Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disorders following liver transplantation. The prorenin receptor (PRR) plays a role in glucose and lipid metabolism, and the hepatic dysregulation of PRR is associated with the upregulation of several molecular pathways, such as the mammalian target of rapamycin (mTOR) and Peroxisome proliferator-activated receptor (PPAR) that promotes hepatic lipogenesis and leads to lipid accumulation in hepatocytes by upregulation of lipogenic genes. PRR inhibition leads to a reduction in the hepatic expression of sortilin-1 and low-density lipoprotein receptor (LDLR) levels and down-regulation of pyruvate dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) and reduces fatty acids synthesis in hepatocytes. In addition, β-oxidation regulatory genes are upregulated by PRR inhibition to attenuate liver lipid content and liver steatosis. This evidence suggests that targeting the dysregulated hepatic PRR may be effective in reducing liver steatosis post-liver transplantation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673345528241101092336
2025-01-01
2025-11-01
Loading full text...

Full text loading...

References

  1. ChalasaniN. YounossiZ. LavineJ.E. CharltonM. CusiK. RinellaM. HarrisonS.A. BruntE.M. SanyalA.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the american association for the study of liver diseases.Hepatology201867132835710.1002/hep.2936728714183
    [Google Scholar]
  2. PettaS. MuratoreC. CraxìA. Non-alcoholic fatty liver disease pathogenesis: The present and the future.Dig. Liver Dis.200941961562510.1016/j.dld.2009.01.00419223251
    [Google Scholar]
  3. El-BadryA.M. GrafR. ClavienP.A. Omega 3–Omega 6: What is right for the liver?J. Hepatol.200747571872510.1016/j.jhep.2007.08.00517869370
    [Google Scholar]
  4. Neuschwander-TetriB.A. Non-alcoholic fatty liver disease.BMC Med.20171514510.1186/s12916‑017‑0806‑828241825
    [Google Scholar]
  5. KwongA. KimW.R. LakeJ.R. SmithJ.M. SchladtD.P. SkeansM.A. NoreenS.M. FoutzJ. MillerE. SnyderJ.J. IsraniA.K. KasiskeB.L. OPTN/SRTR 2018 annual data report: Liver.Am. J. Transplant.202020Suppl. s119329910.1111/ajt.1567431898413
    [Google Scholar]
  6. DurejaP. MellingerJ. AgniR. ChangF. AveyG. LuceyM. SaidA. NAFLD recurrence in liver transplant recipients.Transplantation201191668468910.1097/TP.0b013e31820b6b8421248661
    [Google Scholar]
  7. DumortierJ. GiostraE. BelbouabS. MorardI. GuillaudO. SpahrL. BoillotO. Rubbia-BrandtL. ScoazecJ.Y. HadengueA. Non-alcoholic fatty liver disease in liver transplant recipients: Another story of “seed and soil”.Am. J. Gastroenterol.2010105361362010.1038/ajg.2009.71720040915
    [Google Scholar]
  8. SaidA. Non-alcoholic fatty liver disease and liver transplantation: Outcomes and advances.World J. Gastroenterol.201319489146915510.3748/wjg.v19.i48.914624409043
    [Google Scholar]
  9. HollenbergN.K. Pivotal role of the renin/protein receptor in angiotensin II production and cellular responses to renin.Curr. Hypertens. Rep.200352989912696559
    [Google Scholar]
  10. YangT.Y. ChangP.J. KoY.S. ShenS.R. ChangS.F. Assessment of the (pro)renin receptor protein expression in organs.Curr. Issues Mol. Biol.20244631741175310.3390/cimb4603011338534729
    [Google Scholar]
  11. NguyenG. DelarueF. BurckléC. BouzhirL. GillerT. SraerJ.D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin.J. Clin. Invest.2002109111417142710.1172/JCI021427612045255
