Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Astragalus membranaceus has shown positive clinical efficacy in treating colorectal cancer (CRC).

Objective

This study aimed to identify the key active components of Astragalus and determine effective targets of these components in CRC patients.

Methods

We identified active components of Astragalus membranaceus and differentially expressed genes in traditional Chinese medicine systems pharmacology database and The Cancer Genome Atlas. Additionally, the enrichment analysis of differential target genes (DTGs) was performed using the R-package clusterProfiler. Immunocyte correlation analysis and non-coding regulatory network construction were performed for biomarkers using Spearman’s method and NetworkAnalyst. Finally, molecular docking of biomarkers and their corresponding molecule drugs was done with Autodock Vina software.

Results

We identified 20 active components of Astragalus membranaceus and 1 403 target genes through screening. A total of 2 300 differentially expressed genes, and 3 035 hub genes in CRC were screened. The integration of the target genes with the significantly differentially expressed genes and Hub genes identified resulted in a total of 86 DTGs. Subsequently, the results showed 828 enriched GO biological processes, 184 enriched GO molecular functions, 59 enriched GO cellular components, and 46 enriched KEGG pathways. We also obtained a total of 143 PPI pairs involving 67 nodes. Additionally, we constructed 45 mRNA-TF pairs, 101 miRNA-mRNA pairs, and 200 miRNA-mRNA-TF triplets. Finally, molecular docking was performed for the active component quercetin with F2 and UGT1A1 and formic acid with FGA, AHSG, and KNG1.

Conclusion

This study identified the active components of Astragalus membranaceus and their corresponding targets in CRC. These findings provide robust evidence for precision drug therapy in patients with CRC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673344265241014114804
2024-10-31
2025-10-30
Loading full text...

Full text loading...

