Skip to content
2000
Volume 32, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Signs and symptoms that persist or worsen beyond the “acute COVID-19” stage are referred to as long-COVID. These patients are more likely to suffer from multiple organ failure, readmission, and mortality. According to a recent theory, long-lasting COVID-19 symptoms may be caused by abnormal autonomic nervous system (ANS) activity, such as hypovolemia, brain stem involvement, and autoimmune reactions. Furthermore, COVID-19 can also cause impaired fertility in women, which may also be related to inflammation and immune responses. Currently, few treatments are available for long-COVID symptoms. This article reviews the major effects of COVID-19 on the nervous system and female fertility, as well as offers potential treatment approaches.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333968241011092801
2024-10-24
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/42/CMC-32-42-03.html?itemId=/content/journals/cmc/10.2174/0109298673333968241011092801&mimeType=html&fmt=ahah

References

  1. AcharyaA. KevadiyaB.D. GendelmanH.E. ByrareddyS.N. SARS-CoV-2 infection leads to neurological dysfunction.J. Neuroimmune Pharmacol.202015216717310.1007/s11481‑020‑09924‑932447746
    [Google Scholar]
  2. RothanH.A. ByrareddyS.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun.202010910243310.1016/j.jaut.2020.10243332113704
    [Google Scholar]
  3. ChouS.H.Y. BeghiE. HelbokR. MoroE. SampsonJ. AltamiranoV. MainaliS. BassettiC. SuarezJ.I. McNettM. NolanL. TemroK. Cervantes-ArslanianA.M. AnandP. MukerjiS. AlabasiH. WestoverM.B. KaviT. JohnS. Da SilvaI. ShaikA. SarwalA. IzzyS. LiottaE.M. BatraA. AysenneA. RubinosC. AzzamA.Y. AzabM.A. SandallJ. PersondekL.A.M. UlmerH. RassV. PfauslerB. MüllerC. JungS. CreanM. MeoniS. BereczkiD. KovácsT. AgajanyN. ArmonC. WolfsonS. CotelliM.S. BianchiE. RiahiA. ÖztürkS. UralO. ViktoriiaG. LesivM. MaiaL. OliveiraV. SeabraM. CarvalhoV. VespaP. ProvencioJ. OlsonD. HemphillC. Venkatasubba RaoC.P. KoN. FinkE. RobertsonC. SchoberM. Smith ScottA. HammondM. PaulN. SafonovaA. KaplanL. RatnayakeC. SharmaA.D. SkeelA. Villamizar RosalesC. DolakD. VarelasP. LotmanL. KaltenbachL. David KM. GCS-NeuroCOVID Consortium and ENERGY Consortium Global incidence of neurological manifestations among patients hospitalized with COVID-19—a report for the GCS-neurocovid consortium and the ENERGY consortium.JAMA Netw. Open202145e211213110.1001/jamanetworkopen.2021.1213133974053
    [Google Scholar]
  4. MaoL. JinH. WangM. HuY. ChenS. HeQ. ChangJ. HongC. ZhouY. WangD. MiaoX. LiY. HuB. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China.JAMA Neurol.202077668369010.1001/jamaneurol.2020.112732275288
    [Google Scholar]
  5. MengS. LuL. YuanK. YangD. ZhangI. Facing sleep and mental health problems in the COVID-19 era: What shall we do?Heart Mind (Mumbai)20226320320610.4103/hm.hm_38_22
    [Google Scholar]
  6. LoY.L. COVID-19, fatigue, and dysautonomia.J. Med. Virol.2021933121310.1002/jmv.2655232975809
    [Google Scholar]
  7. KanjwalK. JamalS. KichlooA. GrubbB. New-onset postural orthostatic tachycardia syndrome following coronavirus disease 2019 infection.J. Innov. Card. Rhythm Manag.202011114302430410.19102/icrm.2020.11110233262898
    [Google Scholar]
  8. ShinuP. MorsyM.A. DebP.K. NairA.B. GoyalM. ShahJ. KottaS. SARS-CoV-2 organotropism associated pathogenic relationship of gut-brain axis and illness.Front. Mol. Biosci.2020760677910.3389/fmolb.2020.60677933415126
    [Google Scholar]
  9. BarizienN. Le GuenM. RusselS. ToucheP. HuangF. ValléeA. Clinical characterization of dysautonomia in long COVID-19 patients.Sci. Rep.20211111404210.1038/s41598‑021‑93546‑534234251
    [Google Scholar]
  10. GoldsteinD.S. The possible association between COVID-19 and postural tachycardia syndrome.Heart Rhythm202118450850910.1016/j.hrthm.2020.12.00733316414
    [Google Scholar]
  11. ChaddaK.R. BlakeyE.E. HuangC.L.H. JeevaratnamK. Long COVID-19 and postural orthostatic tachycardia syndrome- is dysautonomia to be blamed?Front. Cardiovasc. Med.2022986019810.3389/fcvm.2022.86019835355961
    [Google Scholar]
  12. BisacciaG. RicciF. RecceV. SerioA. IannettiG. ChahalA.A. StåhlbergM. KhanjiM.Y. FedorowskiA. GallinaS. Post-acute sequelae of COVID-19 and cardiovascular autonomic dysfunction: What do we know?J. Cardiovasc. Dev. Dis.202181115610.3390/jcdd811015634821709
