Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The understanding of glycans, the third life chain, is widely desired. Naturally, the glycoconjugates are found in heterogeneous forms due to the enzyme competition in the same process. As a result, the synthesis of homogeneous glycans has become one of the trending research topics. In this review, orthogonal protection strategies were summarized to overcome the difficulties, such as the numerous hydroxyl groups of oligosaccharides and stereoselectivities during glycosylations. A variety of synthetic glycomics, including glycoproteins, glycolipids, and newly discovered glycoRNAs, were also presented. Their applications were categorized by different diseases, which elucidated the great potential of glycans as drug candidates in the next generation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673340376241031041048
2025-01-01
2025-09-10
Loading full text...

Full text loading...

References

  1. HirayamaM. Novel physiological functions of oligosaccharides.Pure Appl. Chem.20027471271127910.1351/pac200274071271
    [Google Scholar]
  2. HanauS. AlmugadamS.H. SapienzaE. CacciariB. ManfrinatoM.C. TrentiniA. KennedyJ.F. Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones.Carbohydr. Polym. Technol. Appl.2020110001310.1016/j.carpta.2020.100013
    [Google Scholar]
  3. CollotM. SendidB. FievezA. SavauxC. Standaert-VitseA. TabouretM. DrucbertA.S. Marie DanzéP. PoulainD. MalletJ.M. Biotin sulfone as a new tool for synthetic oligosaccharide immobilization: application to multiple analysis profiling and surface plasmonic analysis of anti-Candida albicans antibody reactivity against α and β (1->2) oligomannosides.J. Med. Chem.200851196201621010.1021/jm800099g18788729
    [Google Scholar]
  4. FairbanksA.J. Endohexosaminidase-catalyzed synthesis of glycopeptides and proteins.Pure Appl. Chem.20138591847186310.1351/pac‑con‑12‑09‑10
    [Google Scholar]
  5. BennettC.S. WongC.H. Chemoenzymatic approaches to glycoprotein synthesis.Chem. Soc. Rev.20073681227123810.1039/b617709c17619683
    [Google Scholar]
  6. DharaD. DharaA. MurphyP.V. MulardL.A. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis.Carbohydr. Res.202252110864410.1016/j.carres.2022.10864436030632
    [Google Scholar]
  7. MurataT. UsuiT. Enzymatic synthesis of oligosaccharides and neoglycoconjugates.Biosci. Biotechnol. Biochem.20067051049105910.1271/bbb.70.104916717404
    [Google Scholar]
  8. FiliceM. MarcielloM. Enzymatic synthesis of oligosaccharides: A powerful tool for a sweet challenge.Curr. Org. Chem.201317770171810.2174/1385272811317070006
    [Google Scholar]
  9. LvZ. LiuH. HaoH. RahmanF.U. ZhangY. Chemical synthesis of oligosaccharides and their application in new drug research.Eur. J. Med. Chem.202324911516410.1016/j.ejmech.2023.11516436758451
    [Google Scholar]
  10. BoonsG.J. Recent developments in chemical oligosaccharide synthesis.Contemp. Org. Synth.19963317320010.1039/co9960300173
    [Google Scholar]
  11. BoltjeT.J. BuskasT. BoonsG.J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research.Nat. Chem.20091861162210.1038/nchem.39920161474
    [Google Scholar]
  12. ZhaoC. WuY. LiuX. LiuB. CaoH. YuH. SarkerS.D. NaharL. XiaoJ. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides.Trends Food Sci. Technol.20176613514510.1016/j.tifs.2017.06.008
    [Google Scholar]
  13. ÁgostonK. StreicherH. FügediP. Orthogonal protecting group strategies in carbohydrate chemistry.Tetrahedron Asymmetry2016271670772810.1016/j.tetasy.2016.06.010
    [Google Scholar]
  14. ParsonsT.B. StruweW.B. GaultJ. YamamotoK. TaylorT.A. RajR. WalsK. MohammedS. RobinsonC.V. BeneschJ.L.P. DavisB.G. Optimal synthetic glycosylation of a therapeutic antibody.Angew. Chem. Int. Ed.20165572361236710.1002/anie.20150872326756880
    [Google Scholar]
  15. EdwardsE. LivanosM. KruegerA. DellA. HaslamS.M. Mark SmalesC. BracewellD.G. Strategies to control therapeutic antibody glycosylation during bioprocessing: Synthesis and separation.Biotechnol. Bioeng.202211961343135810.1002/bit.2806635182428
    [Google Scholar]
  16. ZhengC. HuangR. BavaroT. TerreniM. SollogoubM. XuJ. ZhangY. Design, synthesis and biological evaluation of new ganglioside GM3 analogues as potential agents for cancer therapy.Eur. J. Med. Chem.202018911206510.1016/j.ejmech.2020.11206531978783
    [Google Scholar]
  17. LiuF. LiuH. SollogoubM. ZhangY. Recent advances on glycosphingolipid GM3.Carbohydrate Chemistry: Chemical and Biological Approaches.The Royal Society of Chemistry202023024910.1039/9781788013864‑00230
    [Google Scholar]
  18. ZhengL. YangQ. LiF. ZhuM. YangH. TanT. WuB. LiuM. XuC. YinJ. CaoC. The glycosylation of immune checkpoints and their applications in oncology.Pharmaceuticals20221512145110.3390/ph1512145136558902
