Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The kidneys play an irreplaceable role in metabolism and excretion. However, Acute Kidney Injury (AKI) often occurs due to high local concentrations of drugs, inflammation, and trauma. Activated optical probes with excellent detection performance can effectively identify biomarkers in the initial stage of AKI and play an important role in evaluating AKI and preventing the development of diseases. This article summarizes representative design strategies for molecular probes and special diagnostic applications. These molecular probes show great potential in basic research and clinical diagnosis, enabling enhanced images of tissue structure and biomarkers, as well as early diagnosis of AKI. In addition, the difficulties and challenges that optical probes may face in the development and application of AKI are also discussed in this article.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673299429240607103107
2024-06-25
2025-09-10
Loading full text...

Full text loading...

References

  1. AgarwalA. DongZ. HarrisR. MurrayP. ParikhS.M. RosnerM.H. KellumJ.A. RoncoC. Acute Dialysis Quality Initiative XIII Working Group Cellular and molecular mechanisms of AKI.J. Am. Soc. Nephrol.20162751288129910.1681/ASN.201507074026860342
    [Google Scholar]
  2. ChawlaL.S. EggersP.W. StarR.A. KimmelP.L. Acute kidney injury and chronic kidney disease as interconnected syndromes.N. Engl. J. Med.20143711586610.1056/NEJMra121424324988558
    [Google Scholar]
  3. MakrisK. SpanouL. Acute kidney injury: Definition, Pathophysiology and clinical phenotypes.Clin. Biochem. Rev.2016372859828303073
    [Google Scholar]
  4. ThomasM.E. BlaineC. DawnayA. DevonaldM.A.J. FtouhS. LaingC. LatchemS. LewingtonA. MilfordD.V. OstermannM. The definition of acute kidney injury and its use in practice.Kidney Int.2015871627310.1038/ki.2014.32825317932
    [Google Scholar]
  5. KellumJ.A. LameireN. The definition of acute kidney injury.Lancet20183911011720220310.1016/S0140‑6736(17)31630‑630277883
    [Google Scholar]
  6. EisensteinM. What is acute kidney injury? A visual guide.Nature20236157954S112S11310.1038/d41586‑023‑00804‑936991195
    [Google Scholar]
  7. HulseM. RosnerM.H. Drugs in development for acute kidney injury.Drugs201979881182110.1007/s40265‑019‑01119‑831004331
    [Google Scholar]
  8. LeveyA.S. JamesM.T. Acute kidney injury.Ann. Intern. Med.20171679ITC66ITC8010.7326/AITC20171107029114754
    [Google Scholar]
  9. CharltonJ.R. PortillaD. OkusaM.D. A basic science view of acute kidney injury biomarkers.Nephrol. Dial. Transplant.20142971301131110.1093/ndt/gft51024385545
    [Google Scholar]
  10. HoJ. TangriN. KomendaP. KaushalA. SoodM. BrarR. GillK. WalkerS. MacDonaldK. HiebertB.M. AroraR.C. RigattoC. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: A meta-analysis.Am. J. Kidney Dis.2015666993100510.1053/j.ajkd.2015.06.01826253993
    [Google Scholar]
  11. VanmassenhoveJ. VanholderR. NaglerE. Van BiesenW. Urinary and serum biomarkers for the diagnosis of acute kidney injury: An in-depth review of the literature.Nephrol. Dial. Transplant.201328225427310.1093/ndt/gfs38023115326
    [Google Scholar]
  12. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group.Kidney Inter.20121138
    [Google Scholar]
  13. PerazellaM.A. CocaS.G. Three feasible strategies to minimize kidney injury in ‘incipient AKI’.Nat. Rev. Nephrol.20139848449010.1038/nrneph.2013.8023649020
    [Google Scholar]
