvangelopoulosA. SchizasN. KazazisC. Potential anticancer properties and mechanisms of action of curcumin.Anticancer Res.201535264565125667441
    [Google Scholar]
  61. TomehM.A. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms2005103330818786
    [Google Scholar]
  62. ZoiV. GalaniV. LianosG.D. VoulgarisS. KyritsisA.P. AlexiouG.A. The role of curcumin in cancer treatment.Biomedicines202199108610.3390/biomedicines909108634572272
    [Google Scholar]
  63. KuttanR. BhanumathyP. NirmalaK. GeorgeM.C. Potential anticancer activity of turmeric (Curcuma longa).Cancer Lett.198529219720210.1016/0304‑3835(85)90159‑44075289
    [Google Scholar]
  64. WillenbacherE. KhanS. MujicaS. TrapaniD. HussainS. WolfD. WillenbacherW. SpizzoG. SeeberA. Curcumin: new insights into an ancient ingredient against cancer.Int. J. Mol. Sci.2019208180810.3390/ijms2008180831013694
    [Google Scholar]
  65. GiordanoA. TommonaroG. Curcumin and cancer.Nutrients201911102376
    [Google Scholar]
  66. BoroumandN. SamarghandianS. HashemyS.I. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin.J. Herbmed. Pharmacol.20187421121910.15171/jhp.2018.33
    [Google Scholar]
  67. KlaunigJ.E. Oxidative stress and cancer.Curr. Pharm. Des.201924404771477810.2174/138161282566619021512171230767733
    [Google Scholar]
  68. HayesJ.D. Dinkova-KostovaA.T. TewK.D. Oxidative stress in cancer.Cancer Cell202038216719710.1016/j.ccell.2020.06.00132649885
    [Google Scholar]
  69. MurataM. Inflammation and cancer.Environ. Health Prev. Med.20182315010.1186/s12199‑018‑0740‑130340457
    [Google Scholar]
  70. JinC. LeeJ. ParkC. ChoiY. KimG. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia.Acta Pharmacol. Sin.200728101645165110.1111/j.1745‑7254.2007.00651.x17883952
    [Google Scholar]
  71. MoonD.O. Curcumin in cancer and inflammation: an in-depth exploration of molecular interactions, therapeutic potentials, and the role in disease management.Int. J. Mol. Sci.2024255291110.3390/ijms2505291138474160
    [Google Scholar]
  72. HuY. ChengL. DuS. WangK. LiuS. Antioxidant curcumin induces oxidative stress to kill tumor cells.Oncol. Lett.20232726710.3892/ol.2023.1420038192657
    [Google Scholar]
  73. YangK. DuanY. ZhouX. YinX. GuanG. ZhangH. DongQ. YangK. NF-κB signaling pathway confers neuroblastoma cells migration and invasion ability via the regulation of CXCR4.Med. Sci. Monit.2014202746275210.12659/MSM.89259725527973
    [Google Scholar]
  74. SungB. PrasadS. YadavV.R. AggarwalB.B. Cancer cell signaling pathways targeted by spice-derived nutraceuticals.Nutr. Cancer201264217319710.1080/01635581.2012.63055122149093
    [Google Scholar]
  75. GuptaS.C. KunnumakkaraA.B. AggarwalS. AggarwalB.B. Inflammation, a double-edge sword for cancer and other age-related diseases.Front. Immunol.20189216010.3389/fimmu.2018.0216030319623
    [Google Scholar]
  76. StiglianoC. KeyJ. RamirezM. AryalS. DecuzziP. Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging.Adv. Funct. Mater.201525223371337910.1002/adfm.201500627
    [Google Scholar]
  77. ChoudhuriT. PalS. AgwarwalM.L. DasT. SaG. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction.FEBS Lett.20025121-333434010.1016/S0014‑5793(02)02292‑511852106
    [Google Scholar]
  78. Yavuz TürelG. Şahin CalapoğluN. BayramD. ÖzgöçmenM. ToğayV.A. Evgen TülüceoğluE. Curcumin induces apoptosis through caspase dependent pathway in human colon carcinoma cells.Mol. Biol. Rep.20224921351136010.1007/s11033‑021‑06965‑y34806141