    [Google Scholar]
  19. LebrillaC.B. LiuJ. WidmalmG. PrestegardJ.H. Oligosaccharides and Polysaccharides.Essentials of Glycobiology. VarkiA. CummingsR.D. EskoJ.D. StanleyP. HartG.W. AebiM. MohnenD. KinoshitaT. PackerN.H. PrestegardJ.H. SchnaarR.L. SeebergerP.H. Cold Spring Harbor, NYCold Spring Harbor Laboratory Press2022
    [Google Scholar]
  20. ZhengJ. XuH. FangJ. ZhangX. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives.Carbohydr. Polym.202229111956410.1016/j.carbpol.2022.11956435698389
    [Google Scholar]
  21. YamamotoK. Chemo-enzymatic synthesis of bioactive glycopeptide using microbial endoglycosidase.J. Biosci. Bioeng.200192649350110.1016/S1389‑1723(01)80307‑816233137
    [Google Scholar]
  22. CattiauxL. MalletJ.M. Self-supported solution synthesis of oligosaccharides using thioglycosides donors.Tetrahedron202212513303610.1016/j.tet.2022.133036
    [Google Scholar]
  23. WeishauptM. EllerS. SeebergerP.H. Solid phase synthesis of oligosaccharidesMethods in Enzymology2010Academic Press463484
    [Google Scholar]
  24. CrawfordC.J. SeebergerP.H. Advances in glycoside and oligosaccharide synthesis.Chem. Soc. Rev.202352227773780110.1039/D3CS00321C37830906
    [Google Scholar]
  25. ZhouX.Y. LiL.X. ZhangZ. DuanS.C. HuangY.W. LuoY.Y. MuX.D. ChenZ.W. QinY. HuJ. YinJ. YangJ.S. Chemical synthesis and antigenic evaluation of inner core oligosaccharides from Acinetobacter baumannii Lipopolysaccharide.Angew. Chem. Int. Ed.20226129e20220442010.1002/anie.20220442035543248
    [Google Scholar]
  26. CornilJ. HuZ. BouchetM. MulardL.A. Multigram synthesis of an orthogonally-protected pentasaccharide for use as a glycan precursor in a Shigella flexneri 3a conjugate vaccine: application to a ready-for-conjugation decasaccharide.Org. Chem. Front.20218226279629910.1039/D1QO00761K
    [Google Scholar]
  27. IkeuchiK. MatsumotoS. IkutaD. YamadaH. Glycosylation by alkyne activation of the 2-O-Substituted propargyl group in a β-Phenylthioglucoside with a 5 S 1 conformation.Synlett202132881782110.1055/a‑1384‑2931
    [Google Scholar]
  28. MollaM.R. DasP. GuleriaK. SubramanianR. KumarA. ThakurR. Cyanomethyl ether as an orthogonal participating group for stereoselective synthesis of 1,2- trans-β-O-glycosides.J. Org. Chem.202085159955996810.1021/acs.joc.0c0124932600042
    [Google Scholar]
  29. van MechelenJ. VoorneveldJ. OverkleeftH.S. FilippovD.V. van der MarelG.A. CodéeJ.D.C. Synthesis of orthogonally protected and functionalized bacillosamines.Org. Biomol. Chem.202018152834283710.1039/D0OB00256A32236232
    [Google Scholar]
  30. El-AbidJ. MoreauV. KovenskyJ. ChagnaultV. Effects of CoCl2 on the regioselective tosylation of oligosaccharides.J. Mol. Struct.2021124113060910.1016/j.molstruc.2021.130609
    [Google Scholar]
  31. ZhangY. ChenZ. HuangY. HeS. YangX. WuZ. WangX. XiaoG. Modular synthesis of nona-decasaccharide motif from Psidium guajava Polysaccharides: Orthogonal One-Pot glycosylation strategy.Angew. Chem. Int. Ed.202059197576758410.1002/anie.20200099232086860
    [Google Scholar]
  32. SunA. LiZ. WangY. MengS. ZhangX. MengX. LiS. LiZ. LiZ. Stereocontrolled synthesis of α -3-Deoxy-d-manno-oct-2-ulosonic acid (α-Kdo) Glycosides using C3- p -Tolylthio-Substituted Kdo donors: Access to highly branched Kdo oligosaccharides.Angew. Chem. Int. Ed.2024632e20231398510.1002/anie.20231398538014418
    [Google Scholar]
  33. LiZ. ZhengC. TerreniM. BavaroT. SollogoubM. ZhangY. A Concise synthesis of oligosaccharides derived from Lipoarabinomannan (LAM) with Glycosyl donors having a nonparticipating group at C2.Eur. J. Org. Chem.20202020142033204410.1002/ejoc.201901915
    [Google Scholar]
  34. ZhangY. WangL. ZhouQ. LiZ. LiD. YinC. WangX. XiaoG. Modular synthesis of a tridecasaccharide motif of Bacteroides vulgatus lipopolysaccharides against inflammatory bowel diseases through an Orthogonal one-pot glycosylation strategy.Angew. Chem. Int. Ed.20236222e20230135110.1002/anie.20230135136867119
    [Google Scholar]
  35. BiswasS. GhotekarB.K. KulkarniS.S. Total synthesis of the all-rare sugar-containing pentasaccharide repeating unit of the O-polysaccharide of Plesiomonas shigelloides Strain 302-73 (Serotype O1).Org. Lett.202123156137614210.1021/acs.orglett.1c0223934291950
    [Google Scholar]
  36. YanX. GuoZ. Diversity-oriented synthesis of glycosylphosphatidylinositol probes based on an orthogonally protected pentasaccharide.Org. Lett.202325122088209210.1021/acs.orglett.3c0044836939185
    [Google Scholar]
  37. OngL.L. WongP.W.K. Deva RajS. KhongD.T. PandaP. SantosoM. JudehZ.M.A. An orthogonal approach for the precise synthesis of phenylpropanoid sucrose esters.New J. Chem.202246209710971710.1039/D2NJ00881E
    [Google Scholar]