  14. ZengF. NijiatiS. LiuY. YangQ. LiuX. ZhangQ. ChenS. SuA. XiongH. ShiC. CaiC. LinZ. ChenX. ZhouZ. Ferroptosis MRI for early detection of anticancer drug–induced acute cardiac/kidney injuries.Sci. Adv.2023910eadd853910.1126/sciadv.add853936888714
    [Google Scholar]
  15. DarmonM. OstermannM. CerdaJ. DimopoulosM.A. ForniL. HosteE. LegrandM. LerolleN. RondeauE. SchneiderA. SouweineB. SchetzM. Diagnostic work-up and specific causes of acute kidney injury.Intensive Care Med.201743682984010.1007/s00134‑017‑4799‑828444409
    [Google Scholar]
  16. FormanD.E. ButlerJ. WangY. AbrahamW.T. O’ConnorC.M. GottliebS.S. LohE. MassieB.M. RichM.W. StevensonL.W. YoungJ.B. KrumholzH.M. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure.J. Am. Coll. Cardiol.2004431616710.1016/j.jacc.2003.07.03114715185
    [Google Scholar]
  17. BellomoR. KellumJ. RoncoC. Acute renal failure: Time for consensus.Intensive Care Med.200127111685168810.1007/s00134‑001‑1120‑611810109
    [Google Scholar]
  18. ParikhC.R. MoledinaD.G. CocaS.G. Thiessen-PhilbrookH.R. GargA.X. Application of new acute kidney injury biomarkers in human randomized controlled trials.Kidney Int.20168961372137910.1016/j.kint.2016.02.02727165835
    [Google Scholar]
  19. ParikhC.R. DevarajanP. New biomarkers of acute kidney injury.Crit. Care Med.2008364Suppl.S159S16510.1097/CCM.0b013e318168c65218382188
    [Google Scholar]
  20. BazarganiB. MoghtaderiM. New biomarkers in early diagnosis of acute kidney injury in children.Avicenna J. Med. Biotechnol.202214426426910.18502/ajmb.v14i4.1047836504568
    [Google Scholar]
  21. CocaS.G. YalavarthyR. ConcatoJ. ParikhC.R. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review.Kidney Int.20087391008101610.1038/sj.ki.500272918094679
    [Google Scholar]
  22. BrennerD.J. HallE.J. Computed tomography-an increasing source of radiation exposure.N. Engl. J. Med.2007357222277228410.1056/NEJMra07214918046031
    [Google Scholar]
  23. WuY. CheslerD.A. GlimcherM.J. GarridoL. WangJ. JiangH.J. AckermanJ.L. Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates.Proc. Natl. Acad. Sci. USA19999641574157810.1073/pnas.96.4.15749990066
    [Google Scholar]
  24. YoshidaC. TsujiA.B. SudoH. SugyoA. SogawaC. InubushiM. UeharaT. FukumuraT. KoizumiM. AranoY. SagaT. Development of positron emission tomography probe of 64Cu-labeled anti-C-kit 12A8 Fab to measure protooncogene C-kit expression.Nucl. Med. Biol.201138333133710.1016/j.nucmedbio.2010.10.00521492781
    [Google Scholar]
  25. BaiM. BornhopD.J. Recent advances in receptor-targeted fluorescent probes for in vivo cancer imaging.Curr. Med. Chem.201219284742475810.2174/09298671280334146722873663
    [Google Scholar]
  26. WüstR.C.I. CalcagnoC. DaalM.R.R. NederveenA.J. CoolenB.F. StrijkersG.J. Emerging magnetic resonance imaging techniques for atherosclerosis imaging.Arterioscler. Thromb. Vasc. Biol.201939584184910.1161/ATVBAHA.118.31175630917678
    [Google Scholar]
  27. YangJ. LuW. XiaoJ. ZongQ. XuH. YinY. HongH. XuW. A positron emission tomography image-guidable unimolecular micelle nanoplatform for cancer theranostic applications.Acta Biomater.20187930631610.1016/j.actbio.2018.08.03630172067
    [Google Scholar]
  28. SunY. TaoL. MaY. YangS. ZhangX. JinB. ZhangZ. YangK. Development of an approach of high sensitive chemiluminescent assay for cystatin C using a nanoparticle carrier.Front Chem.2020880210.3389/fchem.2020.0080233134263
    [Google Scholar]
  29. GrasselliC. BarbatiA. CesariniL. PellegrinoR. Di RenzoG.C. The validation of immunoblot SDS-PAGE as a qualitative and quantitative method for the determination of urinary Cystatin C in neonates.Clin. Biochem.202187525910.1016/j.clinbiochem.2020.10.00533068572