    [Google Scholar]
  79. SabetS. RashidinejadA. MeltonL.D. McGillivrayD.J. Recent advances to improve curcumin oral bioavailability.Trends Food Sci. Technol.202111025326610.1016/j.tifs.2021.02.006
    [Google Scholar]
  80. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  81. HewlingsS. KalmanD. Curcumin: a review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  82. TabanelliR. BrogiS. CalderoneV. Improving curcumin bioavailability: Current strategies and future perspectives.Pharmaceutics20211310171510.3390/pharmaceutics1310171534684008
    [Google Scholar]
  83. ParkJ.R. EggertA. CaronH. Neuroblastoma: biology, prognosis, and treatment.Hematol. Oncol. Clin. North Am.2010241658610.1016/j.hoc.2009.11.01120113896
    [Google Scholar]
  84. TolbertV.P. MatthayK.K. Neuroblastoma: clinical and biological approach to risk stratification and treatment.Cell Tissue Res.2018372219520910.1007/s00441‑018‑2821‑229572647
    [Google Scholar]
  85. YasukawaK. TabataK. Promising natural products as anti-cancer agents against neuroblastoma.Int. J. Cancer Res. Prev20158267
    [Google Scholar]
  86. KabirM.T. RahmanM.H. AkterR. BehlT. KaushikD. MittalV. PandeyP. AkhtarM.F. SaleemA. AlbadraniG.M. KamelM. KhalifaS.A.M. El-SeediH.R. Abdel-DaimM.M. Potential role of curcumin and its nanoformulations to treat various types of cancers.Biomolecules202111339210.3390/biom1103039233800000
    [Google Scholar]
  87. KorffJ.M. MenkeK. SchwermerM. FalkeK. SchrammA. LänglerA. ZuzakT.J. Antitumoral effects of curcumin (Curcuma longa L.) and Thymoquinone (Nigella sativa L.) on neuroblastoma cell lines.Complement. Med. Res.202128216416810.1159/00050976533075785
    [Google Scholar]
  88. YuX. ChenL. TangM. YangZ. FuA. WangZ. WangH. Revealing the effects of curcumin on SH-SY5Y neuronal cells: a combined study from cellular viability, morphology, and biomechanics.J. Agric. Food Chem.201967154273427910.1021/acs.jafc.9b0031430929442
    [Google Scholar]
  89. YeZ. ChenD. ZhengR. ChenH. XuT. WangC. ZhuS. GaoX. ZhangJ. LiD. PangY. ZhuB. LiY. JiaW. Curcumin induced G2/M cycle arrest in SK-N-SH neuroblastoma cells through the ROS-mediated p53 signaling pathway.J. Food Biochem.2021459e1388810.1111/jfbc.1388834331475
    [Google Scholar]
  90. PiconeP. NuzzoD. CaruanaL. MessinaE. ScafidiV. Di CarloM. Curcumin induces apoptosis in human neuroblastoma cells via inhibition of AKT and Foxo3a nuclear translocation.Free Radic. Res.201448121397140810.3109/10715762.2014.96041025179440
    [Google Scholar]
  91. MacarioA.J.L. Conway de MacarioE. Chaperonopathies and chaperonotherapy.FEBS Lett.2007581193681368810.1016/j.febslet.2007.04.03017475257
    [Google Scholar]
  92. TangH. LiJ. LiuX. WangG. LuoM. DengH. Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway.Sci. Rep.2016612838810.1038/srep2838827325206
    [Google Scholar]
  93. GhoshJ.C. DohiT. KangB.H. AltieriD.C. Hsp60 regulation of tumor cell apoptosis.J. Biol. Chem.200828385188519410.1074/jbc.M70590420018086682
    [Google Scholar]
  94. Marino GammazzaA. Caruso BavisottoC. DavidS. BaroneR. RappaF. CampanellaC. Conway de MacarioE. CappelloF. MacarioJ.L.A. HSP60 is a ubiquitous player in the physiological and pathogenic interactions between the chaperoning and the immune systems.Curr. Immunol. Rev.20171314455
    [Google Scholar]
  95. Caruso BavisottoC. Marino GammazzaA. Lo CascioF. MocciaroE. VitaleA.M. VergilioG. PaceA. CappelloF. CampanellaC. Palumbo PiccionelloA. Curcumin affects HSP60 folding activity and levels in neuroblastoma cells.Int. J. Mol. Sci.202021266110.3390/ijms2102066131963896