    [Google Scholar]
  13. ShoumanK. Autonomic dysfunction following COVID-19 infection: An early experience.Clin. Auton. Res.2021313385394
    [Google Scholar]
  14. Jill Schofield Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-covid syndrome: 1 year on.Eur. J. Case Rep. Intern. Med.20218LATEST ONLINE00237810.12890/2021_00237833869099
    [Google Scholar]
  15. FuQ. VanGundyT.B. GalbreathM.M. ShibataS. JainM. HastingsJ.L. BhellaP.S. LevineB.D. Cardiac origins of the postural orthostatic tachycardia syndrome.J. Am. Coll. Cardiol.201055252858286810.1016/j.jacc.2010.02.04320579544
    [Google Scholar]
  16. BryarlyM. PhillipsL.T. FuQ. VerninoS. LevineB.D. Postural orthostatic tachycardia syndrome.J. Am. Coll. Cardiol.201973101207122810.1016/j.jacc.2018.11.05930871704
    [Google Scholar]
  17. RajS.R. The postural tachycardia syndrome (POTS): Pathophysiology, diagnosis & management.Indian Pacing Electrophysiol. J.200662849916943900
    [Google Scholar]
  18. MangerW.M. EisenhoferG. Pheochromocytoma: Diagnosis and management update.Curr. Hypertens. Rep.20046647748410.1007/s11906‑004‑0044‑215527694
    [Google Scholar]
  19. SchondorfR. LowP.A. Idiopathic postural orthostatic tachycardia syndrome.Neurology1993431_part_113213710.1212/WNL.43.1_Part_1.1328423877
    [Google Scholar]
  20. BlitshteynS. Is postural orthostatic tachycardia syndrome (POTS) a central nervous system disorder?J. Neurol.2022269272573210.1007/s00415‑021‑10502‑z33677650
    [Google Scholar]
  21. DaniM. DirksenA. TaraborrelliP. TorocastroM. PanagopoulosD. SuttonR. LimP.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies.Clin. Med.2021211e63e6710.7861/clinmed.2020‑089633243837
    [Google Scholar]
  22. BaigA.M. KhaleeqA. AliU. SyedaH. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms.ACS Chem. Neurosci.202011799599810.1021/acschemneuro.0c0012232167747
    [Google Scholar]
  23. WuJ. TangY. Revisiting the immune balance theory: A neurological insight into the epidemic of COVID-19 and its alike.Front. Neurol.20201156668010.3389/fneur.2020.56668033178109
    [Google Scholar]
  24. YongS.J. Persistent brainstem dysfunction in long-covid: A hypothesis.ACS Chem. Neurosci.202112457358010.1021/acschemneuro.0c0079333538586
    [Google Scholar]
  25. MalikY.A. Properties of coronavirus and SARS-CoV-2.Malays. J. Pathol.202042131132342926
    [Google Scholar]
  26. KabiA.K. PalM. GujjarappaR. MalakarC.C. RoyM. Overview of hydroxychloroquine and remdesivir on severe acute respiratory syndrome coronavirus 2 SARS-COV-2.J. Heterocycl. Chem.202360216518235942205
    [Google Scholar]
  27. NN. S. SARS-CoV 2 spike protein S1 subunit as an ideal target for stable vaccines: A bioinformatic study.Mater. Today Proc.202249904912
    [Google Scholar]
  28. MascellinoM.T. Di TimoteoF. De AngelisM. OlivaA. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety.Infect. Drug Resist.2021143459347610.2147/IDR.S31572734511939
    [Google Scholar]
  29. JosephS. NairB. NathL.R. The ineluctable role of ace-2 receptors in SARS-CoV-2 infection and drug repurposing as a plausible SARS-CoV-2 therapy: A concise treatise.Curr. Mol. Med.2021211088891310.2174/157340561766621020421202433563197
    [Google Scholar]
  30. LukiwW.J. PogueA. HillJ.M. SARS-CoV-2 infectivity and neurological targets in the brain.Cell. Mol. Neurobiol.202242121722410.1007/s10571‑020‑00947‑732840758
    [Google Scholar]
  31. Paniz-MondolfiA. BryceC. GrimesZ. GordonR.E. ReidyJ. LednickyJ. SordilloE.M. FowkesM. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).J. Med. Virol.202092769970210.1002/jmv.2591532314810
    [Google Scholar]
  32. MilletJ.K. WhittakerG.R. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells.Virology20185173810.1016/j.virol.2017.12.01529275820
    [Google Scholar]
  33. YangN. ShenH.M. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19.Int. J. Biol. Sci.202016101724173110.7150/ijbs.4549832226290
    [Google Scholar]
  34. Sanclemente-AlamanI. Moreno-JiménezL. Benito- MartínM.S. Canales-AguirreA. Matías-GuiuJ.A. Matías-GuiuJ. Gómez-PinedoU. Experimental models for the study of central nervous system infection by SARS-CoV-2.Front. Immunol.202011216310.3389/fimmu.2020.0216332983181
