Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Diabetes mellitus is associated with an increased risk of atherosclerosis related to dyslipidemia. Although the terms hyperlipidemia and Diabetes Mellitus (DM) or diabetic dyslipidemia are interrelated to each other, these two conditions have some differences.

Aim

This study aimed to highlight possible mechanisms of hyperlipidemia and/or dyslipidemia in diabetic patients, which can be treated with available and newer hypolipidemic drugs. We also re-checked current specific guidelines and their recommendations on the management of patients with diabetic dyslipidemia.

Methods

Comprehensive search of peer-reviewed journals was performed based on a wide range of keywords, including diabetes mellitus, dyslipidemia, hyperlipidemia, insulin resistance, free-fatty acids, cardiovascular disease, SCORE-2 calculation, statins, PCSK-9 inhibitors, and fibrates.

Discussion

Diabetic patients with dyslipidemia, including decreased HDL cholesterol, a predominance of small dense LDL particles, and increased triglyceride levels, are more prone to suffering from micro and macrovascular complications regardless of plasma fasting glucose levels. Recent guidelines suggested using the validated scoring system called SCORE2-Diabetes. Moderate to high dosages of statins, aiming for LDL cholesterol reduction, is still the cornerstone in the management of diabetic patients with dyslipidemia. Nowadays, other recommended non-statin drugs, including proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors or other novel therapeutic agents (bempedoic acid, inclisiran), are particularly important and given place in recently published guidelines.

Conclusion

The risk of developing atherosclerotic cardiovascular diseases in people with DM is relatively higher than in patients’ without DM. Optimal management of lipid parameters and achieving desired target values in lipid parameters are still a challenging issue for clinicians.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673336501241001093417
2025-01-13
2025-10-25
Loading full text...

Full text loading...

