Skip to content
2000
Volume 32, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

Explore the role of mitochondrial membrane permeability transition (MPT) in colon adenocarcinoma (COAD).

Background

Further exploration of risk stratification for COAD prognostic assessment has important clinical value. MPT-related pathways play a key role in the pathogenesis of many human diseases, including tumorigenesis. Its impact on COAD is still unknown.

Objective

Bioinformatics analysis was conducted by analyzing the GEO database and TCGA database, and the bioinformatics results were verified by experiments.

Methods

Through the analysis of the transcriptome data of 1008 COAD samples in the GEO database and TCGA database, the differential expressions of MPT-related genes in COAD were explored, followed by molecular subtype analysis based on MPT characteristics by univariate Cox algorithm analysis and the consensus clustering algorithm. The gene signature associated with MPT molecular subtypes was further identified and the MPT scoring system was established by the LASSO-univariate Cox analysis algorithm. After evaluating the prognostic value of the MPT scoring system in COAD patients nomogram establishment, the clinical value of the MPT scoring system was comprehensively analyzed through somatic mutation characteristics analysis, immunotherapy response analysis, immunoinfiltration analysis, and drug sensitivity analysis. CCK-8, WB, PCR, colony formation method, and Transwell method were used to verify the effect of the screened target on the proliferation and invasion of COAD cells.

Results

We successfully established a scoring system related to MPT and validated the prognostic value of COAD patients. The potential clinical value of the MPT scoring system was also analyzed. VSIG4 was selected for further experiments to verify the effect of the screened targets on the proliferation and invasion ability of COAD cells.