  38. ChenZ. XiaoG. One-Pot assembly of the highly branched tetradecasaccharide from Ganoderma lucidum Glycan GLSWA-1 with immune-enhancing activities.Org. Lett.202325407395739910.1021/acs.orglett.3c0289837787430
    [Google Scholar]
  39. Rahaman MollaM. ThakurR. AghiA. KumarA. C2- Cyanomethyl (CNMe) ether-protected glycosyl Trichlo- roacetimidate donors for Stereoselective β-O-Glycosylations.Eur. J. Org. Chem.20232615e20230007910.1002/ejoc.202300079
    [Google Scholar]
  40. LvJ. LiuC.Y. GuoY.F. FengG.J. DongH. SnCl2-Catalyzed acetalation/selective Benzoylation sequence for the synthesis of orthogonally protected glycosyl acceptors.Eur. J. Org. Chem.2022202233e20210156510.1002/ejoc.202101565
    [Google Scholar]
  41. YagamiN. VibhuteA.M. TanakaH.N. KomuraN. ImamuraA. IshidaH. AndoH. Stereoselective synthesis of diglycosyl diacylglycerols with glycosyl donors bearing a β-Stereodirecting 2,3-Naphthalenedimethyl protecting group.J. Org. Chem.20208524161661618110.1021/acs.joc.0c0212133253577
    [Google Scholar]
  42. ZhangY. HeH. ChenZ. HuangY. XiangG. LiP. YangX. LuG. XiaoG. Merging reagent modulation and remote anchimeric assistance for glycosylation: Highly stereoselective synthesis of α-Glycans up to a 30-mer.Angew. Chem. Int. Ed.20216022125971260610.1002/anie.20210382633763930
    [Google Scholar]
  43. TakatoK. KuritaM. YagamiN. TanakaH.N. AndoH. ImamuraA. IshidaH. Chemical synthesis of diglucosyl diacylglycerols utilizing glycosyl donors with stereodirecting cyclic silyl protective groups.Carbohydr. Res.201948310774810.1016/j.carres.2019.10774831362138
    [Google Scholar]
  44. NaïtalebR. DenysA. AllainF. AusseilJ. ToumieuxS. KovenskyJ. Synthesis of new sulfated disaccharides for the modulation of TLR4-dependent inflammation.Org. Biomol. Chem.202119194346435110.1039/D1OB00692D33908564
    [Google Scholar]
  45. TanziL. RobescuM.S. MarzaticoS. ReccaT. ZhangY. TerreniM. BavaroT. Developing a library of mannose-based mono- and disaccharides: A general chemoenzymatic approach to Monohydroxylated building blocks.Molecules20202523576410.3390/molecules2523576433297422
    [Google Scholar]
  46. QiuX. ChongD. FairbanksA.J. Selective anomeric acetylation of unprotected sugars with acetic anhydride in water.Org. Lett.202325111989199310.1021/acs.orglett.3c0058436912487
    [Google Scholar]
  47. RomanòC. JiangH. BoosI. ClausenM.H. S-Glycosides: Synthesis of S-linked arabinoxylan oligosaccharides.Org. Biomol. Chem.202018142696270110.1039/D0OB00470G32206767
    [Google Scholar]
  48. ZouX. HuJ. ZhaoM. QinC. ZhuY. TianG. CaiJ. SeebergerP.H. YinJ. Chemical synthesis of the highly sterically hindered core undecasaccharide of Helicobacter pylori lipopolysaccharide for antigenicity evaluation with human serum.J. Am. Chem. Soc.202214432145351454710.1021/jacs.2c0306835939326
    [Google Scholar]
  49. SukhranY. AlshanskiI. FilibaO. MackintoshM.J. SchapiroI. HurevichM. Unexpected nucleophile masking in acyl transfer to sterically crowded and conformationally restricted galactosides.J. Org. Chem.202388139313932010.1021/acs.joc.3c0087837269328
    [Google Scholar]
  50. KomarovaB.S. NovikovaN.S. GerbstA.G. SinitsynaO.A. RubtsovaE.A. KondratyevaE.G. SinitsynA.P. NifantievN.E. Combination of 3-O-Levulinoyl and 6-O-Trifluorobenzoyl groups ensures α-selectivity in glucosylations: Synthesis of the oligosaccharides related to Aspergillus fumigatus α-(1 → 3)-d-Glucan.J. Org. Chem.20238817125421256410.1021/acs.joc.3c0128337593939
    [Google Scholar]
  51. DaragicsK. FügediP. (2-Nitrophenyl)acetyl: A new, selectively removable hydroxyl protecting group.Org. Lett.20101292076207910.1021/ol100562f20361745
    [Google Scholar]
  52. LiuH. ZhouS.Y. WenG.E. LiuX.X. LiuD.Y. ZhangQ.J. SchmidtR.R. SunJ.S. The 2,2-Dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) group: A novel protecting group in carbohydrate chemistry.Org. Lett.201921198049805210.1021/acs.orglett.9b0302531532217
    [Google Scholar]
  53. GeringerS.A. ManninoM.P. BandaraM.D. DemchenkoA.V. Picoloyl protecting group in synthesis: Focus on a highly chemoselective catalytic removal.Org. Biomol. Chem.202018254863487110.1039/D0OB00803F32608450
    [Google Scholar]
  54. JainN. TamuraK. DéjeanG. Van PetegemF. BrumerH. Orthogonal active-site labels for mixed-linkage endo-β-glucanases.ACS Chem. Biol.202116101968198410.1021/acschembio.1c0006333988963
    [Google Scholar]
  55. DharaD. BouchetM. MulardL.A. Scalable synthesis of versatile rare deoxyamino sugar building blocks from d -Glucosamine.J. Org. Chem.202388116645666310.1021/acs.joc.2c0301637141399
    [Google Scholar]
  56. ChenD. SrivastavaA.K. DubrochowskaJ. LiuL. LiT. HoffmannJ.P. KollsJ.K. BoonsG.J. A bioactive synthetic outer-core oligosaccharide derived from a Klebsiella pneumonia lipopolysaccharide for bacteria recognition.Chemistry20232925e20220340810.1002/chem.20220340836662447