References

  1. SongM. Global epidemiology and prevention of colorectal cancer.Lancet Gastroenterol. Hepatol.20227758859010.1016/S2468‑1253(22)00089‑935397797
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. CervantesA. AdamR. RosellóS. ArnoldD. NormannoN. TaïebJ. SeligmannJ. De BaereT. OsterlundP. YoshinoT. MartinelliE. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.Ann. Oncol.2023341103210.1016/j.annonc.2022.10.00336307056
    [Google Scholar]
  4. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  5. TaberneroJ. VelezL. TrevinoT.L. GrotheyA. YaegerR. Van CutsemE. WasanH. DesaiJ. CiardielloF. YoshinoT. GollerkeriA. MaharryK. Christy-BittelJ. KopetzS. Management of adverse events from the treatment of encorafenib plus cetuximab for patients with BRAF V600E-mutant metastatic colorectal cancer: Insights from the BEACON CRC study.ESMO Open20216610032810.1016/j.esmoop.2021.10032834896698
    [Google Scholar]
  6. ChoiC.S. KinK. CaoK. HutcheonE. LeeM. ChanS.T.F. ArafatY. BairdP.N. YeungJ.M.C. The association of body composition on chemotherapy toxicities in non-metastatic colorectal cancer patients: A systematic review.ANZ J. Surg.202494332733438059530
    [Google Scholar]
  7. YangY. ShenJ. DengP. ChenP. Mechanism investigation of Forsythoside A against esophageal squamous cell carcinoma in vitro and in vivo.Cancer Biol. Ther.2024251238002310.1080/15384047.2024.238002339046082
    [Google Scholar]
  8. WangY. GuanW.X. ZhouY. ZhangX.Y. ZhaoH.J. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3.Cancer Biol. Ther.2024251228484910.1080/15384047.2023.228484938051132
    [Google Scholar]
  9. LiuK. LiQ. LuX. FanX. YangY. XieW. KangJ. SunS. ZhaoJ. Seven oral traditional Chinese medicine combined with chemotherapy for the treatment of non-small cell lung cancer: A network meta-analysis.Pharm. Biol.202462140442210.1080/13880209.2024.235194038739082
    [Google Scholar]
  10. WangS. FuJ.L. HaoH.F. JiaoY.N. LiP.P. HanS.Y. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy.Pharmacol. Res.202117010572810.1016/j.phrs.2021.10572834119622
    [Google Scholar]
  11. WangK. ChenQ. ShaoY. YinS. LiuC. LiuY. WangR. WangT. QiuY. YuH. Anticancer activities of TCM and their active components against tumor metastasis.Biomed. Pharmacother.202113311104410.1016/j.biopha.2020.11104433378952
    [Google Scholar]
  12. MaF. WangQ. ZhangD. WangZ. XieH. LiuX. ZhangH. SongH. SunS. Comparative efficacy and safety of Chinese medicine injections as an adjunctive therapy for cervical cancer in Chinese patients: A network meta-analysis.Pharm. Biol.202462117018210.1080/13880209.2024.231221738334090
    [Google Scholar]
  13. ZhangZ. WuC. LiuN. WangZ. PanZ. JiangY. TianJ. SunM. Modified Banxiaxiexin decoction benefitted chemotherapy in treating gastric cancer by regulating multiple targets and pathways.J. Ethnopharmacol.202433111827710.1016/j.jep.2024.11827738697407
    [Google Scholar]
  14. ChenZ. LiuL. GaoC. ChenW. VongC.T. YaoP. YangY. LiX. TangX. WangS. WangY. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine.J. Ethnopharmacol.202025811289510.1016/j.jep.2020.11289532330511
    [Google Scholar]
  15. SheikA. KimK. VaraprasadG.L. LeeH. KimS. KimE. ShinJ.Y. OhS.Y. HuhY.S. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus.Phytomedicine20219115369810.1016/j.phymed.2021.15369834479785
    [Google Scholar]
  16. YuH. DingG. GongQ. MaJ. ZhaoY. WangY. QiaoX. ChengX. Modulation of PD-L1 by Astragalus polysaccharide attenuates the induction of melanoma stem cell properties and overcomes immune evasion.BMC Cancer2024241103410.1186/s12885‑024‑12788‑439169294