    [Google Scholar]
  12. KandaA. IshidaS. (Pro)renin receptor: Involvement in diabetic retinopathy and development of molecular targeted therapy.J. Diabetes Investig.201910161710.1111/jdi.1284229575757
    [Google Scholar]
  13. WorkerC.J. LiW. FengC. SouzaL.A.C. GaybanA.J.B. CooperS.G. AfrinS. RomanickS. FergusonB.S. Feng EarleyY. The neuronal (pro) renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet.Am. J. Physiol. Endocrinol. Metab.20203185E765E77810.1152/ajpendo.00406.201932228320
    [Google Scholar]
  14. GaybanA.J.B. SouzaL.A.C. CooperS.G. RegaladoE. KleemannR. Feng EarleyY. (Pro)Renin receptor antagonism attenuates high-fat-diet–induced hepatic steatosis.Biomolecules202313114210.3390/biom1301014236671527
    [Google Scholar]
  15. GatineauE. ArthurG. PoupeauA. NicholsK. SpearB.T. ShelmanN.R. GrafG.A. TemelR.E. YiannikourisF.B. The prorenin receptor and its soluble form contribute to lipid homeostasis.Am. J. Physiol. Endocrinol. Metab.20213203E609E61810.1152/ajpendo.00135.202033459178
    [Google Scholar]
  16. StrongA. MusunuruK. (Pro)renin receptor and LDL clearance.Circ. Res.2016118218718910.1161/CIRCRESAHA.115.30806826838309
    [Google Scholar]
  17. RenL. SunY. LuH. YeD. HanL. WangN. DaughertyA. LiF. WangM. SuF. TaoW. SunJ. ZelcerN. MullickA.E. DanserA.H.J. JiangY. HeY. RuanX. LuX. (Pro)renin receptor inhibition reprograms hepatic lipid metabolism and protects mice from diet-induced obesity and hepatosteatosis.Circ. Res.2018122573074110.1161/CIRCRESAHA.117.31242229301853
    [Google Scholar]
  18. KinouchiK. IchiharaA. SanoM. Sun-WadaG.H. WadaY. Kurauchi-MitoA. BokudaK. NaritaT. OshimaY. SakodaM. TamaiY. SatoH. FukudaK. ItohH. The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes.Circ. Res.20101071303410.1161/CIRCRESAHA.110.22466720570919
    [Google Scholar]
  19. HuY. Carraro-LacroixL.R. WangA. OwenC. BajenovaE. CoreyP.N. BrumellJ.H. VoronovI. Lysosomal pH plays a Key role in regulation of mTOR activity in Osteoclasts.J. Cell. Biochem.2016117241342510.1002/jcb.2528726212375
    [Google Scholar]
  20. LiS. BrownM.S. GoldsteinJ.L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis.Proc. Natl. Acad. Sci. USA201010783441344610.1073/pnas.091479810720133650
    [Google Scholar]
  21. AiD. BaezJ.M. JiangH. ConlonD.M. Hernandez-OnoA. Frank-KamenetskyM. MilsteinS. FitzgeraldK. MurphyA.J. WooC.W. StrongA. GinsbergH.N. TabasI. RaderD.J. TallA.R. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice.J. Clin. Invest.201212251677168710.1172/JCI6124822466652
    [Google Scholar]
  22. LuX. GarreldsI.M. WagnerC.A. DanserA.H.J. MeimaM.E. (Pro) renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H+-ATPase activity in MDCK.C11 collecting duct cells.Am. J. Physiol. Renal Physiol.20133053F417F42510.1152/ajprenal.00037.201323698123
    [Google Scholar]
  23. KissingS. RudnikS. DammeM. Lüllmann-RauchR. IchiharaA. KornakU. EskelinenE.L. JabsS. HeerenJ. De BrabanderJ.K. HaasA. SaftigP. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes.Autophagy201713467068510.1080/15548627.2017.128021628129027
    [Google Scholar]
  24. CousinC. BracquartD. ContrepasA. CorvolP. MullerL. NguyenG. Soluble form of the (pro) renin receptor generated by intracellular cleavage by furin is secreted in plasma.Hypertension20095361077108210.1161/HYPERTENSIONAHA.108.12725819380613