    [Google Scholar]
  57. WangZ. PovedaA. ZhangQ. UnioneL. OverkleeftH.S. van der MarelG.A. JesúsJ.B. CodéeJ.D.C. Total synthesis and structural studies of Zwitterionic Bacteroides fragilis polysaccharide A1 fragments.J. Am. Chem. Soc.202314525140521406310.1021/jacs.3c0397637310804
    [Google Scholar]
  58. ParsonsT.B. MoirJ.W.B. FairbanksA.J. Synthesis of a truncated bi-antennary complex-type N-glycan oxazoline; glycosylation catalysed by the endohexosaminidases Endo A and Endo M.Org. Biomol. Chem.20097153128314010.1039/b907273j
    [Google Scholar]
  59. SrivastavaA.D. UnioneL. WolfertM.A. ValverdeP. ArdáA. Jiménez-BarberoJ. BoonsG.J. Mono- and Di- Fucosylated glycans of the parasitic worm S. mansoni are recognized differently by the innate immune receptor DC-SIGN.Chemistry20202667156051561210.1002/chem.20200261932957164
    [Google Scholar]
  60. SunL. ChopraP. BoonsG.J. Modular synthesis of heparan sulfate oligosaccharides having N-acetyl and N-sulfate moieties.J. Org. Chem.20208524160821609810.1021/acs.joc.0c0188133334107
    [Google Scholar]
  61. PaulA. RaiD. PradhanK. BalharaP. MishraA.K. KulkarniS.S. Total synthesis of a structurally complex tetrasaccharide repeating unit of Vibrio cholerae O43.Org. Lett.202325346413641810.1021/acs.orglett.3c0243037603587
    [Google Scholar]
  62. WangP. WangJ. YinW. WangX. SongN. RenS. LiM. Direct β-mannosylation of primary alcohol acceptors: Trisaccharide iteration assembly of β-1,6-oligomannosides corresponding to kakelokelose.Org. Lett.202224397197610.1021/acs.orglett.1c0436335045255
    [Google Scholar]
  63. GeringerS.A. KashiwagiG.A. DemchenkoA.V. Broadening the scope of the reverse orthogonal strategy for oligosaccharide synthesis.J. Org. Chem.202287159887989510.1021/acs.joc.2c0090535862424
    [Google Scholar]
  64. LiuH. LiangZ.F. LiuH.J. LiaoJ.X. ZhongL.J. TuY.H. ZhangQ.J. XiongB. SunJ.S. ortho -methoxycarbonylethynylphenyl thioglycosides (MCEPTs): versatile glycosyl donors enabled by electron-withdrawing substituents and catalyzed by gold(I) or cu(II) complexes.J. Am. Chem. Soc.202314563682369510.1021/jacs.2c1301836727591
    [Google Scholar]
  65. ZhouS.Y. HuX.P. LiuH.J. ZhangQ.J. LiaoJ.X. TuY.H. SunJ.S. 8-(methyltosylaminoethynyl)-1-naphthyl (MTAEN) glycosides: Potent donors in glycosides synthesis.Org. Lett.202224265365710.1021/acs.orglett.1c0410234967647
    [Google Scholar]
  66. LuI.C. ChengK.C. WangY.F. PanC.W. HungJ.S. MongK.K.T. Orthogonal glycosylation with phosphate acceptors for expeditious synthesis of bacterial inner core oligosaccharides.Chem. Asian J.20231815e20230042410.1002/asia.20230042437339944
    [Google Scholar]
  67. LiZ. BavaroT. TengattiniS. BernardiniR. MatteiM. AnnunziataF. ColeR.B. ZhengC. SollogoubM. TamboriniL. TerreniM. ZhangY. Chemoenzymatic synthesis of arabinomannan (AM) glycoconjugates as potential vaccines for tuberculosis.Eur. J. Med. Chem.202020411257810.1016/j.ejmech.2020.11257832717482
    [Google Scholar]
  68. BaranyG. MerrifieldR.B. A new amino protecting group removable by reduction. Chemistry of the dithiasuccinoyl (Dts) function.J. Am. Chem. Soc.197799227363736510.1021/ja00464a050915158
    [Google Scholar]
  69. ZhuT. BoonsG.J. A new set of orthogonal-protecting groups for oligosaccharide synthesis on a polymeric support.Tetrahedron Asymmetry200011119920510.1016/S0957‑4166(99)00569‑8
    [Google Scholar]
  70. ÁgostonK. WattG.M. FügediP. A new set of orthogonal protecting groups on a monosaccharide scaffold.Tetrahedron Lett.201556355010501210.1016/j.tetlet.2015.07.015
    [Google Scholar]
  71. LiptákA. BorbásA. BajzaI. Protecting group manipulations in carbohydrate synthesis.Comprehensive Glycoscience. KamerlingH. Elsevier200720325910.1016/B978‑044451967‑2/00007‑6
    [Google Scholar]
  72. GhoshB. KulkarniS.S. Advances in protecting groups for oligosaccharide synthesis.Chem. Asian J.202015445046210.1002/asia.20190162131895493
    [Google Scholar]
  73. TanziL. RubesD. BavaroT. SollogoubM. SerraM. ZhangY. TerreniM. Controlled decoration of [60]Fullerene with polymannan analogues and amino acid derivatives through malondiamide-based linkers.Molecules2022279277610.3390/molecules2709277635566127
    [Google Scholar]
  74. YalamanchiliS. NguyenT.A.V. PohlN.L.B. BennettC.S. Modular continuous flow synthesis of orthogonally protected 6-deoxy glucose glycals.Org. Biomol. Chem.202018173254325710.1039/D0OB00522C32293636
    [Google Scholar]
  75. DussouyC. TéletchéaS. LambertA. CharlierC. BotezI. CeuninckF.D. GrandjeanC. Access to Galectin-3 inhibitors from chemoenzymatic synthons.J. Org. Chem.20208524160991611410.1021/acs.joc.0c0192733200927
    [Google Scholar]