Conclusion

We established an MPT scoring system for effective risk stratification of COAD patients, demonstrating the impact of MPT on the development of COAD and its potential value as an intervention factor.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673335900240920070746
2024-10-07
2025-10-18
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/40/CMC-32-40-10.html?itemId=/content/journals/cmc/10.2174/0109298673335900240920070746&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  2. EngC. YoshinoT. Ruíz-GarcíaE. MostafaN. CannC.G. O’BrianB. BennyA. PerezR.O. CremoliniC. Colorectal cancer.Lancet20244041044929431010.1016/S0140‑6736(24)00360‑X38909621
    [Google Scholar]
  3. PatelS.G. DominitzJ.A. Screening for colorectal cancer.Ann. Intern. Med.20241774ITC49ITC6410.7326/AITC20240416038588547
    [Google Scholar]
  4. BrandiG. RicciA.D. RizzoA. ZanfiC. TavolariS. PalloniA. De LorenzoS. RavaioliM. CesconM. Is post-transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases?Cancer Commun.202040946146410.1002/cac2.1207232762027
    [Google Scholar]
  5. RizzoA. NanniniM. NovelliM. Dalia RicciA. ScioscioV.D. PantaleoM.A. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis.Ther. Adv. Med. Oncol.20201210.1177/175883592093693232684988
    [Google Scholar]
  6. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.103912136533070
    [Google Scholar]
  7. SiegelR.L. MillerK.D. Goding SauerA. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.2160132133645
    [Google Scholar]
  8. SalzT. BaxiS.S. RaghunathanN. OnstadE.E. FreedmanA.N. MoskowitzC.S. DaltonS.O. GoodmanK.A. JohansenC. MatasarM.J. de Nully BrownP. OeffingerK.C. VickersA.J. Are we ready to predict late effects? A systematic review of clinically useful prediction models.Eur. J. Cancer201551675876610.1016/j.ejca.2015.02.00225736818
    [Google Scholar]
  9. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x36695827
    [Google Scholar]
  10. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan- cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  11. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers (Basel)20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  12. HunterD.R. HaworthR.A. SouthardJ.H. Relationship between configuration, function, and permeability in calcium-treated mitochondria.J. Biol. Chem.1976251165069507710.1016/S0021‑9258(17)33220‑9134035
    [Google Scholar]
  13. BernardiP. GerleC. HalestrapA.P. JonasE.A. KarchJ. MnatsakanyanN. PavlovE. SheuS.S. SoukasA.A. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions.Cell Death Differ.20233081869188510.1038/s41418‑023‑01187‑037460667
    [Google Scholar]
  14. FrigoE. TommasinL. LippeG. CarraroM. BernardiP. The haves and have-nots: The mitochondrial permeability transition pore across species.Cells20231210140910.3390/cells1210140937408243
    [Google Scholar]
  15. EndlicherR. DrahotaZ. ŠtefkováK. ČervinkováZ. KučeraO. The mitochondrial permeability transition pore-current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state.Cells2023129127310.3390/cells1209127337174672
    [Google Scholar]
  16. BaevA.Y. VinokurovA.Y. PotapovaE.V. DunaevA.V. AngelovaP.R. AbramovA.Y. Mitochondrial permeability transition, cell death and neurodegeneration.Cells202413764810.3390/cells1307064838607087
    [Google Scholar]
  17. BeheraR. SharmaV. GrewalA.K. KumarA. AroraB. NajdaA. AlbadraniG.M. AltyarA.E. Abdel-DaimM.M. SinghT.G. Mechanistic correlation between mitochondrial permeability transition pores and mitochondrial ATP dependent potassium channels in ischemia reperfusion.Biomed. Pharmacother.202316211459910.1016/j.biopha.2023.11459937004326
    [Google Scholar]
  18. CarraroM. BernardiP. The mitochondrial permeability transition pore in Ca2+ homeostasis.Cell Calcium202311110271910.1016/j.ceca.2023.10271936963206
    [Google Scholar]
  19. SusinS.A. LorenzoH.K. ZamzamiN. MarzoI. SnowB.E. BrothersG.M. MangionJ. JacototE. CostantiniP. LoefflerM. LarochetteN. GoodlettD.R. AebersoldR. SiderovskiD.P. PenningerJ.M. KroemerG. Molecular characterization of mitochondrial apoptosis-inducing factor.Nature1999397671844144610.1038/171359989411
