Skip to content
2000
Volume 32, Issue 36
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

The main objective of the study was to investigate potential anticancer activity of newly synthesized O-alkyl chalcone derivative (E)-1-(3-metoxy-4-propoxyphenyl)-5-methylhex-1-en-3-on, (Chalcone 5) on cervical HeLa, colorectal HCT-116 carcinoma cells and healthy MRC-5 cells.

Methods

Using the MTT assay, the cytotoxic effect of Chalcone 5 and reference substances dehydrozingerone and cisplatin were assessed. Using flow cytometry analysis, the labeling process with Annexin V-FITC/7-AAD was carried out to assess the type of cell death, while labeling with PI was used to examine the cell cycle progression in Chalcone 5 treated HeLa and HCT-116 cells. JC-10 probe was used to observe changes in the mitochondrial membrane potential after Chalcone 5 therapy. The expression and cellular localization of the important apoptotic proteins Bcl-2, Bax, caspase 3, and cytochrome c were investigated using flow cytometry and immunofluorescence techniques.

Results

The treatment of HeLa and HCT-116 cells with Chalcone 5 selectively induced cytotoxicity, and apoptosis and increased the expression of active Bax and caspase-3 while decreasing the expression of Bcl-2, compared to healthy MRC5 cells. Furthermore, Chalcone 5 decreased mitochondrial membrane potential and caused the release of cytochrome c from mitochondria, thereby triggering the mitochondrial inner apoptotic pathway. Moreover, Chalcone 5 arrested cell cycle progression in the G0/G1 phase in both HeLa and HCT-116 cells.

Conclusion

According to the study's findings, Chalcone 5 is a potentially useful candidate drug for additional research on its anticancer properties against cervical and colon cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673317485240827093121
2025-03-06
2025-10-30
Loading full text...

Full text loading...