    [Google Scholar]
  30. MakrisK. NikolakiE. NanopoulosK. PirgakisK.M. MaltezosC.K. Measurement of cystatin C in human urine by particle-enhanced turbidimetric immunoassay on an automated biochemistry analyzer.Clin. Biochem.201346121128113010.1016/j.clinbiochem.2013.05.07223770456
    [Google Scholar]
  31. BlandS.K. ClarkM.E. CôtéO. BienzleD. A specific immunoassay for detection of feline kidney injury molecule 1.J. Feline Med. Surg.201921121069107910.1177/1098612X1881249430461328
    [Google Scholar]
  32. Xavier JúniorF.A.F. MoraisG.B. SilveiraJ.A.M. SampaioT.L. MartinsA.M.C. SilvaI.N.G. VianaD.A. EvangelistaJ.S.A.M. Kidney injury molecule-1 and urinary gamma-glutamyl transferase as biomarkers of acute kidney injury in cats.J. Small Anim. Pract.202263320321010.1111/jsap.1344034665457
    [Google Scholar]
  33. MalmirN. FasihiK. A highly-sensitive label-free biosensor based on two dimensional photonic crystals with negative refraction.J. Mod. Opt.201764202195220010.1080/09500340.2017.1346828
    [Google Scholar]
  34. LyuY. PuK. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging.Adv. Sci.201746160048110.1002/advs.20160048128638783
    [Google Scholar]
  35. ZhangJ. ChengP. PuK. Recent advances of molecular optical probes in imaging of β-galactosidase.Bioconjug. Chem.20193082089210110.1021/acs.bioconjchem.9b0039131269795
    [Google Scholar]
  36. MiaoQ. PuK. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics.Adv. Mater.20183049180177810.1002/adma.20180177830058244
    [Google Scholar]
  37. HuangJ. PuK. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging.Angew. Chem. Int. Ed.20205929117171173110.1002/anie.20200178332134156
    [Google Scholar]
  38. LiuH.Y. WuP.J. KuoS.Y. ChenC.P. ChangE.H. WuC.Y. ChanY.H. Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging.J. Am. Chem. Soc.201513732104201042910.1021/jacs.5b0671026255823
    [Google Scholar]
  39. ZhangW. CaiF. XuH. WuY. YuX. SunL. ZhangT. YuB.Y. ZhengX. TianJ. Small-molecule photoacoustic imaging probe with aggregation-enhanced amplitude for real-time visualization of acute kidney injury.Anal. Chem.202294279697970510.1021/acs.analchem.2c0110635767885
    [Google Scholar]
  40. Deán-BenX.L. GottschalkS. Mc LarneyB. ShohamS. RazanskyD. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics.Chem. Soc. Rev.20174682158219810.1039/C6CS00765A28276544
    [Google Scholar]
  41. WeberJ. BeardP.C. BohndiekS.E. Contrast agents for molecular photoacoustic imaging.Nat. Methods201613863965010.1038/nmeth.392927467727
    [Google Scholar]
  42. LiuH.W. ZhangH. LouX. TengL. YuanJ. YuanL. ZhangX.B. TanW. Imaging of peroxynitrite in drug-induced acute kidney injury with a near-infrared fluorescence and photoacoustic dual-modal molecular probe.Chem. Commun.202056588103810610.1039/D0CC01621G32555855
    [Google Scholar]
  43. FengW. ZhangY. LiZ. ZhaiS. LvW. LiuZ. Lighting up NIR-II fluorescence in vivo: An activable probe for noninvasive hydroxyl radical imaging.Anal. Chem.20199124157571576210.1021/acs.analchem.9b0400231724390
    [Google Scholar]
  44. FangY. ShiW. HuY. LiX. MaH. A dual-function fluorescent probe for monitoring the degrees of hypoxia in living cells via the imaging of nitroreductase and adenosine triphosphate.Chem. Commun.201854435454545710.1039/C8CC02209G29749411
    [Google Scholar]
  45. ZengC. TanY. SunL. LongY. ZengF. WuS. Renal-clearable probe with water solubility and photostability for biomarker-activatable detection of acute kidney injuries via NIR-II fluorescence and optoacoustic imaging.ACS Appl. Mater. Interfaces20231514176641767410.1021/acsami.3c0095637011134