    [Google Scholar]
  96. KreczmerB. DybaB. BarbaszA. Rudolphi-SzydłoE. Curcumin’s membrane localization and disruptive effects on cellular processes-insights from neuroblastoma, leukemic cells, and Langmuir monolayers.Sci. Rep.20241411663610.1038/s41598‑024‑67713‑339025941
    [Google Scholar]
  97. KasiP.D. TamilselvamR. Skalicka-WoźniakK. NabaviS.F. DagliaM. BishayeeA. Pazoki-toroudiH. NabaviS.M. Molecular targets of curcumin for cancer therapy: an updated review.Tumour Biol.20163710130171302810.1007/s13277‑016‑5183‑y27468716
    [Google Scholar]
  98. KohandelZ. FarkhondehT. AschnerM. SamarghandianS. Nrf2 a molecular therapeutic target for Astaxanthin.Biomedicine & Pharmacotherapy2021137111374
    [Google Scholar]
  99. AgrawalD.K. MishraP.K. Curcumin and its analogues: Potential anticancer agents.Med. Res. Rev.201030581886010.1002/med.2018820027668
    [Google Scholar]
  100. AshrafizadehM. FekriH.S. AhmadiZ. FarkhondehT. SamarghandianS. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway.J. Cell. Biochem.202012121575158510.1002/jcb.2939231609017
    [Google Scholar]
  101. Di ZanniE. FornasariD. RavazzoloR. CeccheriniI. BachettiT. Identification of novel pathways and molecules able to down-regulate PHOX2B gene expression by in vitro drug screening approaches in neuroblastoma cells.Exp. Cell Res.20153361435710.1016/j.yexcr.2015.03.02525882494
    [Google Scholar]
  102. MosseY.P. LaudenslagerM. KhaziD. CarlisleA.J. WinterC.L. RappaportE. MarisJ.M. Germline PHOX2B mutation in hereditary neuroblastoma.Am. J. Hum. Genet.200475472773010.1086/42453015338462
    [Google Scholar]
  103. El-ShazlyS.S. HassanN.M. AbdellateifM.S. El TaweelM.A. Abd-ElwahabN. EbeidE.N. The role of β-catenin and paired-like homeobox 2B (PHOX2B) expression in neuroblastoma patients; predictive and prognostic value.Exp. Mol. Pathol.201911010427210.1016/j.yexmp.2019.10427231220430
    [Google Scholar]
  104. ZhangQ. ZhuangJ. DengY. ZhaoX. TangB. YaoD. ZhaoW. ChangC. LuQ. ChenW. ZhangS. JiC. CaoL. GuoH. GOLPH3 is a potential therapeutic target and a prognostic indicatior of poor survival in bladder cancer treated by cystectomy.Oncotarget2015631321773219210.18632/oncotarget.486726375441
    [Google Scholar]
  105. XueY. WuG. LiaoY. XiaoG. MaX. ZouX. ZhangG. XiaoR. WangX. LiuQ. LongD. YangJ. XuH. LiuF. LiuM. XieK. HuangR. GOLPH3 is a novel marker of poor prognosis and a potential therapeutic target in human renal cell carcinoma.Br. J. Cancer201411092250226010.1038/bjc.2014.12424595000
    [Google Scholar]
  106. OgnibeneM. PodestàM. GaraventaA. PezzoloA. Role of GOLPH3 and TPX2 in neuroblastoma DNA damage response and cell resistance to chemotherapy.Int. J. Mol. Sci.20192019476410.3390/ijms2019476431557970
    [Google Scholar]
  107. SidharH. GiriR.K. Induction of Bex genes by curcumin is associated with apoptosis and activation of p53 in N2a neuroblastoma cells.Sci. Rep.2017714142010.1038/srep4142028145533
    [Google Scholar]
  108. KaziJ.U. KabirN.N. RönnstrandL. Brain-Expressed X-linked (BEX) proteins in human cancers..Biochimica et Biophysica Acta (BBA)- Rev. Can.201518562226233
    [Google Scholar]
  109. FoltzG. RyuG.Y. YoonJ.G. NelsonT. FaheyJ. FrakesA. LeeH. FieldL. ZanderK. SibenallerZ. RykenT.C. VibhakarR. HoodL. MadanA. Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma.Cancer Res.200666136665667410.1158/0008‑5472.CAN‑05‑445316818640