    [Google Scholar]
  17. WangX. ZhuB. HuaY. SunR. TanX. ChangX. TangD. GuJ. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. modulate gut microbiome and bile acid metabolism to inhibit colon cancer progression.Front. Microbiol.202415139563410.3389/fmicb.2024.139563438952445
    [Google Scholar]
  18. ZhangQ. GaoL. HuangS. LiangY. HuJ. ZhangY. WeiS. HuX. Cocktail of Astragalus membranaceus and Radix trichosanthis suppresses melanoma tumor growth and cell migration through regulation of akt-related signaling pathway.Front. Pharmacol.20221388021510.3389/fphar.2022.88021535721145
    [Google Scholar]
  19. YangY. LinZ. HeP. NieH. YaoQ. ZhangS. Inhibitory effect of Astragalus polysaccharide combined with cisplatin on cell cycle and migration of nasopharyngeal carcinoma cell lines.Biol. Pharm. Bull.202144792693110.1248/bpb.b20‑0095933952795
    [Google Scholar]
  20. LiW. HuX. LiY. SongK. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1.J. Nat. Med.202175485487010.1007/s11418‑021‑01525‑x34043154
    [Google Scholar]
  21. HaoZ. LiZ. HuoJ. ChuY. LiJ. YuX. LiuF. YinP. Effects of Chinese wolfberry and astragalus extracts on growth performance, pork quality, and unsaturated fatty acid metabolism regulation in Tibetan fragrant pigs.Anim. Sci. J.2021921e1358110.1111/asj.1358134236125
    [Google Scholar]
  22. WuC.T. TsaiY.T. LaiJ.N. Demographic and medication characteristics of traditional Chinese medicine users among colorectal cancer survivors: A nationwide database study in Taiwan.J. Tradit. Complement. Med.20177218819410.1016/j.jtcme.2016.07.00128417089
    [Google Scholar]
  23. ChenG. HanR. WangL. MaW. ZhangW. LuZ. WangL. Establishment of patient-derived organoids and a characterization based drug discovery platform for treatment of gastric cancer.Cancer Cell Int.202424128810.1186/s12935‑024‑03460‑939143546
    [Google Scholar]
  24. LiK. YangH. LinA. XieJ. WangH. ZhouJ. CarrS.R. LiuZ. LiX. ZhangJ. ChengQ. SchrumpD.S. LuoP. WeiT. CPADS: A web tool for comprehensive pancancer analysis of drug sensitivity.Brief. Bioinform.2024253bbae23710.1093/bib/bbae23738770717
    [Google Scholar]
  25. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  26. TomczakK. CzerwińskaP. WiznerowiczM. Review The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge.Contemp. Oncol. (Pozn.)20151A1A687710.5114/wo.2014.4713625691825
    [Google Scholar]
  27. XuH. LiuL. LiW. ZouD. YuJ. WangL. WongC.C. Transcription factors in colorectal cancer: Molecular mechanism and therapeutic implications.Oncogene20214091555156910.1038/s41388‑020‑01587‑333323976
    [Google Scholar]
  28. HuangX. ZhuX. YuY. ZhuW. JinL. ZhangX. LiS. ZouP. XieC. CuiR. Dissecting miRNA signature in colorectal cancer progression and metastasis.Cancer Lett.2021501668210.1016/j.canlet.2020.12.02533385486
    [Google Scholar]
  29. DaneseE. MontagnanaM. Epigenetics of colorectal cancer: Emerging circulating diagnostic and prognostic biomarkers.Ann. Transl. Med.201751327910.21037/atm.2017.04.4528758105
    [Google Scholar]
  30. FangW. NiM. ZhangM. ChenH. Prognostic value of OCT4 in colorectal cancer: Analysis using immunohistochemistry and bioinformatics validation.Biomarkers Med.202014151473148410.2217/bmm‑2020‑006933185466
    [Google Scholar]
  31. ChalikondaG. LeeH. SheikA. HuhY.S. Targeting key transcriptional factor STAT3 in colorectal cancer.Mol. Cell. Biochem.202147693219322810.1007/s11010‑021‑04156‑833866491
    [Google Scholar]
  32. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  33. MullanK.A. BrambergerL.M. MundayP.R. GoncalvesG. RevoteJ. MifsudN.A. IllingP.T. AndersonA. KwanP. PurcellA.W. LiC. ggVolcanoR: A Shiny app for customizable visualization of differential expression datasets.Comput. Struct. Biotechnol. J.2021195735574010.1016/j.csbj.2021.10.02034745458