    [Google Scholar]
  20. PatelP. MendozaA. RobichauxD.J. WangM.C. WehrensX.H.T. KarchJ. Inhibition of the anti-apoptotic bcl-2 family by BH3 mimetics sensitize the mitochondrial permeability transition pore through bax and bak.Front. Cell Dev. Biol.2021976597310.3389/fcell.2021.76597334926454
    [Google Scholar]
  21. BonoraM. PatergnaniS. RamacciniD. MorcianoG. PedrialiG. KahsayA. BouhamidaE. GiorgiC. WieckowskiM. PintonP. Physiopathology of the permeability transition pore: molecular mechanisms in human pathology.Biomolecules202010799810.3390/biom1007099832635556
    [Google Scholar]
  22. WaseemM. WangB.D. Promising strategy of mPTP modulation in cancer therapy: An emerging progress and future insight.Int. J. Mol. Sci.2023246556410.3390/ijms2406556436982637
    [Google Scholar]
  23. TakeyamaN. MatsuoN. TanakaT. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.Biochem J.1993294pt 3719725
    [Google Scholar]
  24. HunterD.R. HaworthR.A. The Ca2+-induced membrane transition in mitochondria.Arch. Biochem. Biophys.1979195245345910.1016/0003‑9861(79)90371‑0383019
    [Google Scholar]
  25. MorcianoG. BonoraM. CampoG. AquilaG. RizzoP. GiorgiC. WieckowskiM.R. PintonP. Mechanistic role of mPTP in ischemia-reperfusion injury.Adv. Exp. Med. Biol.201798216918910.1007/978‑3‑319‑55330‑6_928551787
    [Google Scholar]
  26. R vH. NK. AS. Influence of rotating shift work on visual reaction time and visual evoked potential.J. Clin. Diagn. Res.2014810BC04BC0725478332
    [Google Scholar]
  27. ZhouB. KreuzerJ. KumstaC. WuL. KamerK.J. CedilloL. ZhangY. LiS. KacergisM.C. WebsterC.M. Fejes-TothG. Naray-Fejes-TothA. DasS. HansenM. HaasW. SoukasA.A. Mitochondrial permeability uncouples elevated autophagy and lifespan extension.Cell20191772299314.e1610.1016/j.cell.2019.02.01330929899
    [Google Scholar]
  28. BoyenleI.D. OyedeleA.K. OgunlanaA.T. AdeyemoA.F. OyelereF.S. AkinolaO.B. AdelusiT.I. EhigieL.O. EhigieA.F. Targeting the mitochondrial permeability transition pore for drug discovery: Challenges and opportunities.Mitochondrion202263577110.1016/j.mito.2022.01.00635077882
    [Google Scholar]
  29. BrennerC. GrimmS. The permeability transition pore complex in cancer cell death.Oncogene200625344744475610.1038/sj.onc.120960916892087
    [Google Scholar]
  30. FuldaS. GalluzziL. KroemerG. Targeting mitochondria for cancer therapy.Nat. Rev. Drug Discov.20109644746410.1038/nrd313720467424
    [Google Scholar]
  31. EnríquezJ.A. MittelbrunnM. Warburg effect reshapes tumor immunogenicity.Cancer Res.202484132043204510.1158/0008‑5472.CAN‑24‑130438657107
    [Google Scholar]
  32. FendtS.M. 100 years of the Warburg effect: A cancer metabolism endeavor.Cell2024187153824382810.1016/j.cell.2024.06.02639059359
    [Google Scholar]
  33. YuY. JiangY. GlandorffC. SunM. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side.Cell. Signal.202412011123910.1016/j.cellsig.2024.11123938815642
    [Google Scholar]
  34. BolandM.L. ChourasiaA.H. MacleodK.F. Mitochondrial dysfunction in cancer.Front. Oncol.2013329210.3389/fonc.2013.0029224350057
    [Google Scholar]
  35. GaoM. LiuS. QiY. GuoX. ShangX. ImReLnc: Identifying immune-related lncrna characteristics in human cancers based on heuristic correlation optimization.Front. Genet.20221279254110.3389/fgene.2021.79254135082835
    [Google Scholar]
  36. TianX. LiuM. HuangX. ZhuQ. LiuW. ChenW. ZouY. CaiY. HuangS. ChenA. ZhanT. HuangM. ChenX. HanZ. TanJ. Noscapine induces apoptosis in human colon cancer cells by regulating mitochondrial damage and Warburg effect via PTEN/PI3K/mTOR signaling pathway.OncoTargets Ther.2020135419542810.2147/OTT.S23213732606759
    [Google Scholar]
  37. BonoraM. PintonP. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death.Front. Oncol.2014430210.3389/fonc.2014.0030225478322
    [Google Scholar]