References

  1. ChaudhryG.S. Md AkimA. SungY.Y. SifzizulT.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics.Front. Pharmacol.20221384237610.3389/fphar.2022.84237636034846
    [Google Scholar]
  2. Institute of Public Health "Dr. Milan Jovanovic Batut"Department for prevention and control of noncommunicable diseases cancer registry in the republic of serbia tumors in the republic of serbia malignant tumors in the Republic of Serbia.2020Available From: https://www.batut.org.rs/download/publikacije/MaligniTumoriURepubliciSrbiji2021.pdf
  3. WongR.S.Y. Apoptosis in cancer: From pathogenesis to treatment.J. Exp. Clin. Cancer Res.20113018710.1186/1756‑9966‑30‑8721943236
    [Google Scholar]
  4. LeiteF.F. de SousaN.F. de OliveiraB.H.M. DuarteG.D. FerreiraM.D.L. ScottiM.T. FilhoJ.M.B. RodriguesL.C. de MouraR.O. Mendonça-JuniorF.J.B. ScottiL. Anticancer activity of chalcones and its derivatives: Review and in silico studies.Molecules20232810400910.3390/molecules2810400937241750
    [Google Scholar]
  5. MuškinjaJ. RatkovićZ. RankovićB. KosanićM. Synthesis of O-alkyl derivatives of dehydrozingerone analogues.Kragujevac J. Sci.201638389710610.5937/KgJSci1638097M
    [Google Scholar]
  6. AliyatulF.R. Synthesis of halogen substituted chalcone againts cervical cancer (HeLa) cell lines using green method.J. Trop. Chem. Res. Edu.202351364310.14421/jtcre.2023.36‑43
    [Google Scholar]
  7. KumarR. HerbertP.E. WarrensA.N. An introduction to death receptors in apoptosis.Int. J. Surg.20053426827710.1016/j.ijsu.2005.05.00217462297
    [Google Scholar]
  8. LukovićJ. MitrovićM. PopovićS. MilosavljevićZ. Stanojević-PirkovićM. AnđelkovićM. ZelenI. ŠorakM. MuškinjaJ. RatkovićZ. NikolićI. Antitumor effects of vanillin based chalcone analogs in vitro.Acta Pol. Pharm.2020771576710.32383/appdr/112786
    [Google Scholar]
  9. KumarA. PN. KumarM. JoseA. TomerV. OzE. ProestosC. ZengM. ElobeidT. KS. OzF. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules2802088736677944
    [Google Scholar]
  10. WangC. WuP. ShenX.L. WeiX.Y. JiangZ.H. Synthesis, cytotoxic activity and drug combination study of tertiary amine derivatives of 2′,4′-dihydroxyl-6′-methoxyl-3′,5′-dimethylchalcone.RSC Advances2017776480314803810.1039/C7RA08639C
    [Google Scholar]
  11. GonzalezB.L. de OliveiraN.C. RitterM.R. ToninF.S. MeloE.B. SanchesA.C.C. Fernandez-LlimosF. PetrucoM.V. de MelloJ.C.P. ChierritoD. de Medeiros AraújoD.C. The naturally-derived alkaloids as a potential treatment for COVID-19: A scoping review.Phytother. Res.20223672686270910.1002/ptr.744235355337
    [Google Scholar]
  12. DuranN. PolatM.F. AktasD.A. AlagozM.A. AyE. CimenF. TekE. AnilB. BurmaogluS. AlgulO. New chalcone derivatives as effective against SARS-CoV-2 agent.Int. J. Clin. Pract.20217512e1484610.1111/ijcp.1484634519118
    [Google Scholar]
  13. AlsafiM.A. HughesD.L. SaidM.A. First COVID-19 molecular docking with a chalcone-based compound: Synthesis, single-crystal structure and Hirshfeld surface analysis study.Acta Crystallogr. C Struct. Chem.202076121043105010.1107/S205322962001421733273140
    [Google Scholar]
  14. DhaliwalJ.S. MoshawihS. GohK.W. LoyM.J. HossainM.S. HermansyahA. KotraV. KifliN. GohH.P. DhaliwalS.K.S. YassinH. MingL.C. Pharmacotherapeutics applications and chemistry of chalcone derivatives.Molecules20222720706210.3390/molecules2720706236296655
    [Google Scholar]
  15. ShalabyM.A. RizkS.A. FahimA.M. Synthesis, reactions and application of chalcones: A systematic review.Org. Biomol. Chem.202321265317534610.1039/D3OB00792H37338020
    [Google Scholar]
  16. de OliveiraA.S. CenciA.R. GonçalvesL. ThedyM.E.C. JustinoA. BragaA.L. MeierL. Chalcone derivatives as antibacterial agents: An updated overview.Curr. Med. Chem.202431172314232910.2174/092986733066623022014081936803761
    [Google Scholar]
  17. MartinsT. FonsecaB.M. RebeloI. Antioxidant effects of chalcones during the inflammatory response: An overall review.Curr. Med. Chem.202128377658771310.2174/092986732866621051101494933992052
    [Google Scholar]
  18. KumarV. DhawanS. GiraseP.S. AwoladeP. ShindeS.R. KarpoormathR. SinghP. Recent advances in chalcone-based anticancer heterocycles: A structural and molecular target perspective.Curr. Med. Chem.202128336805684510.2174/092986732866621032210283633749549
    [Google Scholar]