    [Google Scholar]
  34. DingW. GoldbergD. ZhouW. PyComplexHeatmap: A Python package to visualize multimodal genomics data.iMeta202323e11510.1002/imt2.11538454967
    [Google Scholar]
  35. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  36. LamF. LalansinghC.M. BabaranH.E. WangZ. ProkopecS.D. FoxN.S. BoutrosP.C. VennDiagramWeb: A web application for the generation of highly customizable Venn and Euler diagrams.BMC Bioinformatics201617140110.1186/s12859‑016‑1281‑527716034
    [Google Scholar]
  37. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  38. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  39. PhamD.T. TranT.D. Drivergene.net: A cytoscape app for the identification of driver nodes of large-scale complex networks and case studies in discovery of drug target genes.Comput. Biol. Med.202417910888810.1016/j.compbiomed.2024.10888839047507
    [Google Scholar]
  40. SayersE.W. BoltonE.E. BristerJ.R. CaneseK. ChanJ. ComeauD.C. ConnorR. FunkK. KellyC. KimS. MadejT. Marchler-BauerA. LanczyckiC. LathropS. LuZ. Thibaud-NissenF. MurphyT. PhanL. SkripchenkoY. TseT. WangJ. WilliamsR. TrawickB.W. PruittK.D. SherryS.T. Database resources of the national center for biotechnology information.Nucleic Acids Res.202250D1D20D2610.1093/nar/gkab111234850941
    [Google Scholar]
  41. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  42. WangS. ChengL. JingF. LiG. Screening and identification of immune-related genes for immunotherapy and prognostic assessment in colorectal cancer patients.BMC Med. Genomics202215117710.1186/s12920‑022‑01329‑235941638
    [Google Scholar]
  43. PatelS.G. KarlitzJ.J. YenT. LieuC.H. BolandC.R. The rising tide of early-onset colorectal cancer: A comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection.Lancet Gastroenterol. Hepatol.20227326227410.1016/S2468‑1253(21)00426‑X35090605
    [Google Scholar]
  44. SiegelR.L. JakubowskiC.D. FedewaS.A. DavisA. AzadN.S. Colorectal cancer in the young: Epidemiology, prevention, management.Am. Soc. Clin. Oncol. Educ. Book20204040e75e8810.1200/EDBK_27990132315236
    [Google Scholar]
  45. WangZ. DanW. ZhangN. FangJ. YangY. Colorectal cancer and gut microbiota studies in China.Gut Microbes2023151223636410.1080/19490976.2023.223636437482657
    [Google Scholar]
  46. LiJ. MaX. ChakravartiD. ShalapourS. DePinhoR.A. Genetic and biological hallmarks of colorectal cancer.Genes Dev.20213511-1278782010.1101/gad.348226.12034074695
    [Google Scholar]
  47. BeckerW.R. NevinsS.A. ChenD.C. ChiuR. HorningA.M. GuhaT.K. LaquindanumR. MillsM. ChaibH. LadabaumU. LongacreT. ShenJ. EsplinE.D. KundajeA. FordJ.M. CurtisC. SnyderM.P. GreenleafW.J. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer.Nat. Genet.202254798599510.1038/s41588‑022‑01088‑x35726067
    [Google Scholar]
  48. SchmittM. GretenF.R. The inflammatory pathogenesis of colorectal cancer.Nat. Rev. Immunol.2021211065366710.1038/s41577‑021‑00534‑x33911231
    [Google Scholar]
  49. YanS. WangW. FengZ. XueJ. LiangW. WuX. TanZ. ZhangX. ZhangS. LiX. ZhangC. Immune checkpoint inhibitors in colorectal cancer: Limitation and challenges.Front. Immunol.202415140353310.3389/fimmu.2024.140353338919624
    [Google Scholar]
  50. La VecchiaS. SebastiánC. Metabolic pathways regulating colorectal cancer initiation and progression.Semin. Cell Dev. Biol.202098637010.1016/j.semcdb.2019.05.01831129171
    [Google Scholar]