  76. MongK.K.T. ChengK.C. LuI.C. PanC.W. WangY.F. ShenL.C. Cascade in situ phosphorylation and one-pot glycosylation for rapid synthesis of heptose-containing oligosaccharides.J. Org. Chem.20208524160601607110.1021/acs.joc.0c0182833236906
    [Google Scholar]
  77. MengX. PanY. LiuT. LuoC. ManS. ZhangY. ZhangY. Synthesis of novel diosgenyl saponin analogs and evaluation effects of rhamnose moeity on their cytotoxic activity.Carbohydr. Res.202150610835910.1016/j.carres.2021.10835934102543
    [Google Scholar]
  78. SunX. ChenZ. YangR. WangM. WangX. ZhangQ. XiaoG. Modular and stereoselective one-pot total synthesis of icosasaccharide motif from Cordyceps sinensis EPS-1A Glycan.Org. Lett.202325407364736810.1021/acs.orglett.3c0284237787453
    [Google Scholar]
  79. SangwanR. Nath MishraV. Kumar MandalP. Synthesis of a common pentasaccharide moiety of diplasteriosides A and B belong to starfish asterosaponins isolated from the Diplasterias brucei.Tetrahedron Lett.2020614215242110.1016/j.tetlet.2020.152421
    [Google Scholar]
  80. TsvetkovY.E. PaulovičováE. PaulovičováL. FarkašP. NifantievN.E. Synthesis of Biotin-tagged chitosan oligosaccharides and assessment of their immunomodulatory activity.Front Chem.2020855473210.3389/fchem.2020.55473233335882
    [Google Scholar]
  81. WanJ. WangL. XiaoG. Total synthesis of phellinus ribis glycans with immunostimulating activities by an orthogonal one-pot glycosylation strategy.Synlett202334328829210.1055/a‑1969‑3992
    [Google Scholar]
  82. QinC.J. HouH.L. DingM.R. QiY.K. TianG.Z. ZouX.P. FuJ.J. HuJ. YinJ. Chemical synthesis of a synthetically useful L-galactosaminuronic acid building block.Chin. J. Nat. Med.202220538739210.1016/S1875‑5364(22)60149‑335551773
    [Google Scholar]
  83. MascherpaA. IshiiN. TayaguiA. LiuJ. SollogoubM. FairbanksA.J. Lysosomal targeting of β-cyclodextrin.Chemistry2023294e20220325210.1002/chem.20220325236265126
    [Google Scholar]
  84. ZhangY. HuY. LiuS. HeH. SunR. LuG. XiaoG. Total synthesis of Lentinus giganteus glycans with antitumor activities via stereoselective α-glycosylation and orthogonal one-pot glycosylation strategies.Chem. Sci. (Camb.)202213267755776410.1039/D2SC02176E35865907
    [Google Scholar]
  85. OfmanT.P. KüllmerF. van der MarelG.A. CodéeJ.D.C. OverkleeftH.S. An orthogonally protected cyclitol for the construction of nigerose- and dextran-mimetic cyclophellitols.Org. Lett.202123249516951910.1021/acs.orglett.1c0372334846911
    [Google Scholar]
  86. LiP. FanH. TanQ. XiaoG. Highly stereoselective assembly of 1,2-cis-ara p linkages.Org. Lett.202325162788279210.1021/acs.orglett.3c0067037058086
    [Google Scholar]
  87. ZhangL. XuP. LiuB. YuB. Chemical synthesis of fucosylated chondroitin sulfate oligosaccharides.J. Org. Chem.20208524159081591910.1021/acs.joc.0c0100932567313
    [Google Scholar]
  88. SunL. ChopraP. BoonsG.J. Chemoenzymatic synthesis of heparan sulfate oligosaccharides having a domain structure.Angew. Chem. Int. Ed.20226147e20221111210.1002/anie.20221111236148891
    [Google Scholar]
  89. MaY. JiangQ. WangX. XiaoG. Total synthesis of Cordyceps militaris glycans via KT glycosylation and α-glycosylation strategies.Org. Lett.202224437950795410.1021/acs.orglett.2c0308136286593
    [Google Scholar]
  90. SunL. ChopraP. TomrisI. van der WoudeR. LiuL. de VriesR.P. BoonsG.J. Well-defined heparin mimetics can inhibit binding of the trimeric spike of SARS-CoV-2 in a length-dependent manner.JACS Au2023341185119510.1021/jacsau.3c0004237101566
    [Google Scholar]
  91. ZhangX. LiuH. MeenaN. LiC. ZongG. RabenN. PuertollanoR. WangL.X. Chemoenzymatic glycan-selective remodeling of a therapeutic lysosomal enzyme with high-affinity M6P-glycan ligands. Enzyme substrate specificity is the name of the game.Chem. Sci. (Camb.)20211237124511246210.1039/D1SC03188K34603676
    [Google Scholar]
  92. Danglad-FloresJ. LeichnitzS. SlettenE.T. Abragam JosephA. BienertK. Le Mai HoangK. SeebergerP.H. Microwave-assisted automated glycan assembly.J. Am. Chem. Soc.2021143238893890110.1021/jacs.1c0385134060822
    [Google Scholar]
  93. KunduM. GucchaitA. MisraA.K. Convergent synthesis of a pentasaccharide corresponding to the cell wall O-polysaccharide of enteropathogenic Escherichia coli O115.Tetrahedron202076813095210.1016/j.tet.2020.130952
    [Google Scholar]
  94. LiT. WolfertM.A. WeiN. HuizingaR. JacobsB.C. BoonsG.J. Chemoenzymatic synthesis of Campylobacter jejuni Lipo-oligosaccharide core domains to examine Guillain–Barré syndrome serum antibody specificities.J. Am. Chem. Soc.202014246196111962110.1021/jacs.0c0858333164488
    [Google Scholar]
  95. SrivastavaA.D. UnioneL. BunyatovM. GagarinovI.A. DelgadoS. AbresciaN.G.A. ArdáA. BoonsG.J. Chemoenzymatic synthesis of complex N-Glycans of the parasite S. mansoni to examine the importance of epitope presentation on DC-SIGN recognition.Angew. Chem. Int. Ed.20216035192871929610.1002/anie.20210564734124805