References

  1. JangA.Y. LimS. JoS.H. HanS.H. KohK.K. New trends in dyslipidemia treatment.Circ. J.202185675976810.1253/circj.CJ‑20‑103733177309
    [Google Scholar]
  2. VergèsB. Pathophysiology of diabetic dyslipidaemia: where are we?Diabetologia201558588689910.1007/s00125‑015‑3525‑825725623
    [Google Scholar]
  3. LorenzoC. HartnettS. HanleyA.J. RewersM.J. WagenknechtL.E. KarterA.J. HaffnerS.M. Impaired fasting glucose and impaired glucose tolerance have distinct lipoprotein and apolipoprotein changes: The insulin resistance atherosclerosis study.J. Clin. Endocrinol. Metab.20139841622163010.1210/jc.2012‑318523450048
    [Google Scholar]
  4. VekicJ. ZeljkovicA. CiceroA.F.G. JanezA. StoianA.P. SonmezA. RizzoM. Atherosclerosis development and progression: the role of atherogenic small, dense LDL.Medicina202258229910.3390/medicina5802029935208622
    [Google Scholar]
  5. PackardC.J. BorenJ. TaskinenM.R. Causes and consequences of hypertriglyceridemia.Front. Endocrinol.20201125210.3389/fendo.2020.0025232477261
    [Google Scholar]
  6. JanacJ.M. ZeljkovicA. IvanovicZ.D. SreckovicV.S. VekicJ. MiljkovicM.M. StefanovicA. StevuljevicJ.M. IvanisevicJ.M. KalimanovskaV.V. Increased oxidized high-density lipoprotein/high-density lipoprotein- cholesterol ratio as a potential indicator of disturbed metabolic health in overweight and obese individuals.Lab. Med.2020511243310.1093/labmed/lmz01731089722
    [Google Scholar]
  7. HanC.Y. KangI. OmerM. WangS. WietechaT. WightT.N. ChaitA. Serum amyloid A–containing HDL binds adipocyte-derived versican and macrophage-derived biglycan, reducing its antiinflammatory properties.JCI Insight2020520e14263510.1172/jci.insight.14263532970631
    [Google Scholar]
  8. ZhanX. YangM. ZhouR. WeiX. ChenY. ChenQ. Triglyceride to high-density lipoprotein cholesterol ratio is associated with increased mortality in older patients on peritoneal dialysis.Lipids Health Dis.201918119910.1186/s12944‑019‑1147‑831729985
    [Google Scholar]
  9. MardiP. AbdiF. EhsaniA. SeifE. DjalaliniaS. HeshmatiJ. ShahrestanakiE. GorabiA.M. QorbaniM. Is non-high-density lipoprotein associated with metabolic syndrome? A systematic review and meta-analysis.Front. Endocrinol. (Lausanne)20221395713610.3389/fendo.2022.95713636176470
    [Google Scholar]
  10. ShaoQ.Y. MaX.T. YangZ.Q. LiQ.X. WangY.F. LiangJ. ShenH. LiuX.L. ZhouY.J. ShiD.M. WangZ.J. Prognostic significance of multiple triglycerides-derived metabolic indices in patients with acute coronary syndrome.J. Geriatr. Cardiol.202219645646835845160
    [Google Scholar]
  11. CohnJ.S. PattersonB.W. UffelmanK.D. DavignonJ. SteinerG. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity.J. Clin. Endocrinol. Metab.20048983949395510.1210/jc.2003‑03205615292332
    [Google Scholar]
  12. YoungS.G. ZechnerR. Biochemistry and pathophysiology of intravascular and intracellular lipolysis.Genes Dev.201327545948410.1101/gad.209296.11223475957
    [Google Scholar]
  13. MoritaS. Metabolism and modification of apolipoprotein b-containing lipoproteins involved in dyslipidemia and atherosclerosis.Biol. Pharm. Bull.201639112410.1248/bpb.b15‑0071626725424
    [Google Scholar]
  14. NakajimaK. NakanoT. TokitaY. NagamineT. InazuA. KobayashiJ. MabuchiH. StanhopeK.L. HavelP.J. OkazakiM. AiM. TanakaA. Postprandial lipoprotein metabolism: VLDL vs. chylomicrons.Clin. Chim. Acta201141215-161306131810.1016/j.cca.2011.04.01821531214
    [Google Scholar]
  15. NichollsS.J. RayK.K. NelsonA.J. KasteleinJ.J.P. Can we revive CETP-inhibitors for the prevention of cardiovascular disease?Curr. Opin. Lipidol.202233631932510.1097/MOL.000000000000085436345867