    [Google Scholar]
  25. NguyenG. MullerD.N. The biology of the (pro) renin receptor.J. Am. Soc. Nephrol.2010211182310.1681/ASN.200903030019917780
    [Google Scholar]
  26. Ian PhillipsM. SpeakmanE.A. KimuraB. Levels of angiotensin and molecular biology of the tissue renin angiotensin systems.Regul. Pept.1993431-212010.1016/0167‑0115(93)90403‑U8426906
    [Google Scholar]
  27. IpS.P. ChanY.W. LeungP.S. Effects of chronic hypoxia on the circulating and pancreatic renin-angiotensin system.Pancreas200225329630010.1097/00006676‑200210000‑0001312370542
    [Google Scholar]
  28. GuoL. Role of the renin-angiotensin system in hepatic ischemia reperfusion injury in rats.Hepatology.200440358358910.1002/hep.20369
    [Google Scholar]
  29. NeylonM. MarshallJ. JohnsE.J. The role of the renin-angiotensin system in the renal response to moderate hypoxia in the rat.J. Physiol1996491Pt 247948810.1113/jphysiol.1996.sp021232
    [Google Scholar]
  30. MorrellN. DanilovS.M. SatyanK.B. MorrisK.G. StenmarkK.R. Right ventricular angiotensin converting enzyme activity and expression is increased during hypoxic pulmonary hypertension.Cardiovasc. Res.199734239340310.1016/S0008‑6363(97)00049‑79205554
    [Google Scholar]
  31. MorrellN.W. AtochinaE.N. MorrisK.G. DanilovS.M. StenmarkK.R. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension.J. Clin. Invest.19959641823183310.1172/JCI1182287560074
    [Google Scholar]
  32. GaoX. ZhangS. WangD. ChengY. JiangY. LiuY. (Pro) renin receptor contributes to hypoxia/reoxygenation-induced apoptosis and autophagy in myocardial cells via the beta-catenin signaling pathway.Physiol. Res.202069342743810.33549/physiolres.93421032469229
    [Google Scholar]
  33. LeungP.S. Local renin-angiotensin system in the pancreas: The significance of changes by chronic hypoxia and acute pancreatitis.JOP2001213811862015
    [Google Scholar]
  34. LiuP. ChengH. RobertsT.M. ZhaoJ.J. Targeting the phosphoinositide 3-kinase pathway in cancer.Nat. Rev. Drug Discov.20098862764410.1038/nrd292619644473
    [Google Scholar]
  35. LiuD. BordicchiaM. ZhangC. FangH. WeiW. LiJ.L. GuilhermeA. GunturK. CzechM.P. CollinsS. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning.J. Clin. Invest.201612651704171610.1172/JCI8353227018708
    [Google Scholar]
  36. ZhuY. LinG. DaiZ. ZhouT. LiT. YuanT. WuZ. WuG. WangJ. l-Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells.Amino Acids201547102185219710.1007/s00726‑014‑1785‑024997162
    [Google Scholar]
  37. CheonS.Y. ChoK. Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: Targeting mTORC1.J. Mol. Med. (Berl.)202199111497150910.1007/s00109‑021‑02117‑834312684
    [Google Scholar]
  38. BidaultG. VirtueS. PetkeviciusK. JolinH.E. DugourdA. GuénantinA.C. LeggatJ. Mahler-AraujoB. LamB.Y.H. MaM.K. DaleM. CarobbioS. KaserA. FallonP.G. Saez-RodriguezJ. McKenzieA.N.J. Vidal-PuigA. SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation.Nat. Metab.2021391150116210.1038/s42255‑021‑00440‑534531575
    [Google Scholar]
  39. AllaireM. RautouP.E. CodognoP. LotersztajnS. Autophagy in liver diseases: Time for translation?J. Hepatol.201970598599810.1016/j.jhep.2019.01.02630711404
    [Google Scholar]
  40. UenoT. KomatsuM. Autophagy in the liver: Functions in health and disease.Nat. Rev. Gastroenterol. Hepatol.201714317018410.1038/nrgastro.2016.18528053338
    [Google Scholar]