    [Google Scholar]
  96. ShivatareS.S. ShivatareV.S. WongC.H. Glycoconjugates: Synthesis, functional studies, and therapeutic developments.Chem. Rev.202212220156031567110.1021/acs.chemrev.1c0103236174107
    [Google Scholar]
  97. HiraiG. Pseudo-glycoconjugates with a C-glycoside linkage. Advances in Carbohydrate Chemistry and BiochemistryAcademic Press20223577
    [Google Scholar]
  98. HeleniusA. AebiM. Intracellular functions of N-linked glycans.Science200129155122364236910.1126/science.291.5512.236411269317
    [Google Scholar]
  99. WyssD.F. ChoiJ.S. LiJ. KnoppersM.H. WillisK.J. ArulanandamA.R.N. SmolyarA. ReinherzE.L. WagnerG. Conformation and function of the N-linked glycan in the adhesion domain of human CD2.Science199526952281273127810.1126/science.75444937544493
    [Google Scholar]
  100. ElliottS. LorenziniT. AsherS. AokiK. BrankowD. BuckL. BusseL. ChangD. FullerJ. GrantJ. HerndayN. HokumM. HuS. KnudtenA. LevinN. KomorowskiR. MartinF. NavarroR. OsslundT. RogersG. RogersN. TrailG. EgrieJ. Enhancement of therapeutic protein in vivo activities through glycoengineering.Nat. Biotechnol.200321441442110.1038/nbt79912612588
    [Google Scholar]
  101. BagdonaiteI. MalakerS.A. PolaskyD.A. RileyN.M. SchjoldagerK. VakhrushevS.Y. HalimA. Aoki-KinoshitaK.F. NesvizhskiiA.I. BertozziC.R. WandallH.H. ParkerB.L. Thaysen-AndersenM. ScottN.E. Glycoproteomics.Nat. Rev. Methods Primers2022214810.1038/s43586‑022‑00128‑4
    [Google Scholar]
  102. LiY. TranA.H. DanishefskyS.J. TanZ. Chemical biology of glycoproteins: From chemical synthesis to biological impact.Methods Enzymol.201962121322910.1016/bs.mie.2019.02.03031128780
    [Google Scholar]
  103. ZhangX. LiuH. HeJ. OuC. DonahueT.C. MuthanaM.M. SuL. WangL.X. Site-specific chemoenzymatic conjugation of high-affinity M6P Glycan ligands to antibodies for targeted protein degradation.ACS Chem. Biol.202217113013302310.1021/acschembio.1c0075135316032
    [Google Scholar]
  104. OuC. LiC. ZhangR. YangQ. ZongG. DaiY. FrancisR.L. BournazosS. RavetchJ.V. WangL.X. One-pot conversion of free sialoglycans to functionalized glycan oxazolines and efficient synthesis of homogeneous antibody–drug conjugates through site-specific chemoenzymatic glycan remodeling.Bioconjug. Chem.20213281888189710.1021/acs.bioconjchem.1c0031434351736
    [Google Scholar]
  105. YangQ. ChenH. OuC. ZhengZ. ZhangX. LiuY. ZongG. WangL.X. Evaluation of two chemoenzymatic glycan remodeling approaches to generate site-specific antibody–drug conjugates.Antibodies20231247110.3390/antib1204007137987249
    [Google Scholar]
  106. ZhangX. OuC. LiuH. WangL.X. Synthesis and evaluation of three azide-modified disaccharide oxazolines as enzyme substrates for single-step Fc glycan-mediated antibody-drug conjugation.Bioconjug. Chem.20223361179119110.1021/acs.bioconjchem.2c0014235543724
    [Google Scholar]
  107. HeineV. HovorkováM. VlachováM. FilipováM. BumbaL. JanouškováO. HubálekM. CvačkaJ. PetráskováL. PelantováH. KřenV. EllingL. BojarováP. Immunoprotective neo-glycoproteins: Chemoenzymatic synthesis of multivalent glycomimetics for inhibition of cancer-related galectin-3.Eur. J. Med. Chem.202122011350010.1016/j.ejmech.2021.11350033962190
    [Google Scholar]
  108. ZhaiC. ZhengX.J. SongC. YeX.S. Synthesis and immunological evaluation of N -acyl modified Globo H derivatives as anticancer vaccine candidates.RSC Med. Chem.20211271239124310.1039/D1MD00067E34355188
    [Google Scholar]
  109. WuH. ZhangY. LiY. XuJ. WangY. LiX. Chemical synthesis and biological evaluations of Adiponectin collagenous domain glycoforms.J. Am. Chem. Soc.2021143207808781810.1021/jacs.1c0238233979146
    [Google Scholar]
  110. DalalJ. RanaR. HaraleK. HanifS. KumarN. SinghD. ChhikaraM.K. Development and pre-clinical evaluation of a synthetic oligosaccharide-protein conjugate vaccine against Neisseria meningitidis serogroup C.Vaccine201937365297530610.1016/j.vaccine.2019.07.05331371227
    [Google Scholar]
  111. EnotarpiJ. TontiniM. BalocchiC. van der EsD. AubergerL. BalducciE. CarboniF. ProiettiD. CasiniD. FilippovD.V. OverkleeftH.S. van der MarelG.A. ColomboC. RomanoM.R. BertiF. CostantinoP. CodeéJ.D.C. LayL. AdamoR. A stabilized glycomimetic conjugate vaccine inducing protective antibodies against Neisseria meningitidis serogroup A.Nat. Commun.2020111443410.1038/s41467‑020‑18279‑x32895393
    [Google Scholar]
  112. OldriniD. FiebigT. RomanoM.R. ProiettiD. BergerM. TontiniM. De RiccoR. SantiniL. MorelliL. LayL. Gerardy-SchahnR. BertiF. AdamoR. Combined chemical synthesis and tailored enzymatic elongation provide fully synthetic and conjugation-ready Neisseria meningitidis Serogroup X vaccine antigens.ACS Chem. Biol.201813498499410.1021/acschembio.7b0105729481045