    [Google Scholar]
  16. RezapourM. ShahesmaeiliA. HossinzadehA. ZahediR. NajafipourH. GozashtiM.H. Comparison of lipid ratios to identify metabolic syndrome.Arch. Iran Med.2018211257257730634854
    [Google Scholar]
  17. LelisD.F. CalzavaraJ.V.S. SantosR.D. SpositoA.C. GriepR.H. BarretoS.M. MolinaM.C.B. SchmidtM.I. DuncanB.B. BensenorI. LotufoP.A. MillJ.G. BaldoM.P. Reference values for the triglyceride to high- density lipoprotein ratio and its association with cardiometabolic diseases in a mixed adult population: The ELSA-Brasil study.J. Clin. Lipidol.202115569971110.1016/j.jacl.2021.07.00534389285
    [Google Scholar]
  18. VaismanB.L. VishnyakovaT.G. FreemanL.A. AmarM.J. DemoskyS.J. LiuC. StonikJ.A. SampsonM.L. PryorM. BocharovA.V. EggermanT.L. PattersonA.P. RemaleyA.T. Endothelial expression of scavenger receptor class b, type I protects against development of atherosclerosis in mice.BioMed Res. Int.2015201511310.1155/2015/60712026504816
    [Google Scholar]
  19. BrahmA.J. HegeleR.A. Chylomicronaemia—current diagnosis and future therapies.Nat. Rev. Endocrinol.201511635236210.1038/nrendo.2015.2625732519
    [Google Scholar]
  20. GotodaT. ShiraiK. OhtaT. KobayashiJ. YokoyamaS. OikawaS. BujoH. IshibashiS. AraiH. YamashitaS. Harada-ShibaM. EtoM. HayashiT. SoneH. SuzukiH. YamadaN. Research Committee for Primary Hyperlipidemia, Research on Measures against Intractable Diseases by the Ministry of Health, Labour and Welfare in Japan Diagnosis and management of type I and type V hyperlipoproteinemia.J. Atheroscler. Thromb.201219111210.5551/jat.1070222129523
    [Google Scholar]
  21. StroesE. MoulinP. ParhoferK.G. ReboursV. LöhrJ.M. AvernaM. Diagnostic algorithm for familial chylomicronemia syndrome.Atheroscler. Suppl.2017231710.1016/j.atherosclerosissup.2016.10.00227998715
    [Google Scholar]
  22. SwiftL.L. KakkadB. BooneC. JovanovskaA. JeromeW.G. MohlerP.J. OngD.E. Microsomal triglyceride transfer protein expression in adipocytes: A new component in fat metabolism.FEBS Lett.2005579143183318910.1016/j.febslet.2005.05.00915922333
    [Google Scholar]
  23. AnagantiN. RajanS. HussainM.M. An improved assay to measure the phospholipid transfer activity of microsomal triglyceride transport protein.J. Lipid Res.20216210013610.1016/j.jlr.2021.10013634673018
    [Google Scholar]
  24. WalshM.T. HussainM.M. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia.Crit. Rev. Clin. Lab.201654123
    [Google Scholar]
  25. HussainM.M. BakillahA. JamilH. Apolipoprotein B binding to microsomal triglyceride transfer protein decreases with increases in length and lipidation: implications in lipoprotein biosynthesis.Biochemistry19973642130601306710.1021/bi971395a9335568
    [Google Scholar]
  26. HussainM.M. ShiJ. DreizenP. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly.J. Lipid Res.2003441223210.1194/jlr.R200014‑JLR20012518019
    [Google Scholar]
  27. AyyappaK.A. ShatwanI. BodhiniD. BramwellL.R. RamyaK. SudhaV. AnjanaR.M. LovegroveJ.A. MohanV. RadhaV. VimaleswaranK.S. High fat diet modifies the association of lipoprotein lipase gene polymorphism with high density lipoprotein cholesterol in an Asian Indian population.Nutr. Metab. (Lond.)2017141810.1186/s12986‑016‑0155‑128115978
    [Google Scholar]
  28. DongB. WuM. LiH. KraemerF.B. AdeliK. SeidahN.G. ParkS.W. LiuJ. Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters.J. Lipid Res.20105161486149510.1194/jlr.M00356620048381
    [Google Scholar]
  29. KotronenA. Yki-JärvinenH. Fatty liver: A novel component of the metabolic syndrome.Arterioscler. Thromb. Vasc. Biol.2008281273810.1161/ATVBAHA.107.14753817690317