  41. SinghR. KaushikS. WangY. XiangY. NovakI. KomatsuM. TanakaK. CuervoA.M. CzajaM.J. Autophagy regulates lipid metabolism.Nature200945872421131113510.1038/nature0797619339967
    [Google Scholar]
  42. Gracia-SanchoJ. Guixé-MuntetS. HideD. BoschJ. Modulation of autophagy for the treatment of liver diseases.Expert Opin. Investig. Drugs201423796597710.1517/13543784.2014.91227424749698
    [Google Scholar]
  43. DingH. GeG. TsengY. MaY. ZhangJ. LiuJ. Hepatic autophagy fluctuates during the development of non-alcoholic fatty liver disease.Ann. Hepatol.202019551652210.1016/j.aohep.2020.06.00132553647
    [Google Scholar]
  44. ArundhathiA. ChuangW.H. ChenJ.K. WangS.E. ShyrY.M. ChenJ.Y. LiaoW.N. ChenH.W. TengY.M. PaiC.C. WangC.H. Prorenin receptor acts as a potential molecular target for pancreatic ductal adenocarcinoma diagnosis.Oncotarget2016734554375544810.18632/oncotarget.1058328874965
    [Google Scholar]
  45. SatoS. HiroseT. OhbaK. WatanabeF. WatanabeT. MinatoK. EndoA. ItoH. MoriT. TakahashiK. (Pro)renin receptor and insulin signalling regulate cell proliferation in MCF-7 breast cancer cells.J. Biochem.2022172635536310.1093/jb/mvac07236071571
    [Google Scholar]
  46. SchefeJ.H. MenkM. ReinemundJ. EffertzK. HobbsR.M. PandolfiP.P. RuizP. UngerT. Funke-KaiserH. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein.Circ. Res.200699121355136610.1161/01.RES.0000251700.00994.0d17082479
    [Google Scholar]
  47. LiC. SiragyH.M. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose.Am. J. Physiol. Endocrinol. Metab.20153093E302E31010.1152/ajpendo.00603.201426081285
    [Google Scholar]
  48. ZoncuR. Bar-PeledL. EfeyanA. WangS. SancakY. SabatiniD.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase.Science2011334605667868310.1126/science.120705622053050
    [Google Scholar]
  49. LudwigJ. KerscherS. BrandtU. PfeifferK. GetlawiF. AppsD.K. SchäggerH. Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules.J. Biol. Chem.199827318109391094710.1074/jbc.273.18.109399556572
    [Google Scholar]
  50. NishiT. ForgacM. The vacuolar (H+)-ATPases-nature’s most versatile proton pumps.Nat. Rev. Mol. Cell Biol.2002329410310.1038/nrm72911836511
    [Google Scholar]
  51. JewellJ.L. RussellR.C. GuanK.-L.J.N.r.M.c.b. Amino acid signalling upstream of mTOR.Nat. Rev. Mol. Cell Biol.201314313313910.1038/nrm3522
    [Google Scholar]
  52. Lamas BervejilloM. FerreiraA.M.J.B.L.i.H. Understanding Peroxisome proliferator-activated receptors: From the structure to the regulatory actions on metabolismAdv. Exp. Med. Biol201911273957
    [Google Scholar]
  53. HanX. WuY. YangQ. CaoG. Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis.Pharmacol. Ther.202122210779110.1016/j.pharmthera.2020.10779133321113
    [Google Scholar]
  54. DreyerC. KreyG. KellerH. GivelF. HelftenbeinG. WahliW. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors.Cell199268587988710.1016/0092‑8674(92)90031‑71312391
    [Google Scholar]
  55. AhmedW. ZiouzenkovaO. BrownJ. DevchandP. FrancisS. KadakiaM. KandaT. OrasanuG. SharlachM. ZandbergenF. PlutzkyJ. PPARs and their metabolic modulation: New mechanisms for transcriptional regulation?J. Intern. Med.2007262218419810.1111/j.1365‑2796.2007.01825.x17645586
    [Google Scholar]
  56. la Cour PoulsenL. SiersbækM. MandrupS. PPARs: Fatty acid sensors controlling metabolism. ElsevierSeminars in cell & developmental biology.2012 23(6), P. 631-639.