    [Google Scholar]
  35. ZubairA.S. McAlpineL.S. GardinT. FarhadianS. KuruvillaD.E. SpudichS. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019.JAMA Neurol.20207781018102710.1001/jamaneurol.2020.206532469387
    [Google Scholar]
  36. JiaoL. YangY. YuW. ZhaoY. LongH. GaoJ. DingK. MaC. LiJ. ZhaoS. WangH. LiH. YangM. XuJ. WangJ. YangJ. KuangD. LuoF. QianX. XuL. YinB. LiuW. LiuH. LuS. PengX. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys.Signal Transduct. Target. Ther.20216116910.1038/s41392‑021‑00591‑733895780
    [Google Scholar]
  37. LiY.C. BaiW.Z. HiranoN. HayashidaT. TaniguchiT. SugitaY. TohyamaK. HashikawaT. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication.J. Comp. Neurol.2013521120321210.1002/cne.2317122700307
    [Google Scholar]
  38. Mora-DíazJ.C. PiñeyroP.E. HoustonE. ZimmermanJ. Giménez-LirolaL.G. Porcine hemagglutinating encephalomyelitis virus: A review.Front. Vet. Sci.201965310.3389/fvets.2019.0005330873421
    [Google Scholar]
  39. DubéM. Le CoupanecA. WongA.H.M. RiniJ.M. DesforgesM. TalbotP.J. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43.J. Virol.20189217e00404-1810.1128/JVI.00404‑1829925652
    [Google Scholar]
  40. LiY.C. BaiW.Z. HashikawaT. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients.J. Med. Virol.202092655255510.1002/jmv.2572832104915
    [Google Scholar]
  41. LiY.C. BaiW.Z. HiranoN. HayashidaT. HashikawaT. Coronavirus infection of rat dorsal root ganglia: Ultrastructural characterization of viral replication, transfer, and the early response of satellite cells.Virus Res.2012163262863510.1016/j.virusres.2011.12.02122248641
    [Google Scholar]
  42. DosSantosM.F. DevalleS. AranV. CapraD. RoqueN.R. Coelho-AguiarJ.M. SpohrT.C.L.S. SubilhagaJ.G. PereiraC.M. D’Andrea MeiraI. Niemeyer Soares FilhoP. Moura-NetoV. Neuromechanisms of SARS-COV-2: A review.Front. Neuroanat.2020143710.3389/fnana.2020.0003732612515
    [Google Scholar]
  43. ButowtR. BilinskaK. SARS-CoV-2: Olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection.ACS Chem. Neurosci.20201191200120310.1021/acschemneuro.0c0017232283006
    [Google Scholar]
  44. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. MüllerM.A. DrostenC. PöhlmannS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.05232142651
    [Google Scholar]
  45. MeinhardtJ. RadkeJ. DittmayerC. FranzJ. ThomasC. MothesR. LaueM. SchneiderJ. BrüninkS. GreuelS. LehmannM. HassanO. AschmanT. SchumannE. ChuaR.L. ConradC. EilsR. StenzelW. WindgassenM. RößlerL. GoebelH.H. GelderblomH.R. MartinH. NitscheA. Schulz-SchaefferW.J. HakroushS. WinklerM.S. TampeB. ScheibeF. KörtvélyessyP. ReinholdD. SiegmundB. KühlA.A. ElezkurtajS. HorstD. OesterhelwegL. TsokosM. Ingold-HeppnerB. StadelmannC. DrostenC. CormanV.M. RadbruchH. HeppnerF.L. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19.Nat. Neurosci.202124216817510.1038/s41593‑020‑00758‑533257876
    [Google Scholar]
  46. de MeloG.D. LazariniF. LevalloisS. HautefortC. MichelV. LarrousF. VerillaudB. AparicioC. WagnerS. GheusiG. KergoatL. KornobisE. DonatiF. CokelaerT. HervochonR. MadecY. RozeE. SalmonD. BourhyH. LecuitM. LledoP.M. COVID-19–related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters.Sci. Transl. Med.202113596eabf839610.1126/scitranslmed.abf839633941622
    [Google Scholar]
  47. GuedjE. MillionM. DudouetP. Tissot-DupontH. BregeonF. CammilleriS. RaoultD. 18F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed disorders?Eur. J. Nucl. Med. Mol. Imaging202148259259510.1007/s00259‑020‑04973‑x32728799
    [Google Scholar]
  48. ZhangY. ChenX. JiaL. ZhangY. Potential mechanism of SARS-CoV-2-associated central and peripheral nervous system impairment.Acta Neurol. Scand.2022146322523610.1111/ane.1365735699161
    [Google Scholar]
  49. PattanaikA. Bhandarkar BS. LodhaL. MarateS. SARS-CoV-2 and the nervous system: Current perspectives.Arch. Virol.2023168617110.1007/s00705‑023‑05801‑x37261613
    [Google Scholar]
  50. BurksS.M. Rosas-HernandezH. Alejandro Ramirez-LeeM. CuevasE. TalposJ.C. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier?Brain Behav. Immun.20219571410.1016/j.bbi.2020.12.03133412255
    [Google Scholar]