    [Google Scholar]
  30. ChahilT.J. GinsbergH.N. Diabetic dyslipidemia.Endocrinol. Metab. Clin. North Am.2006353491510, vii-viii10.1016/j.ecl.2006.06.00216959582
    [Google Scholar]
  31. TziomalosK. AthyrosV. KaragiannisA. KolovouG. MikhailidisD. Triglycerides and vascular risk: insights from epidemiological data and interventional studies.Curr. Drug Targets200910432032710.2174/13894500978784642519355856
    [Google Scholar]
  32. BabaevV.R. FazioS. GleavesL.A. CarterK.J. SemenkovichC.F. LintonM.F. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo.J. Clin. Invest.1999103121697170510.1172/JCI611710377176
    [Google Scholar]
  33. HortonJ.D. ShahN.A. WarringtonJ.A. AndersonN.N. ParkS.W. BrownM.S. GoldsteinJ.L. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.Proc. Natl. Acad. Sci. USA200310021120271203210.1073/pnas.153492310014512514
    [Google Scholar]
  34. PaiJ.T. BrownM.S. GoldsteinJ.L. Purification and cDNA cloning of a second apoptosis-related cysteine protease that cleaves and activates sterol regulatory element binding proteins.Proc. Natl. Acad. Sci. USA199693115437544210.1073/pnas.93.11.54378643593
    [Google Scholar]
  35. WangX. PaiJ. WiedenfeldE.A. MedinaJ.C. SlaughterC.A. GoldsteinJ.L. BrownM.S. Purification of an interleukin-1 beta converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains.J. Biol. Chem.199527030180441805010.1074/jbc.270.30.180447629113
    [Google Scholar]
  36. AdielsM. OlofssonS.O. TaskinenM.R. BorénJ. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome.Arterioscler. Thromb. Vasc. Biol.20082871225123610.1161/ATVBAHA.107.16019218565848
    [Google Scholar]
  37. Nikolova-KarakashianM. Alcoholic and non-alcoholic fatty liver disease: Focus on ceramide.Adv. Biol. Regul.201870405010.1016/j.jbior.2018.11.00430455063
    [Google Scholar]
  38. BedogniG. BellentaniS. MiglioliL. MasuttiF. PassalacquaM. CastiglioneA. TiribelliC. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population.BMC Gastroenterol.2006613310.1186/1471‑230X‑6‑3317081293
    [Google Scholar]
  39. SegrestJ.P. JonesM.K. De LoofH. DashtiN. Structure of apolipoprotein B-100 in low density lipoproteins.J. Lipid Res.20014291346136710.1016/S0022‑2275(20)30267‑411518754
    [Google Scholar]
  40. NichollsS.J. BrewerH.B. KasteleinJ.J.P. KruegerK.A. WangM.D. ShaoM. HuB. McErleanE. NissenS.E. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial.JAMA2011306192099210910.1001/jama.2011.164922089718
    [Google Scholar]
  41. Reyes-SofferG. MillarJ.S. NgaiC. JumesP. CoromilasE. AsztalosB. Johnson-LevonasA.O. WagnerJ.A. DonovanD.S. KarmallyW. RamakrishnanR. HolleranS. ThomasT. DunbarR.L. deGomaE.M. RafeekH. BaerA.L. LiuY. LassmanM.E. GutsteinD.E. RaderD.J. GinsbergH.N. Cholesteryl ester transfer protein inhibition with anacetrapib decreases fractional clearance rates of highdensity lipoprotein apolipoprotein A-I and plasma cholesteryl ester transfer protein.Arterioscler. Thromb. Vasc. Biol.2016365994100210.1161/ATVBAHA.115.30668026966279
    [Google Scholar]
  42. ChoK.I. YuJ. HayashiT. HanS.H. KohK.K. Strategies to overcome residual risk during statins era.Circ. J.201983101973197910.1253/circj.CJ‑19‑062431391351
    [Google Scholar]
  43. PedersenT.R. KjekshusJ. BergK. HaghfeltT. FaergemanO. FaergemanG. PyöräläK. MiettinenT. WilhelmsenL. OlssonA.G. WedelH. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The scandinavian simvastatin survival study (4S).Atheroscler. Suppl.200453818710.1016/j.atherosclerosissup.2004.08.02715531279
    [Google Scholar]
  44. KohK.K. QuonM.J. HanS.H. LeeY. KimS.J. ShinE.K. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients.J. Am. Coll. Cardiol.201055121209121610.1016/j.jacc.2009.10.05320298928