  38. FerreiraL.M.R. Cancer metabolism: The Warburg effect today.Exp. Mol. Pathol.201089337238010.1016/j.yexmp.2010.08.00620804748
    [Google Scholar]
  39. BeutnerG. RückA. RiedeB. BrdiczkaD. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases.Biochim. Biophys. Acta Biomembr.19981368171810.1016/S0005‑2736(97)00175‑29459579
    [Google Scholar]
  40. DasA. Martinez-RuizG.U. BouladouxN. StacyA. MoralyJ. Vega-SendinoM. ZhaoY. LavaertM. DingY. Morales-SanchezA. HarlyC. SeedhomM.O. ChariR. AwasthiP. IkeuchiT. WangY. ZhuJ. MoutsopoulosN.M. ChenW. YewdellJ.W. ShapiroV.S. RuizS. TaylorN. BelkaidY. BhandoolaA. Transcription factor Tox2 is required for metabolic adaptation and tissue residency of ILC3 in the gut.Immunity202457510191036.e910.1016/j.immuni.2024.04.00138677292
    [Google Scholar]
  41. ShanB. ZhouH. GuoC. LiuX. WuM. ZhaiR. ChenJ. Tanshinone IIA ameliorates energy metabolism dysfunction of pulmonary fibrosis using 13C metabolic flux analysis.J. Pharm. Anal.202414224425810.1016/j.jpha.2023.09.00838464785
    [Google Scholar]
  42. GwakG.Y. YoonJ.H. KimK.M. LeeH.S. ChungJ.W. GoresG.J. Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression.J. Hepatol.200542335836410.1016/j.jhep.2004.11.02015710218
    [Google Scholar]
  43. LiJ. ChenL. QinQ. WangD. ZhaoJ. GaoH. YuanX. ZhangJ. ZouY. MaoZ. XiongY. MinZ. YanM. WangC. XueZ. Upregulated hexokinase 2 expression induces the apoptosis of dopaminergic neurons by promoting lactate production in Parkinson’s disease.Neurobiol. Dis.202216310560510.1016/j.nbd.2021.10560534973450
    [Google Scholar]
  44. DuanC. KuangL. HongC. XiangX. LiuJ. LiQ. PengX. ZhouY. WangH. LiuL. LiT. Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2.Cell Death Dis.20211211105010.1038/s41419‑021‑04343‑x34741026
    [Google Scholar]
  45. ChiaraF. CastellaroD. MarinO. PetronilliV. BrusilowW.S. JuhaszovaM. SollottS.J. ForteM. BernardiP. RasolaA. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels.PLoS One200833e185210.1371/journal.pone.000185218350175
    [Google Scholar]
  46. CiscatoF. FerroneL. MasgrasI. LaquatraC. RasolaA. Hexokinase 2 in cancer: A prima donna playing multiple characters.Int. J. Mol. Sci.2021229471610.3390/ijms2209471633946854
    [Google Scholar]
  47. KrasnovG.S. DmitrievA.A. LakuninaV.A. KirpiyA.A. KudryavtsevaA.V. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy.Expert Opin. Ther. Targets201317101221123310.1517/14728222.2013.83360723984984
    [Google Scholar]
  48. JuhaszovaM. ZorovD.B. KimS.H. PepeS. FuQ. FishbeinK.W. ZimanB.D. WangS. YtrehusK. AntosC.L. OlsonE.N. SollottS.J. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore.J. Clin. Invest.2004113111535154910.1172/JCI1990615173880
    [Google Scholar]
  49. KimJ.E. HeQ. ChenY. ShiC. YuK. mTOR-targeted therapy: Differential perturbation to mitochondrial membrane potential and permeability transition pore plays a role in therapeutic response.Biochem. Biophys. Res. Commun.2014447118419110.1016/j.bbrc.2014.03.12424704448
    [Google Scholar]
  50. ChiaraF. RasolaA. GSK-3 and mitochondria in cancer cells.Front. Oncol.201331610.3389/fonc.2013.0001623386998
    [Google Scholar]
  51. LiuJ. ZhouJ. LuanY. LiX. MengX. LiaoW. TangJ. WangZ. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation.Cell Commun. Signal.20242212210.1186/s12964‑023‑01466‑w38195584
    [Google Scholar]
  52. WeiB. XuL. GuoW. WangY. WuJ. LiX. CaiX. HuJ. WangM. XuQ. LiuW. GuY. SHP2-mediated inhibition of DNA repair contributes to cGAS–STING activation and chemotherapeutic sensitivity in colon cancer.Cancer Res.202181123215322810.1158/0008‑5472.CAN‑20‑373833820798
    [Google Scholar]
  53. WangM. HuangY. ChenM. WangW. WuF. ZhongT. ChenX. WangF. LiY. YuJ. WuM. ChenD. Inhibition of tumor intrinsic BANF1 activates antitumor immune responses via cGAS-STING and enhances the efficacy of PD-1 blockade.J. Immunother. Cancer2023118e00703510.1136/jitc‑2023‑00703537620043
    [Google Scholar]