  51. ParkerC.G. DaileyM.J. PhillipsH. DavisE.A. Central sensory-motor crosstalk in the neural gut-brain axis.Auton. Neurosci.202022510265610.1016/j.autneu.2020.10265632151980
    [Google Scholar]
  52. EspositoG. PesceM. SeguellaL. SanseverinoW. LuJ. SarnelliG. Can the enteric nervous system be an alternative entrance door in SARS-CoV2 neuroinvasion?Brain Behav. Immun.202087939410.1016/j.bbi.2020.04.06032335192
    [Google Scholar]
  53. OgierM. AndéolG. SaguiE. Dal BoG. How to detect and track chronic neurologic sequelae of COVID-19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up.Brain Behav. Immun. Health2020510008110.1016/j.bbih.2020.10008132427134
    [Google Scholar]
  54. Vitale-CrossL. SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: clinical implications.bioRxiv202210.1101/2021.12.30.474580
    [Google Scholar]
  55. von WeyhernC.H. KaufmannI. NeffF. KremerM. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes.Lancet202039510241e10910.1016/S0140‑6736(20)31282‑432505222
    [Google Scholar]
  56. TsengC.T.K. HuangC. NewmanP. WangN. NarayananK. WattsD.M. MakinoS. PackardM.M. ZakiS.R. ChanT. PetersC.J. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor.J. Virol.20078131162117310.1128/JVI.01702‑0617108019
    [Google Scholar]
  57. GianniP. GoldinM. NguS. ZafeiropoulosS. GeropoulosG. GiannisD. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: A review.World J. Exp. Med.2022124536710.5493/wjem.v12.i4.5336157337
    [Google Scholar]
  58. ZhengS. FanJ. YuF. FengB. LouB. ZouQ. XieG. LinS. WangR. YangX. ChenW. WangQ. ZhangD. LiuY. GongR. MaZ. LuS. XiaoY. GuY. ZhangJ. YaoH. XuK. LuX. WeiG. ZhouJ. FangQ. CaiH. QiuY. ShengJ. ChenY. LiangT. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study.BMJ2020369m144310.1136/bmj.m144332317267
    [Google Scholar]
  59. IadecolaC. AnratherJ. KamelH. Effects of COVID-19 on the nervous system.Cell202018311627.e110.1016/j.cell.2020.08.02832882182
    [Google Scholar]
  60. LiH. XueQ. XuX. Involvement of the nervous system in SARS-CoV-2 infection.Neurotox. Res.20203811710.1007/s12640‑020‑00219‑832399719
    [Google Scholar]
  61. VerkhratskyA. ParpuraV. VardjanN. ZorecR. Physiology of astroglia.Adv. Exp. Med. Biol.20191175459110.1007/978‑981‑13‑9913‑8_331583584
    [Google Scholar]
  62. KimW.K. CoreyS. AlvarezX. WilliamsK. Monocyte/macrophage traffic in HIV and SIV encephalitis.J. Leukoc. Biol.200374565065610.1189/jlb.050320712960230
    [Google Scholar]
  63. WangL. SievertD. ClarkA.E. LeeS. FedermanH. GastfriendB.D. ShustaE.V. PalecekS.P. CarlinA.F. GleesonJ.G. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology.Nat. Med.20212791600160610.1038/s41591‑021‑01443‑134244682
    [Google Scholar]
  64. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. HLH Across Speciality Collaboration, UK COVID-19: Consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑032192578
    [Google Scholar]
  65. RoumierM. PauleR. ValléeA. RohmerJ. BallesterM. BrunA.L. CerfC. ChabiM.L. ChinetT. ColombierM.A. FarfourE. FournE. GériG. KhauD. MarrounI. PonsoyeM. RouxA. SalvatorH. SchoindreY. Si LarbiA.G. TchérakianC. VasseM. VerratA. ZuberB. CoudercL.J. KahnJ.E. GrohM. AckermannF. Foch COVID-19 Study Group Tocilizumab for severe worsening COVID-19 pneumonia: A propensity score analysis.J. Clin. Immunol.202141230331410.1007/s10875‑020‑00911‑633188624
    [Google Scholar]
  66. WilliamsD.P. KoenigJ. CarnevaliL. SgoifoA. JarczokM.N. SternbergE.M. ThayerJ.F. Heart rate variability and inflammation: A meta-analysis of human studies.Brain Behav. Immun.20198021922610.1016/j.bbi.2019.03.00930872091
    [Google Scholar]
  67. SwaiJ. HuZ. ZhaoX. RugambwaT. MingG. Heart rate and heart rate variability comparison between postural orthostatic tachycardia syndrome versus healthy participants; A systematic review and meta-analysis.BMC Cardiovasc. Disord.201919132010.1186/s12872‑019‑01298‑y31888497
    [Google Scholar]
  68. AwwabH. SolorzanoJ.I. JaisinghK.C. SingireddyS. BaileyS. DominicP. Cardiac pauses in critically ill coronavirus disease-2019 patients.Heart Mind2021514810.4103/hm.hm_35_20
    [Google Scholar]
  69. KanbergN. AshtonN.J. AnderssonL.M. YilmazA. LindhM. NilssonS. PriceR.W. BlennowK. ZetterbergH. GisslénM. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19.Neurology20209512e1754e175910.1212/WNL.000000000001011132546655