    [Google Scholar]
  110. GuoF. ZhaoW. YangL. YangY. WangS. WangY. LiZ. WangJ. Truncated apolipoprotein C-I induces apoptosis in neuroblastoma by activating caspases in the extrinsic and intrinsic pathways.Oncol. Rep.20173831797180510.3892/or.2017.581928713944
    [Google Scholar]
  111. LiangC. LiJ. ZhangZ. ZhangJ. LiuS. YangJ. Suppression of MIF-induced neuronal apoptosis may underlie the therapeutic effects of effective components of Fufang Danshen in the treatment of Alzheimer’s disease.Acta Pharmacol. Sin.20183991421143810.1038/aps.2017.21029770796
    [Google Scholar]
  112. NamkaewJ. JaroonwitchawanT. RujanapunN. SaeleeJ. NoisaP. Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells.In Vitro Cell. Dev. Biol. Anim.201854962963910.1007/s11626‑018‑0288‑930136034
    [Google Scholar]
  113. Page-McCawA. EwaldA.J. WerbZ. Matrix metalloproteinases and the regulation of tissue remodelling.Nat. Rev. Mol. Cell Biol.20078322123310.1038/nrm212517318226
    [Google Scholar]
  114. NilandS. RiscanevoA.X. EbleJ.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression.Int. J. Mol. Sci.202123114610.3390/ijms2301014635008569
    [Google Scholar]
  115. ReddyR.A. Sai VarshiniM. KumarR.S. Matrix Metalloproteinase-2 (MMP-2): as an essential factor in cancer progression.Recent Patents Anticancer Drug Discov.2023251264410.2174/011574892825175423092209554437861020
    [Google Scholar]
  116. FonsekaP. GangodaL. PathanM. Di GiannataleA. MathivananS. Combinatorial treatment of curcumin or silibinin with doxorubicin sensitises high-risk neuroblastoma.202010.20517/2394‑4722.2019.024
    [Google Scholar]
  117. Ünlüİ. Özdemirİ. ÖztürkŞ. TuncerM.C. Effects of curcumin and doxorubicin on the viability of neuroblastoma cancer cell line.Cukurova Anestezi ve Cerrahi Bilimler Dergisi20247319119410.36516/jocass.1520583
    [Google Scholar]
  118. HuangH. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances.Sensors (Basel)20181810324910.3390/s1810324930262739
    [Google Scholar]
  119. Azimirad, M.; Noori, M.; Azimirad, F.; Gholami, F.; Naseri, K.; Yadegar, A.; Asadzadeh, Aghdaei. H.; Zali, M.R. Curcumin and capsaicin regulate apoptosis and alleviate intestinal inflammation induced by Clostridioides difficile in vitro.Ann. Clin. Microbiol. Antimicrob.202226;2114110.1186/s12941‑022‑00533‑3
    [Google Scholar]
  120. ÇetinF. KosbaS. AbdikH. BolatZ.B. Synergistic anti-proliferative and apoptotic effect of NVP-BEZ235 and curcumin on human SH-SY5Y neuroblastoma cells.Med. Oncol.20234111110.1007/s12032‑023‑02239‑838071672
    [Google Scholar]
  121. NiwanoY. KohzakiH. ShiratoM. ShishidoS. NakamuraK. Putative mechanisms underlying the beneficial effects of polyphenols in murine models of metabolic disorders in relation to gut microbiota.Curr. Issues Mol. Biol.20224431353137510.3390/cimb4403009135723314
    [Google Scholar]
  122. FarkhondehT. SamarghandianS. Azimin-NezhadM. SaminiF. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats.Int. J. Clin. Exp. Med.2015822465247025932190
    [Google Scholar]
  123. LiuW. ZhaiY. HengX. CheF.Y. ChenW. SunD. ZhaiG. Oral bioavailability of curcumin: problems and advancements.J. Drug Target.201624869470210.3109/1061186X.2016.115788326942997
    [Google Scholar]
  124. SomuP. PaulS. Surface conjugation of curcumin with self-assembled lysozyme nanoparticle enhanced its bioavailability and therapeutic efficacy in multiple cancer cells.J. Mol. Liq.202133811662310.1016/j.molliq.2021.116623