    [Google Scholar]
  46. ChengP. ChenW. LiS. HeS. MiaoQ. PuK. Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury.Adv. Mater.20203217190853010.1002/adma.20190853032141674
    [Google Scholar]
  47. OuyangJ. SunL. ZengF. WuS. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries via NIR-II fluorescence imaging.Analyst2022147341041610.1039/D1AN02183D35018902
    [Google Scholar]
  48. GrütterM.G. Caspases: Key players in programmed cell death.Curr. Opin. Struct. Biol.200010664965510.1016/S0959‑440X(00)00146‑911114501
    [Google Scholar]
  49. ChangH.Y. YangX. Proteases for cell suicide: Functions and regulation of caspases.Microbiol. Mol. Biol. Rev.200064482184610.1128/MMBR.64.4.821‑846.200011104820
    [Google Scholar]
  50. ShiY. Mechanisms of caspase activation and inhibition during apoptosis.Mol. Cell20029345947010.1016/S1097‑2765(02)00482‑311931755
    [Google Scholar]
  51. ShiY. Caspase activation, inhibition, and reactivation: A mechanistic view.Protein Sci.20041381979198710.1110/ps.0478980415273300
    [Google Scholar]
  52. WengJ. WangY. ZhangY. YeD. An activatable near-infrared fluorescence probe for in vivo imaging of acute kidney injury by targeting phosphatidylserine and caspase-3.J. Am. Chem. Soc.202114343182941830410.1021/jacs.1c0889834672197
    [Google Scholar]
  53. VaidyaV.S. OzerJ.S. DieterleF. CollingsF.B. RamirezV. TrothS. MuniappaN. ThudiumD. GerholdD. HolderD.J. BobadillaN.A. MarrerE. PerentesE. CordierA. VonderscherJ. MaurerG. GoeringP.L. SistareF.D. BonventreJ.V. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies.Nat. Biotechnol.201028547848510.1038/nbt.162320458318
    [Google Scholar]
  54. YanF. TianX. LuanZ. FengL. MaX. JamesT.D. NAG-targeting fluorescence based probe for precision diagnosis of kidney injury.Chem. Commun.201955131955195810.1039/C8CC10311A30681673
    [Google Scholar]
  55. HuangJ. XieC. ZhangX. JiangY. LiJ. FanQ. PuK. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction.Angew. Chem. Int. Ed.20195842151201512710.1002/anie.20190956031452298
    [Google Scholar]
  56. HuangJ. LyuY. LiJ. ChengP. JiangY. PuK. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury.Angew. Chem. Int. Ed.20195849177961780410.1002/anie.20191013731602731
    [Google Scholar]
  57. TanJ. YinK. OuyangZ. WangR. PanH. WangZ. ZhaoC. GuoW. GuX. Real-time monitoring renal impairment due to drug-induced AKI and diabetes-caused CKD using an NAG-activatable NIR-II nanoprobe.Anal. Chem.20219348161581616510.1021/acs.analchem.1c0392634813273
    [Google Scholar]
  58. PeresLA da CunhaADJr Acute nephrotoxicity of cisplatin: Molecular mechanisms.J Bras Nefrol201335433234010.5935/0101‑2800.20130052
    [Google Scholar]
  59. WaikarS.S. BonventreJ.V. Biomarkers for the diagnosis of acute kidney injury.Nephron Clin. Pract.20081094c192c19710.1159/00014292818802367
    [Google Scholar]
  60. ChengP. PuK. Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury.Methods Enzymol.202165727130010.1016/bs.mie.2021.06.02034353491
    [Google Scholar]
  61. OrimoH. The mechanism of mineralization and the role of alkaline phosphatase in health and disease.J. Nippon Med. Sch.201077141210.1272/jnms.77.420154452
    [Google Scholar]
  62. ZhangH. XiaoP. WongY.T. ShenW. ChhabraM. PeltierR. JiangY. HeY. HeJ. TanY. XieY. HoD. LamY.W. SunJ. SunH. Construction of an alkaline phosphatase-specific two-photon probe and its imaging application in living cells and tissues.Biomaterials201714022022910.1016/j.biomaterials.2017.06.03228662402