    [Google Scholar]
  70. MariottoS. SavoldiA. DonadelloK. ZanzoniS. BozzettiS. CartaS. ZivelonghiC. AlbertiD. PirainoF. MinuzP. GirelliD. CrisafulliE. RomanoS. MarconD. MarchiG. GottinL. PolatiE. ZanattaP. MonacoS. TacconelliE. FerrariS. Nervous system: Subclinical target of SARS-CoV-2 infection.J. Neurol. Neurosurg. Psychiatry20209191010101210.1136/jnnp‑2020‑32388132576611
    [Google Scholar]
  71. HastyF. GarcíaG. DávilaH. WittelsS.H. HendricksS. ChongS. Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients.Mil. Med.20211861-2e34e3810.1093/milmed/usaa40533206183
    [Google Scholar]
  72. HuangY. XuW. ZhouR. NLRP3 inflammasome activation and cell death.Cell. Mol. Immunol.20211892114212710.1038/s41423‑021‑00740‑634321623
    [Google Scholar]
  73. DingJ. WangK. LiuW. SheY. SunQ. ShiJ. SunH. WangD.C. ShaoF. Pore-forming activity and structural autoinhibition of the gasdermin family.Nature2016535761011111610.1038/nature1859027281216
    [Google Scholar]
  74. WangS. YuanY.H. ChenN.H. WangH.B. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease.Int. Immunopharmacol.20196745846410.1016/j.intimp.2018.12.01930594776
    [Google Scholar]
  75. TanM-S. TanL. JiangT. ZhuX-C. WangH-F. JiaC-D. YuJ-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease.Cell Death Dis.201458e138210.1038/cddis.2014.34825144717
    [Google Scholar]
  76. MalikS. NaithaniM. MirzaA.A. DarbariA. SaxenaR. Possible mechanisms of cardiovascular complications and troponin elevation in coronavirus disease.Heart Mind202153657210.4103/hm.hm_16_21
    [Google Scholar]
  77. JingY. Run-QianL. Hao-RanW. Hao-RanC. Ya-BinL. YangG. FeiC. Potential influence of COVID-19/ACE2 on the female reproductive system.Mol. Hum. Reprod.202026636737310.1093/molehr/gaaa03032365180
    [Google Scholar]
  78. LiR. YinT. FangF. LiQ. ChenJ. WangY. HaoY. WuG. DuanP. WangY. ChengD. ZhouQ. ZafarM.I. XiongC. LiH. YangJ. QiaoJ. Potential risks of SARS-CoV-2 infection on reproductive health.Reprod. Biomed. Online2020411899510.1016/j.rbmo.2020.04.01832466994
    [Google Scholar]
  79. ShuttleworthG. Broughton PipkinF. HunterM.G. In vitro development of pig preantral follicles cultured in a serum-free medium and the effect of angiotensin II.Reproduction2002123680781810.1530/rep.0.123080712052235
    [Google Scholar]
  80. FerreiraA.J. ShenoyV. QiY. Fraga-SilvaR.A. SantosR.A.S. KatovichM.J. RaizadaM.K. Angiotensin- converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases.Exp. Physiol.201196328729410.1113/expphysiol.2010.05527721148624
    [Google Scholar]
  81. StefanelloJ.R. BarretaM.H. PorciunculaP.M. ArrudaJ.N. OliveiraJ.F. OliveiraM.A. GonçalvesP.B. Effect of angiotensin II with follicle cells and insulin-like growth factor-I or insulin on bovine oocyte maturation and embryo development.Theriogenology20066692068207610.1016/j.theriogenology.2006.06.00516889824
    [Google Scholar]
  82. FerreiraR. OliveiraJ.F. FernandesR. MoraesJ.F. GonçalvesP.B. The role of angiotensin II in the early stages of bovine ovulation.Reproduction2007134571371910.1530/REP‑07‑023917965262
    [Google Scholar]
  83. SuginoN. SuzukiT. SakataA. MiwaI. AsadaH. TaketaniT. YamagataY. TamuraH. Angiogenesis in the human corpus luteum: Changes in expression of angiopoietins in the corpus luteum throughout the menstrual cycle and in early pregnancy.J. Clin. Endocrinol. Metab.200590116141614810.1210/jc.2005‑064316118339
    [Google Scholar]
  84. LeeS. ChannappanavarR. KannegantiT.D. Coronaviruses: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines.Trends Immunol.202041121083109910.1016/j.it.2020.10.00533153908
    [Google Scholar]
  85. ManS.M. KarkiR. KannegantiT.D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases.Immunol. Rev.20172771617510.1111/imr.1253428462526
    [Google Scholar]
  86. ZhaoC. ZhaoW. NLRP3 inflammasome—a key player in antiviral responses.Front. Immunol.20201121110.3389/fimmu.2020.0021132133002
    [Google Scholar]
  87. SandallC.F. ZiehrB.K. MacDonaldJ.A. ATP-binding and hydrolysis in inflammasome activation.Molecules20202519457210.3390/molecules2519457233036374
    [Google Scholar]
  88. D'IppolitoS. Inflammosome in the human endometrium: Further step in the evaluation of the "maternal side".Fertil. Steril.20161051111118
    [Google Scholar]