  54. LiP. ZhouD. ChenD. ChengY. ChenY. LinZ. ZhangX. HuangZ. CaiJ. HuangW. LinY. KeH. LongJ. ZouY. YeS. LanP. Tumor-secreted IFI35 promotes proliferation and cytotoxic activity of CD8+ T cells through PI3K/AKT/mTOR signaling pathway in colorectal cancer.J. Biomed. Sci.20233014710.1186/s12929‑023‑00930‑637380972
    [Google Scholar]
  55. LiY. ShenZ. ChaiZ. ZhanY. ZhangY. LiuZ. LiuY. LiZ. LinM. ZhangZ. LiuW. GuanS. ZhangJ. QianJ. DingY. LiG. FangY. DengH. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity.Gut202372122307232010.1136/gutjnl‑2022‑32914737507218
    [Google Scholar]
  56. SalehR. Sasidharan NairV. MurshedK. Abu NadaM. ElkordE. ShaheenR. Transcriptome of CD8+ tumor-infiltrating T cells: a link between diabetes and colorectal cancer.Cancer Immunol. Immunother.20217092625263810.1007/s00262‑021‑02879‑733582867
    [Google Scholar]
  57. LiuZ. LiL. LiuL. ZhuZ. YuY. ZhanS. LuoZ. LiY. LongH. CaiJ. HuangK. DuX. PDK3 drives colorectal carcinogenesis and immune evasion and is a therapeutic target for boosting immunotherapy.Am. J. Cancer Res.20241463117312910.62347/QWKZ307839005672
    [Google Scholar]
  58. van Lookeren CampagneM. VerschoorA. Pathogen clearance and immune adherence “revisited”: Immuno-regulatory roles for CRIg.Semin. Immunol.20183741110.1016/j.smim.2018.02.00729573978
    [Google Scholar]
  59. ZengZ. SurewaardB.G.J. WongC.H.Y. GeogheganJ.A. JenneC.N. KubesP. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria.Cell Host Microbe20162019910610.1016/j.chom.2016.06.00227345697
    [Google Scholar]
  60. EbsteinS.Y. RafiqueA. ZhouY. KrascoA. Montalvo-OrtizW. YuL. CustodioL. AdamR.C. BlochN. LeeK. AdewaleF. VergataD. LuzA. CoqueryS. DanielB. UllmanE. FranklinM.C. HermannA. HuangT. OlsonW. DavisS. MurphyA.J. SleemanM.A. WeiJ. SkokosD. VSIG4 interaction with heparan sulfates inhibits VSIG4–complement binding.Glycobiology202333759160410.1093/glycob/cwad05037341346
    [Google Scholar]
  61. ChongY.Y. ThiagarajanS. TanQ.X. LimH.J. TanJ.W.S. HendriksonJ. NgG. LiuY. ChongC.Y.L. GuoW. NgoN.T. LeowW.Q. LohT. SamX.X. LimT.K.H. CaiM. SeoC.J. WongJ.S.M. SooK.C. ChiaC.S. ShannonN.B. OngC.A.J. The immunomodulatory role of paracrine signalling factor VSIG4 in peritoneal metastases.Sci. Rep.20241411752210.1038/s41598‑024‑64449‑y39080370
    [Google Scholar]
  62. SazinskyS. ZafariM. KlebanovB. RitterJ. NguyenP.A. PhennicieR.T. WahleJ. KauffmanK.J. RazlogM. ManfraD. FeldmanI. NovobrantsevaT. Antibodies targeting human or mouse VSIG4 repolarize tumor-associated macrophages providing the potential of potent and specific clinical anti-tumor response induced across multiple cancer types.Int. J. Mol. Sci.20242511616010.3390/ijms2511616038892347
    [Google Scholar]
  63. YanQ. HuY. LiuZ. LiuX. Clinical characterization and immunomodulatory role of VSIG4 in glioma.Asian J. Surg.2024S1015-9584(24)01037-610.1016/j.asjsur.2024.05.14738824014
    [Google Scholar]
  64. LiJ. DiaoB. GuoS. HuangX. YangC. FengZ. YanW. NingQ. ZhengL. ChenY. WuY. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism.Nat. Commun.201781132210.1038/s41467‑017‑01327‑429109438
    [Google Scholar]
  65. LiuB. ChengL. GaoH. ZhangJ. DongY. GaoW. YuanS. GongT. HuangW. The biology of VSIG4: Implications for the treatment of immune-mediated inflammatory diseases and cancer.Cancer Lett.202355321599610.1016/j.canlet.2022.21599636343787
    [Google Scholar]
  66. LiZ. YinZ. LuanZ. ZhangC. WangY. ZhangK. ChenF. YangZ. TianY. Comprehensive analyses for the coagulation and macrophage-related genes to reveal their joint roles in the prognosis and immunotherapy of lung adenocarcinoma patients.Front. Immunol.202314127342210.3389/fimmu.2023.127342238022584
    [Google Scholar]
  67. ZhangX. SunY. MaY. GaoC. ZhangY. YangX. ZhaoX. WangW. WangL. Tumor-associated M2 macrophages in the immune microenvironment influence the progression of renal clear cell carcinoma by regulating M2 macrophage-associated genes.Front. Oncol.202313115786110.3389/fonc.2023.115786137361571
    [Google Scholar]