    [Google Scholar]
  113. SecoB.M.S. XuF.F. GrafmüllerA. KottariN. PereiraC.L. SeebergerP.H. Sequential linkage of carbohydrate antigens to mimic capsular polysaccharides: Toward Semisynthetic Glycoconjugate vaccine candidates against Streptococcus pneumoniae Serotype 14.ACS Chem. Biol.20201592395240510.1021/acschembio.0c0036032835479
    [Google Scholar]
  114. Di BenedettoR. ManciniF. CarducciM. GasperiniG. MorielD.G. SaulA. NecchiF. RappuoliR. MicoliF. Rational design of a glycoconjugate vaccine against group A Streptococcus. Int. J. Mol. Sci.20202122855810.3390/ijms2122855833202815
    [Google Scholar]
  115. WangS. ZhaoY. WangG. FengS. GuoZ. GuG. GroupA. Group A Streptococcus cell wall oligosaccharide-Streptococcal C5a peptidase conjugates as effective antibacterial vaccines.ACS Infect. Dis.20206228129010.1021/acsinfecdis.9b0034731872763
    [Google Scholar]
  116. NishiN. SekiK. TakahashiD. ToshimaK. Synthesis of a pentasaccharide repeating unit of lipopolysaccharide derived from virulent E. coli O1 and identification of a glycotope candidate of avian pathogenic E. coli O1.Angew. Chem. Int. Ed.20216041789179610.1002/anie.20201372933124093
    [Google Scholar]
  117. van der PutR.M.F. SmitsmanC. de HaanA. HamzinkM. TimmermansH. UittenbogaardJ. WestdijkJ. StorkM. OphorstO. ThouronF. GuerreiroC. SansonettiP.J. PhaliponA. MulardL.A. The first-in-human synthetic glycan-based conjugate vaccine candidate against Shigella.ACS Cent. Sci.20228444946010.1021/acscentsci.1c0147935559427
    [Google Scholar]
  118. GengX. WangG. GuoZ. GuG. Synthesis of the oligosaccharides of Burkholderia pseudomallei and B. mallei capsular polysaccharide and preliminary immunological studies of their protein conjugates.J. Org. Chem.20208542369238410.1021/acs.joc.9b0308531912729
    [Google Scholar]
  119. ZhaoM. QinC. LiL. XieH. MaB. ZhouZ. YinJ. HuJ. Conjugation of synthetic trisaccharide of Staphylococcus aureus Type 8 capsular polysaccharide elicits antibodies recognizing intact bacterium.Front Chem.2020825810.3389/fchem.2020.0025832411658
    [Google Scholar]
  120. AltmanE. ChandanV. HarrisonB.A. SchurM. GoneauM.F. LiJ. GilbertM. Chemoenzymatic synthesis of an α-1,6-glucan-based conjugate vaccine against Helicobacter pylori.Glycobiology202232869170010.1093/glycob/cwac02335436341
    [Google Scholar]
  121. RavinderM. LiaoK.S. ChengY.Y. PawarS. LinT.L. WangJ.T. WuC.Y. A synthetic carbohydrate–protein conjugate vaccine candidate against Klebsiella pneumoniae Serotype K2.J. Org. Chem.20208524159641599710.1021/acs.joc.0c0140433108196
    [Google Scholar]
  122. LaverdeD. Romero-SaavedraF. ArgunovD.A. EnotarpiJ. KrylovV.B. KalfopoulouE. MartiniC. TorelliR. van der MarelG.A. SanguinettiM. CodéeJ.D.C. NifantievN.E. HuebnerJ. Synthetic oligomers mimicking capsular polysaccharide diheteroglycan are potential vaccine candidates against encapsulated Enterococcal Infections.ACS Infect. Dis.2020671816182610.1021/acsinfecdis.0c0006332364376
    [Google Scholar]
  123. LiaoJ. PanB. LiaoG. ZhaoQ. GaoY. ChaiX. ZhuoX. WuQ. JiaoB. PanW. GuoZ. Synthesis and immunological studies of β-1,2-mannan-peptide conjugates as antifungal vaccines.Eur. J. Med. Chem.201917325026010.1016/j.ejmech.2019.04.00131009911
    [Google Scholar]
  124. LevineP.M. GalesicA. BalanaA.T. Mahul-MellierA.L. NavarroM.X. De LeonC.A. LashuelH.A. PrattM.R. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease.Proc. Natl. Acad. Sci. USA201911651511151910.1073/pnas.180884511630651314
    [Google Scholar]
  125. WakaoM. SudaY. Synthesis of glycolipidsglycolipids.Glycoscience: Chemistry and Chemical Biology. Fraser-ReidB.O. TatsutaK. ThiemJ. Berlin, HeidelbergSpringer20081629166910.1007/978‑3‑540‑30429‑6_40
    [Google Scholar]
  126. KirschbaumC. GreisK. MuchaE. KainL. DengS. ZappeA. GewinnerS. SchöllkopfW. von HeldenG. MeijerG. SavageP.B. MarianskiM. TeytonL. PagelK. Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy.Nat. Commun.2021121120110.1038/s41467‑021‑21480‑133619275
    [Google Scholar]
  127. MamatU. SeydelU. GrimmeckeD. HolstO. RietschelE.Th. Lipopolysaccharides.Comprehensive Natural Products Chemistry. BartonS.D. NakanishiK. Meth-CohnO. OxfordElsevier199917923910.1016/B978‑0‑08‑091283‑7.00078‑3
    [Google Scholar]
  128. HolstO. Glycolipids: Occurrence, significance, and properties.Glycoscience: Chemistry and Chemical Biology. Fraser-ReidB.O. TatsutaK. ThiemJ. Berlin, HeidelbergSpringer20081603162710.1007/978‑3‑540‑30429‑6_39
    [Google Scholar]
  129. FukuoH. SuzukiT. ShimabukuroJ. KomuraN. TanakaH.N. ImamuraA. IshidaH. AndoH. Synthesis of diverse seleno-glycolipids via the Transacetalization of Selenoacetals.Eur. J. Org. Chem.20212021405455546710.1002/ejoc.202100847