    [Google Scholar]
  125. DeyS. SreenivasanK. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.Carbohydr. Polym.20149949950710.1016/j.carbpol.2013.08.06724274536
    [Google Scholar]
  126. DarwishS. MozaffariS. ParangK. TiwariR. Cyclic peptide conjugate of curcumin and doxorubicin as an anticancer agent.Tetrahedron Lett.201758494617462210.1016/j.tetlet.2017.10.065
    [Google Scholar]
  127. VermaR. RaoL. NagpalD. YadavM. KumarM. MittalV. KaushikD. Exploring the prospective of curcumin-loaded nanomedicine in brain cancer therapy: an overview of recent updates and patented nanoformulations.Recent Pat. Nanotechnol.202418327829410.2174/187221051766623082315532837904561
    [Google Scholar]
  128. PalangeA.L. Di MascoloD. CaralloC. GnassoA. DecuzziP. Lipid–polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells.Nanomedicine2014105e991e100210.1016/j.nano.2014.02.00424566270
    [Google Scholar]
  129. BonaccorsoA. PellitteriR. RuoziB. PugliaC. SantonocitoD. PignatelloR. MusumeciT. Curcumin loaded polymeric vs. lipid nanoparticles: antioxidant effect on normal and hypoxic olfactory ensheathing cells.Nanomaterials (Basel)202111115910.3390/nano1101015933435146
    [Google Scholar]
  130. LiuR. LiuZ. GuoX. KebebeD. PiJ. GuoP. Construction of curcumin-loaded micelles and evaluation of the anti-tumor effect based on angiogenesis.Acupuncture and Herbal Medicine20233434335610.1097/HM9.0000000000000079
    [Google Scholar]
  131. BanaśA. FołtaK. SmołkaS. SzpitalnyP. ShakibaniaS. KrukiewiczK. Conducting polymer microspheres for targeting neuroblastoma. Proceedings of the 1st International Online Conference on Functional Biomaterials, 10–12 July 2024, MDPI: Basel, Switzerland2024
    [Google Scholar]
  132. RakotoarisoaM. AngelovaA. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders.Medicines (Basel)20185412610.3390/medicines504012630477087
    [Google Scholar]
  133. AhmedK. LiY. McClementsD.J. XiaoH. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties.Food Chem.2012132279980710.1016/j.foodchem.2011.11.03922868161
    [Google Scholar]
  134. Sadegh MalvajerdS. AzadiA. IzadiZ. KurdM. DaraT. DibaeiM. Sharif ZadehM. Akbari JavarH. HamidiM. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: preparation, optimization, and pharmacokinetic evaluation.ACS Chem. Neurosci.201910172873910.1021/acschemneuro.8b0051030335941
    [Google Scholar]
  135. BissacottiB.F. CopettiP.M. BottariN.B. GündelS.S. MachadoA.K. SagrilloM.R. OuriqueA.F. MorschV.M.M. da SilvaA.S. Impact of free curcumin and curcumin nanocapsules on viability and oxidative status of neural cell lines.Drug Chem. Toxicol.202346115516510.1080/01480545.2021.201524234930069
    [Google Scholar]
  136. UmerskaA. GaucherC. Oyarzun-AmpueroF. Fries-RaethI. ColinF. Villamizar-SarmientoM. MaincentP. Sapin-MinetA. Polymeric nanoparticles for increasing oral bioavailability of curcumin.Antioxidants2018744610.3390/antiox704004629587350
    [Google Scholar]
  137. FarhoudiL. KesharwaniP. MajeedM. JohnstonT.P. SahebkarA. Polymeric nanomicelles of curcumin: Potential applications in cancer.Int. J. Pharm.202261712162210.1016/j.ijpharm.2022.12162235227805
    [Google Scholar]
  138. AdahounM.A. Al-AkhrasM.A.H. JaafarM.S. BououdinaM. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles.Artif. Cells Nanomed. Biotechnol.20174519810710.3109/21691401.2015.112962826747522
    [Google Scholar]