  68. ZhouX. KhanS. HuangD. LiL. V-Set and immunoglobulin domain containing (VSIG) proteins as emerging immune checkpoint targets for cancer immunotherapy.Front. Immunol.20221393847010.3389/fimmu.2022.93847036189222
    [Google Scholar]
  69. ZhengC. MaoC. TangK. ShuH. VSIG4 silencing inhibits glioblastoma growth by regulating the JAK2/STAT3 pathway.Neuropsychiatr. Dis. Treat.2023191397140810.2147/NDT.S40678237292180
    [Google Scholar]
  70. Golshani-HebroniS. Mg++ requirement for MtHK binding, and Mg++ stabilization of mitochondrial membranes via activation of MtHK & MtCK and promotion of mitochondrial permeability transition pore closure: A hypothesis on mechanisms underlying Mg++’s antioxidant and cytoprotective effects.Gene2016581111310.1016/j.gene.2015.12.04626732303
    [Google Scholar]
  71. ShenX. MaM. MiR. ZhuangJ. SongY. YangW. LiH. LuY. YangB. LiuY. WuY. ShenH. EFHD1 promotes osteosarcoma proliferation and drug resistance by inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP) by binding to ANT3.Cell. Mol. Life Sci.202481123610.1007/s00018‑024‑05254‑838795203
    [Google Scholar]
  72. ZhuangH. HeX. LiH. ChenY. WuT. JiangX. ZhangH. ZhaoP. WangY. ChenJ. ZhangJ. LiuY. BuW. MnS nanocapsule mediates mitochondrial membrane permeability transition for tumor ion-interference therapy.ACS Nano20231714138721388410.1021/acsnano.3c0367037458394
    [Google Scholar]
  73. AdisaR.A. OlorunsogoO.O. Robustaside B and para-hydroxyphenol: Phenolic and antioxidant compounds purified from Cnestis ferruginea D.C induced membrane permeability transition in rat liver mitochondria.Mol. Med. Rep.2013851493149810.3892/mmr.2013.167424026541
    [Google Scholar]
  74. KimH.J. YangK.M. ParkY.S. ChoiY.J. YunJ.H. SonC.H. SuhH.S. JeongM.H. JoW.S. The novel resveratrol analogue HS-1793 induces apoptosis via the mitochondrial pathway in murine breast cancer cells.Int. J. Oncol.20124151628163410.3892/ijo.2012.161522940714
    [Google Scholar]
  75. CostantiniP. BelzacqA.S. VieiraH.L.A. LarochetteN. de PabloM.A. ZamzamiN. SusinS.A. BrennerC. KroemerG. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis.Oncogene200019230731410.1038/sj.onc.120329910645010
    [Google Scholar]
  76. GogvadzeV. Targeting mitochondria in fighting cancer.Curr. Pharm. Des.201117364034404610.2174/13816121179876493322188453
    [Google Scholar]
  77. HijaziA. GalonJ. Principles of risk assessment in colon cancer: immunity is key.OncoImmunology2024131234744110.1080/2162402X.2024.234744138694625
    [Google Scholar]
  78. ZhouJ. Foroughi pourA. DeirawanH. DaaboulF. AungT.N. BeydounR. AhmedF.S. ChuangJ.H. Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality.EBioMedicine20239410472610.1016/j.ebiom.2023.10472637499603
    [Google Scholar]
  79. PoturnajovaM. FurielovaT. BalintovaS. SchmidtovaS. KucerovaL. MatuskovaM. Molecular features and gene expression signature of metastatic colorectal cancer (Review).Oncol. Rep.20214541010.3892/or.2021.796133649827
    [Google Scholar]
  80. NowakK. FormentiK. HuangJ. BigrasG. ChuQ. AdamB.A. IzevbayeI. Risk stratification of gastrointestinal stromal tumors by nanostring gene expression profiling.J. Cancer Res. Clin. Oncol.202214861325133610.1007/s00432‑022‑03924‑335089395
    [Google Scholar]
  81. GuptaS. GuptaM.K. ShabazM. SharmaA. Deep learning techniques for cancer classification using microarray gene expression data.Front. Physiol.20221395270910.3389/fphys.2022.95270936246115
    [Google Scholar]
  82. BottossoM. MigliettaF. VernaciG.M. GiarratanoT. DieciM.V. GuarneriV. GriguoloG. Gene expression assays to tailor adjuvant endocrine therapy for HR+/HER2− breast cancer.Clin. Cancer Res.202430142884289410.1158/1078‑0432.CCR‑23‑402038656833
    [Google Scholar]
  83. KoncinaE. HaanS. RauhS. LetellierE. Prognostic and predictive molecular biomarkers for colorectal cancer: Updates and challenges.Cancers202012231910.3390/cancers1202031932019056
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673335900240920070746
Loading
/content/journals/cmc/10.2174/0109298673335900240920070746
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test