    [Google Scholar]
  130. LiT. WangX. DongP. YuP. ZhangY. MengX. Chemoenzymatic synthesis and biological evaluation of ganglioside GM3 and lyso-GM3 as potential agents for cancer therapy.Carbohydr. Res.202150910843110.1016/j.carres.2021.10843134492428
    [Google Scholar]
  131. YinX.G. LuJ. WangJ. ZhangR.Y. WangX.F. LiaoC.M. LiuX.P. LiuZ. GuoJ. Synthesis and evaluation of liposomal Anti-GM3 cancer vaccine candidates covalently and noncovalently adjuvanted by αGalCer.J. Med. Chem.20216441951196510.1021/acs.jmedchem.0c0118633539088
    [Google Scholar]
  132. ZhengC. QuH. LiaoW. BavaroT. TerreniM. SollogoubM. DingK. ZhangY. Chemoenzymatically synthesized GM3 analogues as potential therapeutic agents to recover nervous functionality after injury by inducing neurite outgrowth.Eur. J. Med. Chem.201814661362010.1016/j.ejmech.2018.01.07929407985
    [Google Scholar]
  133. PeronaA. HoyosP. TiconaL.A. García-OlivaC. MerchánA. HernáizM.J. Enzymatic synthesis and biological evaluation of glycolipids as potential antibacterial, antibiofilm and antiquorum sensing agents.Catal. Today202443311462310.1016/j.cattod.2024.114623
    [Google Scholar]
  134. MatsumaruT. SakurataniK. YanakaS. KatoK. YamasakiS. FujimotoY. Fungal β-Mannosyloxymannitol glycolipids and their analogues: Synthesis and mincle-mediated signaling activity.Eur. J. Org. Chem.2022202220e20220010910.1002/ejoc.202200109
    [Google Scholar]
  135. MuruK. CloutierM. Provost-SavardA. Di CintioS. BurtonO. CordeilJ. GroleauM.C. LegaultJ. DézielE. GauthierC. Total synthesis of a chimeric glycolipid bearing the partially acetylated backbone of sponge-derived Agminoside E.J. Org. Chem.20218621153571537510.1021/acs.joc.1c0190734672576
    [Google Scholar]
  136. IonescuC. HuseynovaF. Barragan-MonteroV. Pathways in the synthesis of functionalized glycolipids for liposomal preparations.Chem. Phys. Lipids202224210516110.1016/j.chemphyslip.2021.10516134818525
    [Google Scholar]
  137. FlynnR.A. PedramK. MalakerS.A. BatistaP.J. SmithB.A.H. JohnsonA.G. GeorgeB.M. MajzoubK. VillaltaP.W. CaretteJ.E. BertozziC.R. Small RNAs are modified with N-glycans and displayed on the surface of living cells.Cell20211841231093124.e2210.1016/j.cell.2021.04.02334004145
    [Google Scholar]
  138. CaldwellR.M. FlynnR.A. Discovering glycoRNA: Traditional and non-canonical approaches to studying RNA modifications.Isr. J. Chem.2023631-2e20220005910.1002/ijch.202200059
    [Google Scholar]
  139. ParkY.J. Discovery of a novel RNA Suggests that its cellular role is more complex than just a simple messenger a new research discovered that RNA could be glycosylated and displayed on the cell surface, suggesting the potential role of RNAs in inter-cellular communication.Mol. Cells202144753853910.14348/molcells.2021.017834326277
    [Google Scholar]
  140. DisneyM.D. A glimpse at the glycoRNA world.Cell2021184123080308110.1016/j.cell.2021.05.02534115968
    [Google Scholar]
  141. ChaiP. LebedenkoC.G. FlynnR.A. RNA crossing membranes: Systems and mechanisms contextualizing extracellular RNA and cell surface GlycoRNAs.Annu. Rev. Genomics Hum. Genet.20232418510710.1146/annurev‑genom‑101722‑10122437068783
    [Google Scholar]
  142. TyagiW. PandeyV. PokharelY.R. Membrane linked RNA glycosylation as new trend to envision epi-transcriptome epoch.Cancer Gene Ther.202330564164610.1038/s41417‑022‑00430‑z35136215
    [Google Scholar]
  143. MichaelF.S. HamoudaM.B. StupakJ. LiJ. PearsonA. SauvageauJ. Identification of glycosylated nucleosides in small synthetic glyco-RNAs.ChemBioChem2024255e20230078410.1002/cbic.20230078438116890
    [Google Scholar]
  144. ClydeD. Sugar-coated RNAs.Nat. Rev. Genet.202122848048010.1038/s41576‑021‑00388‑y34168329
    [Google Scholar]
  145. NachtergaeleS. KrishnanY. New vistas for cell-surface GlycoRNAs.N. Engl. J. Med.2021385765866010.1056/NEJMcibr210867934379930
    [Google Scholar]
  146. ChokkallaA.K. JeongS. SubramanianS. VemugantiR. Immunomodulatory role of glycoRNAs in the brain.J. Cereb. Blood Flow Metab.202343449950410.1177/0271678X23115199536644904
    [Google Scholar]
  147. ManY. LuD. XieR. State-of-the-art imaging tool portray the role of glycornas in cancer- and immuno-biology.Chem. Biomed. Imaging20231766766910.1021/cbmi.3c00099
    [Google Scholar]
  148. ZhangN. TangW. TorresL. WangX. AjajY. ZhuL. LuanY. ZhouH. WangY. ZhangD. KurbatovV. KhanS.A. KumarP. HidalgoA. WuD. LuJ. Cell surface RNAs control neutrophil recruitment.Cell20241874846860.e1710.1016/j.cell.2023.12.03338262409
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673340376241031041048
Loading
/content/journals/cmc/10.2174/0109298673340376241031041048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test