  89. DingT. WangT. ZhangJ. CuiP. ChenZ. ZhouS. YuanS. MaW. ZhangM. RongY. ChangJ. MiaoX. MaX. WangS. Analysis of ovarian injury associated with COVID-19 disease in reproductive-aged women in Wuhan, China: An observational study.Front. Med.2021863525510.3389/fmed.2021.63525533816526
    [Google Scholar]
  90. LevyA. YagilY. BursztynM. BarkalifaR. ScharfS. YagilC. ACE2 expression and activity are enhanced during pregnancy.Am. J. Physiol. Regul. Integr. Comp. Physiol.20082956R1953R196110.1152/ajpregu.90592.200818945956
    [Google Scholar]
  91. GhadhanfarE. AlsalemA. Al-KandariS. NaserJ. BabikerF. Al-BaderM. The role of ACE2, angiotensin-(1–7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction.Reprod. Biol. Endocrinol.20171519710.1186/s12958‑017‑0316‑829321064
    [Google Scholar]
  92. SuhailS. ZajacJ. FossumC. LowaterH. McCrackenC. SeversonN. LaatschB. Narkiewicz-JodkoA. JohnsonB. LiebauJ. BhattacharyyaS. HatiS. Role of oxidative stress on SARS-COV (SARS) and SARS-CoV-2 (COVID-19) infection: A review.Protein J.202039664465610.1007/s10930‑020‑09935‑833106987
    [Google Scholar]
  93. Delgado-RocheL. MestaF. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection.Arch. Med. Res.202051538438710.1016/j.arcmed.2020.04.01932402576
    [Google Scholar]
  94. MenezoY.J.R. SilvestrisE. DaleB. ElderK. Oxidative stress and alterations in DNA methylation: Two sides of the same coin in reproduction.Reprod. Biomed. Online201633666868310.1016/j.rbmo.2016.09.00627742259
    [Google Scholar]
  95. AgarwalA. GuptaS. SharmaR.K. Role of oxidative stress in female reproduction.Reprod. Biol. Endocrinol.2005312810.1186/1477‑7827‑3‑2816018814
    [Google Scholar]
  96. PrasadS. TiwariM. PandeyA.N. ShrivastavT.G. ChaubeS.K. Impact of stress on oocyte quality and reproductive outcome.J. Biomed. Sci.20162313610.1186/s12929‑016‑0253‑427026099
    [Google Scholar]
  97. WangM. YangQ. RenX. HuJ. LiZ. LongR. XiQ. ZhuL. JinL. Investigating the impact of asymptomatic or mild SARS-CoV-2 infection on female fertility and in vitro fertilization outcomes: A retrospective cohort study.EClinicalMedicine20213810101310.1016/j.eclinm.2021.10101334250457
    [Google Scholar]
  98. MahdianS. ShahhoseiniM. MoiniA. COVID-19 mediated by basigin can affect male and female fertility.Int. J. Fertil. Steril.202014326226333098397
    [Google Scholar]
  99. UlrichH. PillatM.M. CD147 as a target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement.Stem Cell Rev. Rep.202016343444010.1007/s12015‑020‑09976‑732307653
    [Google Scholar]
  100. ChangH. NiH. MaX.H. XuL.B. KadomatsuK. MuramatsuT. YangZ.M. Basigin expression and regulation in mouse ovary during the sexual maturation and development of corpus luteum.Mol. Reprod. Dev.200468213514110.1002/mrd.2006015095333
    [Google Scholar]
  101. ChenL. BiJ. NakaiM. BunickD. CouseJ.F. KorachK.S. NowakR.A. Expression of basigin in reproductive tissues of estrogen receptor-α or -β null mice.Reproduction201013961057106610.1530/REP‑10‑006920388736
    [Google Scholar]
  102. MuramatsuT. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners.J. Biochem.2016159548149010.1093/jb/mvv12726684586
    [Google Scholar]
  103. IgakuraT. KadomatsuK. KanameT. MuramatsuH. FanQ.W. MiyauchiT. ToyamaY. KunoN. YuasaS. TakahashiM. SendaT. TaguchiO. YamamuraK. ArimuraK. MuramatsuT. A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis.Dev. Biol.1998194215216510.1006/dbio.1997.88199501026
    [Google Scholar]
  104. LiK. NowakR.A. The role of basigin in reproduction.Reproduction20201592R97R10910.1530/REP‑19‑026831600731
    [Google Scholar]
  105. YangL. LiuS. LiuJ. ZhangZ. WanX. HuangB. ChenY. ZhangY. COVID-19: Immunopathogenesis and immunotherapeutics.Signal Transduct. Target. Ther.20205112810.1038/s41392‑020‑00243‑232712629
    [Google Scholar]
  106. Mauvais-JarvisF. KleinS.L. LevinE.R. Estradiol, progesterone, immunomodulation, and COVID-19 outcomes.Endocrinology20201619bqaa12710.1210/endocr/bqaa12732730568
    [Google Scholar]
  107. PereiraV.M. ReisF.M. SantosR.A.S. CassaliG.D. SantosS.H.S. Honorato-SampaioK. dos ReisA.M. Gonadotropin stimulation increases the expression of angiotensin-(1-7) and MAS receptor in the rat ovary.Reprod. Sci.200916121165117410.1177/193371910934330919703990
    [Google Scholar]