    [Google Scholar]
  57. PerfieldJ.W.II OrtinauL.C. PickeringR.T. RuebelM.L. MeersG.M. RectorR.S. Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice.J. Obes.201320131810.1155/2013/29653723401753
    [Google Scholar]
  58. ZhangY.L. Hernandez-OnoA. SiriP. WeisbergS. ConlonD. GrahamM.J. CrookeR.M. HuangL.S. GinsbergH.N. Aberrant hepatic expression of PPARgamma2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis.J. Biol. Chem.200628149376033761510.1074/jbc.M60470920016971390
    [Google Scholar]
  59. SchadingerS.E. BucherN.L.R. SchreiberB.M. FarmerS.R. PPARγ2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes.Am. J. Physiol. Endocrinol. Metab.20052886E1195E120510.1152/ajpendo.00513.200415644454
    [Google Scholar]
  60. KimJ.B. WrightH.M. WrightM. SpiegelmanB.M. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand.Proc. Natl. Acad. Sci. USA19989584333433710.1073/pnas.95.8.43339539737
    [Google Scholar]
  61. GavrilovaO. HaluzikM. MatsusueK. CutsonJ.J. JohnsonL. DietzK.R. NicolC.J. VinsonC. GonzalezF.J. ReitmanM.L. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass.J. Biol. Chem.200327836342683427610.1074/jbc.M30004320012805374
    [Google Scholar]
  62. WangY. NakajimaT. GonzalezF.J. TanakaN. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-Null mice.Int. J. Mol. Sci.2020216206110.3390/ijms2106206132192216
    [Google Scholar]
  63. TanakaT. MasuzakiH. NakaoK. Role of PPARs in the pathophysiology of nonalcoholoic fatty liver disease.Jpn. J. Clin. Med.200563470070615828240
    [Google Scholar]
  64. WuC.H. MohammadmoradiS. ThompsonJ. SuW. GongM. NguyenG. YiannikourisF. Adipocyte (Pro)renin-receptor deficiency induces lipodystrophy, liver steatosis and increases blood pressure in male mice.Hypertension201668121321910.1161/HYPERTENSIONAHA.115.0695427185751
    [Google Scholar]
  65. FrantzE.D.C. Penna-de-CarvalhoA. BatistaT.M. AguilaM.B. Mandarim-de-LacerdaC.A. Comparative effects of the renin-angiotensin system blockers on nonalcoholic fatty liver disease and insulin resistance in C57BL/6 mice.Metab. Syndr. Relat. Disord.201412419120110.1089/met.2013.012924517411
    [Google Scholar]
  66. Skat-RørdamJ. Højland IpsenD. LykkesfeldtJ. Tveden-NyborgP. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease.Basic Clin. Pharmacol. Toxicol.2019124552853710.1111/bcpt.1319030561132
    [Google Scholar]
  67. WangF. LuoR. ZouC.J. XieS. PengK. ZhaoL. YangK.T. XuC. YangT. Soluble (pro)renin receptor treats metabolic syndrome in mice with diet-induced obesity via interaction with PPARγ.JCI Insight202057e12806110.1172/jci.insight.12806132271168
    [Google Scholar]
  68. LuX. MeimaM.E. NelsonJ.K. SorrentinoV. LoreggerA. ScheijS. DekkersD.H.W. MulderM.T. DemmersJ.A.A. M-Dallinga-ThieG. ZelcerN. DanserA.H.J. Identification of the (pro)renin receptor as a novel regulator of low-density Lipoprotein metabolism.Circ. Res.2016118222222910.1161/CIRCRESAHA.115.30679926582775
    [Google Scholar]
  69. DingL. SunW. BalazM. HeA. KlugM. WielandS. CaiazzoR. RaverdyV. PattouF. LefebvreP. LodhiI.J. StaelsB. HeimM. WolfrumC. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis.Nat. Metab.20213121648166110.1038/s42255‑021‑00489‑234903883
    [Google Scholar]
  70. SugdenM.C. HolnessM.J. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs.Am. J. Physiol. Endocrinol. Metab.20032845E855E86210.1152/ajpendo.00526.200212676647
    [Google Scholar]
  71. FosterD.W. Malonyl-CoA: The regulator of fatty acid synthesis and oxidation.J. Clin. Invest.201212261958195910.1172/JCI6396722833869
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673345528241101092336
Loading
/content/journals/cmc/10.2174/0109298673345528241101092336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test