  51. NikolaouS. QiuS. FiorentinoF. RasheedS. TekkisP. KontovounisiosC. The prognostic and therapeutic role of hormones in colorectal cancer: A review.Mol. Biol. Rep.20194611477148610.1007/s11033‑018‑4528‑630535551
    [Google Scholar]
  52. MaS.C. ZhangJ.Q. YanT.H. MiaoM.X. CaoY.M. CaoY.B. ZhangL.C. LiL. Novel strategies to reverse chemoresistance in colorectal cancer.Cancer Med.20231210110731109610.1002/cam4.559436645225
    [Google Scholar]
  53. ShengS. ZhaoT. WangX. Comparison of robot-assisted surgery, laparoscopic-assisted surgery, and open surgery for the treatment of colorectal cancer.Medicine (Baltimore)20189734e1181710.1097/MD.000000000001181730142771
    [Google Scholar]
  54. Riesco-MartinezM.C. ModregoA. Espinosa-OlarteP. La SalviaA. Garcia-CarboneroR. Perioperative chemotherapy for liver metastasis of colorectal cancer: Lessons learned and future perspectives.Curr. Treat. Options Oncol.20222391320133710.1007/s11864‑022‑01008‑535980520
    [Google Scholar]
  55. Dell’AcquaV. SurgoA. KrajaF. KobielaJ. ZerellaM.A. SpychalskiP. GandiniS. FranciaC.M. CiardoD. FodorC. FerrariA.M. PipernoG. CattaniF. VigoritoS. PansiniF. PetzW. OrecchiaR. LeonardiM.C. Jereczek-FossaB.A. Stereotactic radiation therapy in oligometastatic colorectal cancer: Outcome of 102 patients and 150 lesions.Clin. Exp. Metastasis201936433134210.1007/s10585‑019‑09976‑z31165360
    [Google Scholar]
  56. UnderwoodP.W. RuffS.M. PawlikT.M. Update on targeted therapy and immunotherapy for metastatic colorectal cancer.Cells202413324510.3390/cells1303024538334637
    [Google Scholar]
  57. Aguiar JuniorS. OliveiraM.M. SilvaD.R.M. MelloC.A.L. CalsavaraV.F. CuradoM.P. Survival of patients with colorectal cancer in a cancer center.Arq. Gastroenterol.202057217217710.1590/s0004‑2803.202000000‑3233206858
    [Google Scholar]
  58. ShangL. WangY. LiJ. ZhouF. XiaoK. LiuY. ZhangM. WangS. YangS. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation.J. Ethnopharmacol.2023302Pt A11587610.1016/j.jep.2022.11587636343798
    [Google Scholar]
  59. PiccoG. CattaneoC.M. van VlietE.J. CrisafulliG. RospoG. ConsonniS. VieiraS.F. RodríguezI.S. CancelliereC. BanerjeeR. SchipperL.J. OddoD. DijkstraK.K. CinatlJ. MichaelisM. YangF. Di NicolantonioF. Sartore-BianchiA. SienaS. ArenaS. VoestE.E. BardelliA. GarnettM.J. Werner helicase is a synthetic-lethal vulnerability in mismatch repair–deficient colorectal cancer refractory to targeted therapies, chemotherapy, and immunotherapy.Cancer Discov.20211181923193710.1158/2159‑8290.CD‑20‑150833837064
    [Google Scholar]
  60. ZengP. LiJ. ChenY. ZhangL. The structures and biological functions of polysaccharides from traditional Chinese herbs.Prog. Mol. Biol. Transl. Sci.201916342344410.1016/bs.pmbts.2019.03.00331030757
    [Google Scholar]
  61. LinS. AnX. GuoY. GuJ. XieT. WuQ. SuiX. Meta-analysis of astragalus-containing traditional chinese medicine combined with chemotherapy for colorectal cancer: Efficacy and safety to tumor response.Front. Oncol.2019974910.3389/fonc.2019.0074931456940
    [Google Scholar]
  62. LeeY.K. ParkS.Y. KimY.M. LeeW.S. ParkO.J. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin.Exp. Mol. Med.200941320120710.3858/emm.2009.41.3.02319293639
    [Google Scholar]
  63. ZhangX.A. ZhangS. YinQ. ZhangJ. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway.Pharmacogn. Mag.2015114240440910.4103/0973‑1296.15309625829782
    [Google Scholar]
  64. XuF. JiangH.L. FengW.W. FuC. ZhouJ.C. Characteristics of amino acid metabolism in colorectal cancer.World J. Clin. Cases202311276318632610.12998/wjcc.v11.i27.631837900242
    [Google Scholar]