  108. RodriguezM. MorenoJ. HasbunJ. RAS in pregnancy and preeclampsia and eclampsia.Int. J. Hypertens.201220121610.1155/2012/73927423346385
    [Google Scholar]
  109. ThorntonP. DouglasJ. Coagulation in pregnancy.Best Pract. Res. Clin. Obstet. Gynaecol.201024333935210.1016/j.bpobgyn.2009.11.01020097136
    [Google Scholar]
  110. BrosnihanK.B. Enhanced expression of Ang-(1-7) during pregnancy. Brazilian journal of medical and biological research.Rev. Bras. Pesqui. Med. Biol.200437812551262
    [Google Scholar]
  111. RajS.R. GuzmanJ.C. HarveyP. RicherL. SchondorfR. SeiferC. Thibodeau-JarryN. SheldonR.S. Canadian cardiovascular society position statement on postural orthostatic tachycardia syndrome (pots) and related disorders of chronic orthostatic intolerance.Can. J. Cardiol.202036335737210.1016/j.cjca.2019.12.02432145864
    [Google Scholar]
  112. KaviL. GammageM.D. GrubbB.P. KarabinB.L. Postural tachycardia syndrome: Multiple symptoms, but easily missed.Br. J. Gen. Pract.20126259928628710.3399/bjgp12X64896322687203
    [Google Scholar]
  113. SheldonR.S. GrubbB.P.II OlshanskyB. ShenW.K. CalkinsH. BrignoleM. RajS.R. KrahnA.D. MorilloC.A. StewartJ.M. SuttonR. SandroniP. FridayK.J. HachulD.T. CohenM.I. LauD.H. MayugaK.A. MoakJ.P. SandhuR.K. KanjwalK. 2015 heart rhythm society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope.Heart Rhythm2015126e41e6310.1016/j.hrthm.2015.03.02925980576
    [Google Scholar]
  114. UmapathiT. Acute hyperhidrosis and postural tachycardia in a COVID-19 patient.Clin. Auton. Res.2020306571573
    [Google Scholar]
  115. XuH. AkinyemiI.A. ChitreS.A. LoebJ.C. LednickyJ.A. McIntoshM.T. Bhaduri-McIntoshS. SARS-COV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway.Virology2022568132210.1016/j.virol.2022.01.00335066302
    [Google Scholar]
  116. WenzelJ. LampeJ. Müller-FielitzH. SchusterR. ZilleM. MüllerK. KrohnM. KörbelinJ. ZhangL. ÖzorhanÜ. NeveV. WagnerJ.U.G. BojkovaD. ShumliakivskaM. JiangY. FähnrichA. OttF. SencioV. RobilC. PfefferleS. SauveF. CoêlhoC.F.F. FranzJ. SpieckerF. LembrichB. BinderS. FellerN. KönigP. BuschH. CollinL. VillaseñorR. JöhrenO. AltmeppenH.C. PasparakisM. DimmelerS. CinatlJ. PüschelK. ZelicM. OfengeimD. StadelmannC. TrotteinF. NogueirasR. HilgenfeldR. GlatzelM. PrevotV. SchwaningerM. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells.Nat. Neurosci.202124111522153310.1038/s41593‑021‑00926‑134675436
    [Google Scholar]
  117. MartensS. HofmansS. DeclercqW. AugustynsK. VandenabeeleP. Inhibitors targeting RIPK1/RIPK3: Old and new drugs.Trends Pharmacol. Sci.202041320922410.1016/j.tips.2020.01.00232035657
    [Google Scholar]
  118. GeorgeS.A. BivensT.B. HowdenE.J. SaleemY. GalbreathM.M. HendricksonD. FuQ. LevineB.D. The international POTS registry: Evaluating the efficacy of an exercise training intervention in a community setting.Heart Rhythm201613494395010.1016/j.hrthm.2015.12.01226690066
    [Google Scholar]
  119. SmitA.A.J. Use of lower abdominal compression to combat orthostatic hypotension in patients with autonomic dysfunction.Clin. Auton. Res.200414316717510.1007/s10286‑004‑0187‑x
    [Google Scholar]
  120. GibbonsC.H. SchmidtP. BiaggioniI. Frazier-MillsC. FreemanR. IsaacsonS. KarabinB. KuritzkyL. LewM. LowP. MehdiradA. RajS.R. VerninoS. KaufmannH. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension.J. Neurol.201726481567158210.1007/s00415‑016‑8375‑x28050656
    [Google Scholar]
  121. BaoY. SunY. MengS. ShiJ. LuL. COVID-19 epidemic: Address mental health care to empower society.Lancet202039510224e37e3810.1016/S0140‑6736(20)30309‑332043982
    [Google Scholar]
  122. PelàG. Sex-related differences in long-COVID-19 syndrome.J. Womens Health202231562063010.1089/jwh.2021.0411
    [Google Scholar]
  123. GebhardC. Regitz-ZagrosekV. NeuhauserH.K. MorganR. KleinS.L. Impact of sex and gender on COVID-19 outcomes in Europe.Biol. Sex Differ.20201112910.1186/s13293‑020‑00304‑932450906
    [Google Scholar]
  124. LauE.S. McNeillJ.N. PaniaguaS.M. LiuE.E. WangJ.K. BassettI.V. SelvaggiC.A. LubitzS.A. FoulkesA.S. HoJ.E. Sex differences in inflammatory markers in patients hospitalized with COVID-19 infection: Insights from the MGH COVID-19 patient registry.PLoS One2021164e025077410.1371/journal.pone.025077433909684
    [Google Scholar]