  19. De LucaF. Di ChioC. ZappalàM. EttariR. Dihydrochalcones as antitumor agents.Curr. Med. Chem.202229305042506110.2174/092986732966622041511321935430969
    [Google Scholar]
  20. ElkanziN.A.A. HrichiH. AlolayanR.A. DerafaW. ZahouF.M. BakrR.B. Synthesis of chalcones derivatives and their biological activities: A review.ACS Omega2022732277692778610.1021/acsomega.2c0177935990442
    [Google Scholar]
  21. TakacP. KelloM. VilkovaM. VaskovaJ. MichalkovaR. MojzisovaG. MojzisJ. Antiproliferative effect of acridine chalcone is mediated by induction of oxidative stress.Biomolecules202010234510.3390/biom1002034532098428
    [Google Scholar]
  22. WalyEldeenA.A. SabetS. El-ShorbagyH.M. AbdelhamidI.A. IbrahimS.A. Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer.Chem. Biol. Interact.202336911029710.1016/j.cbi.2022.11029736496109
    [Google Scholar]
  23. WHOCancer Today.2024Available From: https://gco.iarc.fr/today/en/dataviz/pie?mode=population&group_populations=0
  24. MichalkovaR. KelloM. CizmarikovaM. BardelcikovaA. MirossayL. MojzisJ. Chalcones and gastrointestinal cancers: Experimental evidence.Int. J. Mol. Sci.2023246596410.3390/ijms2406596436983038
    [Google Scholar]
  25. PhangC.W. Abd MalekS.N. KarsaniS.A. FlavokawainC. Flavokawain C exhibits anti-tumor effects on in vivo HCT 116 xenograft and identification of its apoptosis-linked serum biomarkers via proteomic analysis.Biomed. Pharmacother.202113711084610.1016/j.biopha.2020.11084633761587
    [Google Scholar]
  26. YangZ. LiuZ.Y. AbliseM. MaimaitiA. MutalipuZ. AlimujiangY. AihaitiA. Design, synthesis, and anti-cervical cancer and reversal of tumor multidrug resistance activity of novel nitrogen-containing heterocyclic chalcone derivatives.Molecules20232811453710.3390/molecules2811453737299013
    [Google Scholar]
  27. YanG. ElbadawiM. EfferthT. Multiple cell death modalities and their key features (Review).World Acad. Sci. J.202022394810.3892/wasj.2020.40
    [Google Scholar]
  28. HäckerG. The morphology of apoptosis.Cell Tissue Res.2000301151710.1007/s00441000019310928277
    [Google Scholar]
  29. ZieglerU. Morphological features of cell death.American Physiol. Soc. J.202491248
    [Google Scholar]
  30. SethupathiM. PraveenaA. SengottuvelanN. PonnuchamyK. Ferrocenyl chalcone armed macrocyclic tet a- based cobalt(II) and copper(II) complexes: DNA photocleavage activity and photocytotoxicity.Appl. Organomet. Chem.2023372e695710.1002/aoc.6957
    [Google Scholar]
  31. MendanhaD. Vieira de CastroJ. MoreiraJ. CostaB.M. CidadeH. PintoM. FerreiraH. NevesN.M. A new chalcone derivative with promising antiproliferative and anti-invasion activities in glioblastoma cells.Molecules20212611338310.3390/molecules2611338334205043
    [Google Scholar]
  32. ShenS. ShaoY. LiC. Different types of cell death and their shift in shaping disease.Cell Death Discov.20239128410.1038/s41420‑023‑01581‑037542066
    [Google Scholar]
  33. HajibabaieF. AbedpoorN. MohamadynejadP. Types of cell death from a molecular perspective.Biology (Basel)20231211142610.3390/biology1211142637998025
    [Google Scholar]
  34. MichalkovaR. MirossayL. GazdovaM. KelloM. MojzisJ. Molecular mechanisms of antiproliferative effects of natural chalcones.Cancers (Basel)20211311273010.3390/cancers1311273034073042
    [Google Scholar]
  35. DarwishM.I.M. MoustafaA.M. YoussefA.M. MansourM. YousefA.I. El OmriA. ShawkiH.H. MohamedM.F. HassaneenH.M. AbdelhamidI.A. OishiH. Novel tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcones suppress breast carcinoma through cell cycle arrests and apoptosis.Molecules2023288333810.3390/molecules2808333837110575
    [Google Scholar]
  36. SuwitoH. HardiyantiH.D. HaqK. KristantiA.N. FurghoniyyahU. RahmawatiA.N. AyuningtyasD.R. Synthesis, anticancer activity, and apoptosis mechanism of some chalcone derivatives.AIP Conf. Proc.20202237102007310.1063/5.0005376
    [Google Scholar]
  37. Saito, R.; Hashimoto, K.; Miyamo-Kurosaki, N. chalcone (1,3-diphenyl-2-propen-1-one) induces apoptosis of hela cd4+ cells through caspase signaling pathways.Mater. Technol.2021394453
    [Google Scholar]
  38. NairP. LuM. PetersenS. AshkenaziA. Apoptosis initiation through the cell-extrinsic pathway.Methods Enzymol.20145449912810.1016/B978‑0‑12‑417158‑9.00005‑424974288
    [Google Scholar]