  65. DuanW. HuJ. LiuY. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor.Exp. Mol. Pathol.201910717117810.1016/j.yexmp.2019.02.00430817910
    [Google Scholar]
  66. Quesada-CalvoF. MassotC. BertrandV. LonguespéeR. BlétardN. SomjaJ. MazzucchelliG. SmargiassoN. BaiwirD. De Pauw-GilletM.C. DelvenneP. MalaiseM. Coimbra MarquesC. PolusM. De PauwE. MeuwisM.A. LouisE. OLFM4, KNG1 and Sec24C identified by proteomics and immunohistochemistry as potential markers of early colorectal cancer stages.Clin. Proteomics2017141910.1186/s12014‑017‑9143‑328344541
    [Google Scholar]
  67. DengG. ZhouL. WangB. SunX. ZhangQ. ChenH. WanN. YeH. WuX. SunD. SunY. ChengH. Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation.J. Immunother. Cancer20221010e00487410.1136/jitc‑2022‑00487436307151
    [Google Scholar]
  68. LiC. LiuY. ZhangY. LiJ. LaiJ. Astragalus polysaccharide: A review of its immunomodulatory effect.Arch. Pharm. Res.202245636738910.1007/s12272‑022‑01393‑335713852
    [Google Scholar]
  69. ZhouL. LiuZ. WangZ. YuS. LongT. ZhouX. BaoY. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo.Sci. Rep.2017714482210.1038/srep4482228303957
    [Google Scholar]
  70. YangS. ZhangD. SunQ. NieH. ZhangY. WangX. HuangY. SunY. Single-cell and spatial transcriptome profiling identifies the transcription factor BHLHE40 as a driver of EMT in metastatic colorectal cancer.Cancer Res.202484132202221710.1158/0008‑5472.CAN‑23‑326438657117
    [Google Scholar]
  71. MullanyL.E. HerrickJ.S. WolffR.K. StevensJ.R. SamowitzW. SlatteryM.L. Transcription factor‐microRNA associations and their impact on colorectal cancer survival.Mol. Carcinog.201756112512252610.1002/mc.2269828667784
    [Google Scholar]
  72. LiuF. WangY. CaoY. WuZ. MaD. CaiJ. ShaJ. ChenQ. Transcription factor B-MYB activates lncRNA CCAT1 and upregulates SOCS3 to promote chemoresistance in colorectal cancer.Chem. Biol. Interact.202337411041210.1016/j.cbi.2023.11041236812959
    [Google Scholar]
  73. WangS.W. SunY.M. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer.Int. J. Oncol.20144441032104010.3892/ijo.2014.225924430672
    [Google Scholar]
  74. WangX. WangJ. ZhaoJ. WangH. ChenJ. WuJ. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment.Theranostics202212296397510.7150/thno.6541134976223
    [Google Scholar]
  75. LuM. LuF. LiaoC. GuoY. MaoC. LaiY. ChenX. ChenW. High throughput miRNA sequencing and bioinformatics analysis identify the mesenchymal cell proliferation and apoptosis related miRNAs during fetal mice palate development.J. Gene Med.2023259e353110.1002/jgm.353137317697
    [Google Scholar]
  76. WangH. MicroRNAs and apoptosis in colorectal cancer.Int. J. Mol. Sci.20202115535310.3390/ijms2115535332731413
    [Google Scholar]
  77. WeiC. YangC. WangS. ShiD. ZhangC. LinX. LiuQ. DouR. XiongB. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis.Mol. Cancer20191816410.1186/s12943‑019‑0976‑430927925
    [Google Scholar]
  78. PanG. LiuY. ShangL. ZhouF. YangS. EMT-associated microRNAs and their roles in cancer stemness and drug resistance.Cancer Commun. (Lond.)202141319921710.1002/cac2.1213833506604
    [Google Scholar]
  79. BaiJ. ZhangX. ShiD. XiangZ. WangS. YangC. LiuQ. HuangS. FangY. ZhangW. SongJ. XiongB. RETRACTED: Exosomal miR-128-3p promotes epithelial-to-mesenchymal transition in colorectal cancer cells by targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 signaling.Front. Cell Dev. Biol.2021956873810.3389/fcell.2021.56873833634112
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673344265241014114804
Loading
/content/journals/cmc/10.2174/0109298673344265241014114804
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test