  139. SubramaniP.A. PanatiK. NaralaV.R. Curcumin nanotechnologies and its anticancer activity.Nutr. Cancer201769338139310.1080/01635581.2017.128540528287321
    [Google Scholar]
  140. SzymusiakM. HuX. Leon PlataP.A. CiupinskiP. WangZ.J. LiuY. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.Int. J. Pharm.2016511141542310.1016/j.ijpharm.2016.07.02727426105
    [Google Scholar]
  141. KaokaenP. SorraksaN. PhonchaiR. ChaicharoenaudomrungN. KunhormP. NoisaP. Enhancing neurological competence of nanoencapsulated cordyceps/turmeric extracts in human neuroblastoma SH-SY5Y Cells.Cell. Mol. Bioeng.2023161819310.1007/s12195‑022‑00752‑w36660588
    [Google Scholar]
  142. WangY. YingX. XuH. YanH. LiX. TangH. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.Int. J. Nanomedicine2017121369138410.2147/IJN.S12427628260885
    [Google Scholar]
  143. RahmanM.H. RamanathanM. SankarV. Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line.Pak. J. Pharm. Sci.20142751281128525176384
    [Google Scholar]
  144. MaitiP. PlemmonsA. DunbarG.L. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments.PLoS One20191412e022566010.1371/journal.pone.022566031841506
    [Google Scholar]
  145. KalashnikovaI. MazarJ. NealC.J. RosadoA.L. DasS. WestmorelandT.J. SealS. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma.Nanoscale2017929103751038710.1039/C7NR02770B28702620
    [Google Scholar]
  146. KumariM. SinghS.P. ChindeS. RahmanM.F. MahboobM. GroverP. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells.Int. J. Toxicol.2014332869710.1177/109158181452230524510415
    [Google Scholar]
  147. PizarroJ.G. FolchJ. Vazquez De la TorreA. VerdaguerE. JunyentF. JordánJ. PallàsM. CaminsA. Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line.Free Radic. Res.2009431098599410.1080/1071576090315918819657808
    [Google Scholar]
  148. KarakotiA.S. SinghS. KumarA. MalinskaM. KuchibhatlaS.V.N.T. WozniakK. SelfW.T. SealS. PEGylated nanoceria as radical scavenger with tunable redox chemistry.J. Am. Chem. Soc.200913140141441414510.1021/ja905108719769392
    [Google Scholar]
  149. BarkamS. DasS. SarafS. McCormackR. RichardsonD. AtencioL. MoosavifazelV. SealS. The change in antioxidant properties of dextran-coated redox active nanoparticles due to synergetic photoreduction-oxidation.Chemistry20152136126461265610.1002/chem.20150086826190768
    [Google Scholar]
  150. MontalbánM. CoburnJ. Lozano-PérezA. CenisJ. VílloraG. KaplanD. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy.Nanomaterials20188212610.3390/nano802012629495296
    [Google Scholar]
  151. MottaghitalabF. FarokhiM. ShokrgozarM.A. AtyabiF. HosseinkhaniH. Silk fibroin nanoparticle as a novel drug delivery system.J. Control. Release201520616117610.1016/j.jconrel.2015.03.02025797561
    [Google Scholar]
  152. KunduJ. ChungY.I. KimY.H. TaeG. KunduS.C. Silk fibroin nanoparticles for cellular uptake and control release.Int. J. Pharm.20103881-224225010.1016/j.ijpharm.2009.12.05220060449
    [Google Scholar]
  153. BoshuizenJ. PeeperD.S. Rational cancer treatment combinations: an urgent clinical need.Mol. Cell20207861002101810.1016/j.molcel.2020.05.03132559422
    [Google Scholar]
  154. BatraH. PawarS. BahlD. Curcumin in combination with anti-cancer drugs: A nanomedicine review.Pharmacol. Res.20191399110510.1016/j.phrs.2018.11.00530408575
    [Google Scholar]
  155. CacciolaN.A. CucinielloR. PetilloG.D. PiccioniM. FilosaS. CrispiS. An overview of the enhanced effects of curcumin and chemotherapeutic agents in combined cancer treatments.Int. J. Mol. Sci.202324161258710.3390/ijms24161258737628772