  39. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.01227646922
    [Google Scholar]
  40. GazdovaM. MichalkovaR. KelloM. VilkovaM. KudlickovaZ. BaloghovaJ. MirossayL. MojzisJ. Chalcone-acridine hybrid suppresses melanoma cell progression via G2/M cell cycle arrest, DNA damage, apoptosis, and modulation of MAP kinases activity.Int. J. Mol. Sci.202223201226610.3390/ijms23201226636293123
    [Google Scholar]
  41. KashyapD. GargV.K. GoelN. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis.Adv. Protein Chem. Struct. Biol.20211257312010.1016/bs.apcsb.2021.01.00333931145
    [Google Scholar]
  42. CampbellK.J. TaitS.W.G. Targeting Bcl-2 regulated apoptosis in cancer.Open Biol.20188518000210.1098/rsob.18000229769323
    [Google Scholar]
  43. HassanzadehA. Farshdousti HaghM. AlivandM.R. AkbariA.A.M. Shams AsenjanK. SaraeiR. SolaliS. Down-regulation of intracellular anti-apoptotic proteins, particularly c-FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL.J. Cell. Physiol.2018233106470648510.1002/jcp.2658529741767
    [Google Scholar]
  44. QianS. WeiZ. YangW. HuangJ. YangY. WangJ. The role of Bcl-2 family proteins in regulating apoptosis and cancer therapy.Front. Oncol.20221298536310.3389/fonc.2022.98536336313628
    [Google Scholar]
  45. DadsenaS. JennerA. García-SáezA.J. Mitochondrial outer membrane permeabilization at the single molecule level.Cell. Mol. Life Sci.20217883777379010.1007/s00018‑021‑03771‑433576840
    [Google Scholar]
  46. NaumovaN. ŠachlR. Regulation of cell death by mitochondrial transport systems of calcium and Bcl-2 proteins.Membranes (Basel)2020101029910.3390/membranes1010029933096926
    [Google Scholar]
  47. RenaultT.T. TeijidoO. AntonssonB. DejeanL.M. ManonS. Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-xL: Keep your friends close but your enemies closer.Int. J. Biochem. Cell Biol.2013451646710.1016/j.biocel.2012.09.02223064052
    [Google Scholar]
  48. ChenQ. GongB. AlmasanA. Distinct stages of cytochrome c release from mitochondria: Evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis.Cell Death Differ.20007222723310.1038/sj.cdd.440062910713737
    [Google Scholar]
  49. BalkJ. LeaverC.J. McCabeP.F. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants.FEBS Lett.19994631-215115410.1016/S0014‑5793(99)01611‑710601657
    [Google Scholar]
  50. LuD. GuoY. HuY. WangM. LiC. GangradeA. ChenJ. ZhengZ. GuoJ. Fusion of apoptosis-related protein Cytochrome c with anti-HER-2 single-chain antibody targets the suppression of HER-2+ breast cancer.J. Cell. Mol. Med.20212522106381064910.1111/jcmm.1700134697906
    [Google Scholar]
  51. LiuZ. DingY. YeN. WildC. ChenH. ZhouJ. Direct activation of bax protein for cancer therapy.Med. Res. Rev.201636231334110.1002/med.2137926395559
    [Google Scholar]
  52. ShiozakiE.N. ChaiJ. ShiY. Oligomerization and activation of caspase-9, induced by Apaf-1 CARD.Proc. Natl. Acad. Sci. USA20029974197420210.1073/pnas.07254439911904389
    [Google Scholar]
  53. ShakeriR. KheirollahiA. DavoodiJ. Apaf-1: Regulation and function in cell death.Biochimie201713511112510.1016/j.biochi.2017.02.00128192157
    [Google Scholar]
  54. PanJ. XuG. YeungS.C.J. Cytochrome c release is upstream to activation of caspase-9, caspase-8, and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells induced by manumycin and paclitaxel.J. Clin. Endocrinol. Metab.200186104731474010.1210/jcem.86.10.786011600533
    [Google Scholar]
  55. Elena-RealC.A. Díaz-QuintanaA. González-ArzolaK. Velázquez-CampoyA. OrzáezM. López-RivasA. Gil-CaballeroS. De la RosaM.Á. Díaz-MorenoI. Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition.Cell Death Dis.20189336510.1038/s41419‑018‑0408‑129511177
    [Google Scholar]
  56. Bossy-WetzelE. NewmeyerD.D. GreenD.R. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization.EMBO J.1998171374910.1093/emboj/17.1.379427739
    [Google Scholar]
  57. Jie, Y.; Xuesong L.; Kapil B.; Caryn, N.K.; Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Am. J. Adv. Sci., 1997, 275(5303), 1129-1132.
  58. TsujimotoY. Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria?Genes Cells199831169770710.1046/j.1365‑2443.1998.00223.x9990505
    [Google Scholar]
  59. YangJ. LiuX. BhallaK. KimC.N. IbradoA.M. CaiJ. PengT.I. JonesD.P. WangX. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked.Science199727553031129113210.1126/science.275.5303.11299027314