  125. MedzikovicL. CunninghamC.M. LiM. AmjediM. HongJ. RuffenachG. EghbaliM. Sex differences underlying preexisting cardiovascular disease and cardiovascular injury in COVID-19.J. Mol. Cell. Cardiol.2020148253310.1016/j.yjmcc.2020.08.00732835666
    [Google Scholar]
  126. GemmatiD. BramantiB. SerinoM.L. SecchieroP. ZauliG. TisatoV. COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double x-chromosome in females be protective against SARS-CoV-2 compared to the single x-chromosome in males?Int. J. Mol. Sci.20202110347410.3390/ijms2110347432423094
    [Google Scholar]
  127. CoxR.J. BrokstadK.A. Not just antibodies: B cells and T cells mediate immunity to COVID-19.Nat. Rev. Immunol.2020201058158210.1038/s41577‑020‑00436‑432839569
    [Google Scholar]
  128. SahinU. MuikA. DerhovanessianE. VoglerI. KranzL.M. VormehrM. BaumA. PascalK. QuandtJ. MaurusD. BrachtendorfS. LörksV. SikorskiJ. HilkerR. BeckerD. EllerA.K. GrütznerJ. BoeslerC. RosenbaumC. KühnleM.C. LuxemburgerU. Kemmer-BrückA. LangerD. BexonM. BolteS. KarikóK. PalancheT. FischerB. SchultzA. ShiP.Y. Fontes-GarfiasC. PerezJ.L. SwansonK.A. LoschkoJ. ScullyI.L. CutlerM. KalinaW. KyratsousC.A. CooperD. DormitzerP.R. JansenK.U. TüreciÖ. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses.Nature2020586783059459910.1038/s41586‑020‑2814‑732998157
    [Google Scholar]
  129. TurnerJ.S. O’HalloranJ.A. KalaidinaE. KimW. SchmitzA.J. ZhouJ.Q. LeiT. ThapaM. ChenR.E. CaseJ.B. AmanatF. RauseoA.M. HaileA. XieX. KlebertM.K. SuessenT. MiddletonW.D. ShiP.Y. KrammerF. TeefeyS.A. DiamondM.S. PrestiR.M. EllebedyA.H. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses.Nature2021596787010911310.1038/s41586‑021‑03738‑234182569
    [Google Scholar]
  130. KeechC. AlbertG. ChoI. RobertsonA. ReedP. NealS. PlestedJ.S. ZhuM. Cloney-ClarkS. ZhouH. SmithG. PatelN. FriemanM.B. HauptR.E. LogueJ. McGrathM. WestonS. PiedraP.A. DesaiC. CallahanK. LewisM. Price-AbbottP. FormicaN. ShindeV. FriesL. LickliterJ.D. GriffinP. WilkinsonB. GlennG.M. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine.N. Engl. J. Med.2020383242320233210.1056/NEJMoa202692032877576
    [Google Scholar]
  131. GoelR.R. ApostolidisS.A. PainterM.M. MathewD. PattekarA. KuthuruO. GoumaS. HicksP. MengW. RosenfeldA.M. DysingerS. LundgreenK.A. Kuri-CervantesL. AdamskiS. HicksA. KorteS. OldridgeD.A. BaxterA.E. GilesJ.R. WeirickM.E. McAllisterC.M. DoughertyJ. LongS. D’AndreaK. HamiltonJ.T. BettsM.R. Luning PrakE.T. BatesP. HensleyS.E. GreenplateA.R. WherryE.J. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mRNA vaccination.Sci. Immunol.2021658eabi695010.1126/sciimmunol.abi695033858945
    [Google Scholar]
  132. RileyL.E. mRNA COVID-19 vaccines in pregnant women.N. Engl. J. Med.2021384242342234310.1056/NEJMe210707034133864
    [Google Scholar]
  133. ShimabukuroT.T. KimS.Y. MyersT.R. MoroP.L. OduyeboT. PanagiotakopoulosL. MarquezP.L. OlsonC.K. LiuR. ChangK.T. EllingtonS.R. BurkelV.K. SmootsA.N. GreenC.J. LicataC. ZhangB.C. AlimchandaniM. Mba-JonasA. MartinS.W. GeeJ.M. Meaney-DelmanD.M. CDC v-safe COVID-19 Pregnancy Registry Team Preliminary findings of mRNA COVID-19 vaccine safety in pregnant persons.N. Engl. J. Med.2021384242273228210.1056/NEJMoa210498333882218
    [Google Scholar]
  134. CollierA.Y. McMahanK. YuJ. TostanoskiL.H. AguayoR. AnselJ. ChandrashekarA. PatelS. Apraku BondzieE. SellersD. BarrettJ. SanbornO. WanH. ChangA. AniokeT. NkololaJ. BradshawC. Jacob-DolanC. FeldmanJ. GebreM. BorducchiE.N. LiuJ. SchmidtA.G. SuscovichT. LindeC. AlterG. HackerM.R. BarouchD.H. Immunogenicity of COVID-19 mRNA vaccines in pregnant and lactating women.JAMA2021325232370238010.1001/jama.2021.756333983379
    [Google Scholar]
  135. BeharierO. Plitman MayoR. RazT. Nahum SacksK. SchreiberL. Suissa-CohenY. ChenR. Gomez-TolubR. HadarE. Gabbay-BenzivR. Jaffe MoshkovichY. Biron-ShentalT. Shechter-MaorG. Farladansky-GershnabelS. Yitzhak SelaH. Benyamini-RaischerH. SelaN.D. Goldman-WohlD. ShulmanZ. ManyA. BarrH. YagelS. NeemanM. KovoM. Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine.J. Clin. Invest.202113113e15031910.1172/JCI15031934014840
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333968241011092801
Loading
/content/journals/cmc/10.2174/0109298673333968241011092801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test