    [Google Scholar]
  156. TroseljK. KujundzicR. Curcumin in combined cancer therapy.Curr. Pharm. Des.201420426682669610.2174/138161282066614082615460125341940
    [Google Scholar]
  157. TeitenM.H. EifesS. DicatoM. DiederichM. Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment.Toxins (Basel)20102112816210.3390/toxins201012822069551
    [Google Scholar]
  158. BakerJ. AjaniJ. ScottéF. WintherD. MartinM. AaproM.S. von MinckwitzG. Docetaxel-related side effects and their management.Eur. J. Oncol. Nurs.2009131495910.1016/j.ejon.2008.10.00319201649
    [Google Scholar]
  159. YinH. GuoR. XuY. ZhengY. HouZ. DaiX. ZhangZ. ZhengD. XuH. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer.Acta Biochim. Biophys. Sin. (Shanghai)201244214715310.1093/abbs/gmr10622126905
    [Google Scholar]
  160. Di FrancescoM. PastorinoF. FerreiraM. FragassiA. Di FrancescoV. PalangeA.L. CeliaC. Di MarzioL. CilliM. BensaV. PonzoniM. DecuzziP. Augmented efficacy of nano-formulated docetaxel plus curcumin in orthotopic models of neuroblastoma.Pharmacol. Res.202318810663910.1016/j.phrs.2022.10663936586642
    [Google Scholar]
  161. BanerjeeS. SinghS.K. ChowdhuryI. LillardJ.W.Jr SinghR. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer.Front. Biosci. (Elite Ed.)20179223524528199187
    [Google Scholar]
  162. VyasA. DandawateP. PadhyeS. AhmadA. SarkarF. Perspectives on new synthetic curcumin analogs and their potential anticancer properties.Curr. Pharm. Des.201319112047206923116312
    [Google Scholar]
  163. Khudhayer OglahM. Fakri MustafaY. Curcumin analogs: synthesis and biological activities.Med. Chem. Res.202029347948610.1007/s00044‑019‑02497‑0
    [Google Scholar]
  164. LiangG. ShaoL. WangY. ZhaoC. ChuY. XiaoJ. ZhaoY. LiX. YangS. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents.Bioorg. Med. Chem.20091762623263110.1016/j.bmc.2008.10.04419243951
    [Google Scholar]
  165. BolandK. FlanaganL. PrehnJ.H. Paracrine control of tissue regeneration and cell proliferation by Caspase-3.Cell Death Dis.201347e72510.1038/cddis.2013.25023846227
    [Google Scholar]
  166. KalkavanH. GreenD.R. MOMP, cell suicide as a BCL-2 family business.Cell Death Differ.2018251465510.1038/cdd.2017.17929053143
    [Google Scholar]
  167. AdamsJ.M. CoryS. The BCL-2 arbiters of apoptosis and their growing role as cancer targets.Cell Death Differ.2018251273610.1038/cdd.2017.16129099483
    [Google Scholar]
  168. LeeY.Q. RajaduraiP. AbasF. OthmanI. NaiduR. Proteomic analysis on anti-proliferative and apoptosis effects of curcumin analog, 1,5-bis(4-Hydroxy-3-Methyoxyphenyl)-1,4-pentadiene-3-one-treated human glioblastoma and neuroblastoma cells.Front. Mol. Biosci.2021864585610.3389/fmolb.2021.64585633996900
    [Google Scholar]
  169. HuberI. PandurE. SiposK. BarnaL. HarazinA. DeliM.A. TyukodiL. Gulyás-FeketeG. KulcsárG. RozmerZ. Novel cyclic C5-curcuminoids penetrating the blood-brain barrier: Design, synthesis and antiproliferative activity against astrocytoma and neuroblastoma cells.Eur. J. Pharm. Sci.202217310618410.1016/j.ejps.2022.10618435413433
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345693241218070409
Loading
/content/journals/cmc/10.2174/0109298673345693241218070409
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Apoptosis; cancer; curcumin; neuroblastoma; pediatric; phytochemical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test