    [Google Scholar]
  60. MadamwarD. PatelD.K. DesaiS.N. UpadhyayK.K. DevkarR.V. Apoptotic potential of C-phycoerythrin from Phormidium sp. A27DM and Halomicronema sp. A32DM on human lung carcinoma cells.EXCLI J.20151452753910.17179/EXCLI2014‑69626535041
    [Google Scholar]
  61. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/0192623070132033717562483
    [Google Scholar]
  62. ZhangS. LiT. ZhangL. WangX. DongH. LiL. FuD. LiY. ZiX. LiuH.M. ZhangY. XuH. JinC.Y. A novel chalcone derivative S17 induces apoptosis through ROS dependent DR5 up-regulation in gastric cancer cells.Sci. Rep.201771987310.1038/s41598‑017‑10400‑328852176
    [Google Scholar]
  63. Ramirez-TagleR. EscobarC. RomeroV. MontorfanoI. ArmisénR. BorgnaV. JeldesE. PizarroL. SimonF. EcheverriaC. Chalcone-induced apoptosis through caspase-dependent intrinsic pathways in human hepatocellular carcinoma cells.Int. J. Mol. Sci.201617226010.3390/ijms1702026026907262
    [Google Scholar]
  64. JingwenB. YaochenL. GuojunZ. Cell cycle regulation and anticancer drug discovery.Cancer Biol. Med.201714434836210.20892/j.issn.2095‑3941.2017.003329372101
    [Google Scholar]
  65. WinterE. ChiaradiaL.D. SilvaA.H. NunesR.J. YunesR.A. Creczynski-PasaT.B. Involvement of extrinsic and intrinsic apoptotic pathways together with endoplasmic reticulum stress in cell death induced by naphthylchalcones in a leukemic cell line: Advantages of multi-target action.Toxicol. In Vitro201428576977710.1016/j.tiv.2014.02.00224583196
    [Google Scholar]
  66. RaoY.K. KaoT.Y. KoJ.L. TzengY.M. Chalcone HTMC causes in vitro selective cytotoxicity, cell-cycle G1 phase arrest through p53-dependent pathway in human lung adenocarcinoma A549 cells, and in vivo tumor growth suppression.Bioorg. Med. Chem. Lett.201020226508651210.1016/j.bmcl.2010.09.05620926293
    [Google Scholar]
  67. MielckeT.R. MascarelloA. Filippi-ChielaE. ZaninR.F. LenzG. LealP.C. ChirardiaL.D. YunesR.A. NunesR.J. BattastiniA.M.O. MorroneF.B. CamposM.M. Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation.Eur. J. Med. Chem.20124825526410.1016/j.ejmech.2011.12.02322209415
    [Google Scholar]
  68. HsuY.L. KuoP.L. TzengW.S. LinC.C. Chalcone inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis.Food Chem. Toxicol.200644570471310.1016/j.fct.2005.10.00316307839
    [Google Scholar]
  69. ShuklaS. SoodA.K. GoyalK. SinghA. SharmaV. GuliyaN. GulatiS. KumarS. Chalcone scaffolds as anticancer drugs: A review on molecular insight in action of mechanisms and anticancer properties.Anticancer. Agents Med. Chem.202121131650167010.2174/187152062099920112421284033238850
    [Google Scholar]
  70. HussainiS.M.A. YedlaP. BabuK.S. ShaikT.B. ChityalG.K. KamalA. Synthesis and biological evaluation of 1,2,3-triazole tethered pyrazoline and chalcone derivatives.Chem. Biol. Drug Des.20168819710910.1111/cbdd.1273826854643
    [Google Scholar]
  71. AhmedF.F. Abd El-HafeezA.A. AbbasS.H. AbdelhamidD. Abdel-AzizM. New 1,2,4-triazole-Chalcone hybrids induce Caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells.Eur. J. Med. Chem.201815170572210.1016/j.ejmech.2018.03.07329660690
    [Google Scholar]
  72. LaboudY.N. HassanN. HassaneenH.M. HassaneenH.M.E. SalehF.M. Mohamed TelebM.A. Newly synthesized arylazo derivatives induce apoptosis and G2/M cell cycle arrest with molecular docking validation in human cancer cell lines.Anticancer. Agents Med. Chem.202323101192120310.2174/187152062366623020610531736744691
    [Google Scholar]
  73. PapierskaK. Krajka-KuźniakV. KleszczR. StefańskiT. KurczabR. KubickiM. The synthesis of novel thioderivative chalcones and their influence on NF-κB, STAT3 and NRF2 signaling pathways in colorectal cancer cells.Sci. Rep.20221211491510.1038/s41598‑022‑18981‑434992227
    [Google Scholar]
  74. SongX. Casticin induces apoptosis and G0/G1 cell cycle arrest in gallbladder cancer cells.Cancer Cell Int.201717111010.1186/S12935‑016‑0377‑3/FIGURES/5
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673317485240827093121
Loading
/content/journals/cmc/10.2174/0109298673317485240827093121
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Apoptosis; bax; caspase-3; cell death; cervical cancer; chalcones; colon cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test