    [Google Scholar]
  63. ChenX. YuwenZ. ZhaoY. LiH. ChenK. LiuH. In situ detection of alkaline phosphatase in a cisplatin-induced acute kidney injury model with a fluorescent/photoacoustic bimodal molecular probe.Front. Bioeng. Biotechnol.202210106853310.3389/fbioe.2022.106853336507263
    [Google Scholar]
  64. LiangosO. PerianayagamM.C. VaidyaV.S. HanW.K. WaldR. TighiouartH. MacKinnonR.W. LiL. BalakrishnanV.S. PereiraB.J.G. BonventreJ.V. JaberB.L. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure.J. Am. Soc. Nephrol.200718390491210.1681/ASN.200603022117267747
    [Google Scholar]
  65. HanW.K. WaikarS.S. JohnsonA. BetenskyR.A. DentC.L. DevarajanP. BonventreJ.V. Urinary biomarkers in the early diagnosis of acute kidney injury.Kidney Int.200873786386910.1038/sj.ki.500271518059454
    [Google Scholar]
  66. ParikhC.R. Thiessen-PhilbrookH. GargA.X. KadiyalaD. ShlipakM.G. KoynerJ.L. EdelsteinC.L. DevarajanP. PatelU.D. ZappitelliM. KrawczeskiC.D. PassikC.S. CocaS.G. TRIBE-AKI Consortium Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery.Clin. J. Am. Soc. Nephrol.2013871079108810.2215/CJN.1097101223599408
    [Google Scholar]
  67. XieY. WangQ. WangC. QiC. NiZ. MouS. High urinary excretion of kidney injury molecule-1 predicts adverse outcomes in acute kidney injury: A case control study.Crit. Care201620128610.1186/s13054‑016‑1455‑627613644
    [Google Scholar]
  68. GengJ. QiuY. QinZ. SuB. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: A systematic review and Bayesian meta-analysis.J. Transl. Med.202119110510.1186/s12967‑021‑02776‑833712052
    [Google Scholar]
  69. KwonT.J. JangE. LeeD.S. HaqueM.E. ParkR.W. LeeB. LeeS.B. KimD. JeonY.H. KimK.S. KimS.K. Development of a noninvasive KIM-1-based live-imaging technique in the context of a drug-induced kidney-injury mouse model.ACS Appl. Bio Mater.2021421508151410.1021/acsabm.0c0139235014500
    [Google Scholar]
  70. HeinzmannK. CarterL.M. LewisJ.S. AboagyeE.O. Multiplexed imaging for diagnosis and therapy.Nat. Biomed. Eng.20171969771310.1038/s41551‑017‑0131‑831015673
    [Google Scholar]
  71. FengJ. XuZ. LuoD. LiuX. Multiplexed imaging with coordination nanoparticles for cancer diagnosis and therapy.ACS Appl. Bio Mater.20203171372010.1021/acsabm.9b0103835019415
    [Google Scholar]
  72. ZhuN. GuoX. PangS. ChangY. LiuX. ShiZ. FengS. Mitochondria-immobilized unimolecular fluorescent probe for multiplexing imaging of living cancer cells.Anal. Chem.20209216111031111010.1021/acs.analchem.0c0104632662262
    [Google Scholar]
  73. HuangJ. LiJ. LyuY. MiaoQ. PuK. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury.Nat. Mater.201918101133114310.1038/s41563‑019‑0378‑431133729
    [Google Scholar]
  74. ChengP. MiaoQ. HuangJ. LiJ. PuK. Multiplex optical urinalysis for early detection of drug-induced kidney injury.Anal. Chem.20209286166617210.1021/acs.analchem.0c0098932241110
    [Google Scholar]
  75. MalmirK. Characterization of Nanoparticles with Optical Fluidic Cavity.University of Oxford2022
    [Google Scholar]
  76. MalmirK. OkellW. TrichetA.A.P. SmithJ.M. Characterization of nanoparticle size distributions using a microfluidic device with integrated optical microcavities.Lab Chip202222183499350710.1039/D2LC00180B35968777
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673299429240607103107
Loading
/content/journals/cmc/10.2174/0109298673299429240607103107
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Acute kidney injury; biomarker; diagnosis; hypoxia; ischemia; optical molecular probes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test