    [Google Scholar]
  45. FerenceB.A. GinsbergH.N. GrahamI. RayK.K. PackardC.J. BruckertE. HegeleR.A. KraussR.M. RaalF.J. SchunkertH. WattsG.F. BorénJ. FazioS. HortonJ.D. MasanaL. NichollsS.J. NordestgaardB.G. van de SluisB. TaskinenM.R. TokgözoğluL. LandmesserU. LaufsU. WiklundO. StockJ.K. ChapmanM.J. CatapanoA.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the european atherosclerosis society consensus panel.Eur. Heart J.201738322459247210.1093/eurheartj/ehx14428444290
    [Google Scholar]
  46. PackardC.J. Determinants of achieved LDL cholesterol and “non-HDL” cholesterol in the management of dyslipidemias.Curr. Cardiol. Rep.20182086010.1007/s11886‑018‑1003‑x29904807
    [Google Scholar]
  47. SandesaraP.B. ViraniS.S. FazioS. ShapiroM.D. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk.Endocr. Rev.201940253755710.1210/er.2018‑0018430312399
    [Google Scholar]
  48. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).Lancet1998352913183785310.1016/S0140‑6736(98)07019‑69742976
    [Google Scholar]
  49. MihaylovaB. EmbersonJ. BlackwellL. KeechA. SimesJ. BarnesE.H. VoyseyM. GrayA. CollinsR. BaigentC. Cholesterol Treatment Trialists’ (CTT) Collaborators The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials.Lancet2012380984158159010.1016/S0140‑6736(12)60367‑522607822
    [Google Scholar]
  50. Correction to: 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the european society of cardiology (ESC).Eur. Heart J.20234448506010.1093/eurheartj/ehad77437989571
    [Google Scholar]
  51. ElSayedN.A. AleppoG. ArodaV.R. BannuruR.R. BrownF.M. BruemmerD. CollinsB.S. DasS.R. HilliardM.E. IsaacsD. JohnsonE.L. KahanS. KhuntiK. KosiborodM. LeonJ. LyonsS.K. PerryM.L. PrahaladP. PratleyR.E. SeleyJ.J. StantonR.C. GabbayR.A. 10. Cardiovascular disease and risk management: Standards of care in diabetes—2023.Diabetes Care2023461Suppl. 1S158S19010.2337/dc23‑S010
    [Google Scholar]
  52. HagemanS. PennellsL. OjedaF. KaptogeS. KuulasmaaK. de VriesT. XuZ. KeeF. ChungR. WoodA. McEvoyJ.W. VeronesiG. BoltonT. AchenbachS. AleksandrovaK. AmianoP. SebastianD-S. AmouyelP. AnderssonJ. BakkerS.J.L. Da Providencia CostaR.B. BeulensJ.W.J. BlahaM. BobakM. BoerJ.M.A. BonetC. BonnetF. Boutron-RuaultM-C. BraatenT. BrennerH. BrunnerF. BrunnerE.J. BrunströmM. BuringJ. ButterworthA.S. CapkovaN. CesanaG. ChrysohoouC. Colorado-YoharS. CookN.R. CooperC. DahmC.C. DavidsonK. DennisonE. Di CastelnuovoA. DonfrancescoC. DörrM. DoryńskaA. EliassonM. EngströmG. FerrariP. FerrarioM. FordI. FuM. GansevoortR.T. GiampaoliS. GillumR.F. Gómez de la CámaraA. GrassiG. HanssonP-O. HuculeciR. HveemK. IacovielloL. IkramM.K. JørgensenT. JosephB. JousilahtiP. Wouter JukemaJ. KaaksR. KatzkeV. KavousiM. KiechlS. KlotscheJ. KönigW. KronmalR.A. KubinovaR. Kucharska-NewtonA. LällK. LehmannN. LeistnerD. LinnebergA. PablosD.L. LorenzT. LuW. LuksieneD. LyngbakkenM. MagnussenC. MalyutinaS. IbañezA.M. MasalaG. MathiesenE.B. MatsushitaK. MeadeT.W. MelanderO. MeyerH.E. MoonsK.G.M. Moreno-IribasC. MullerD. MünzelT. NikitinY. NordestgaardB.G. OmlandT. OnlandC. OvervadK. PackardC. PająkA. PalmieriL. PanagiotakosD. PanicoS. Perez-CornagoA. PetersA. PietiläA. PikhartH. PsatyB.M. Quarti-TrevanoF. GarciaJ.R.Q. RiboliE. RidkerP.M. RodriguezB. Rodriguez-BarrancoM. RosengrenA. RousselR. SacerdoteC. SansS. SattarN. SchibornC. SchmidtB. SchöttkerB. SchulzeM. SchwartzJ.E. SelmerR.M. SheaS. ShipleyM.J. SieriS. SöderbergS. SofatR. TamosiunasA. ThorandB. TillmannT. TjønnelandA. TongT.Y.N. TrichopoulouA. TuminoR. Tunstall-PedoeH. Tybjaerg-HansenA. TzoulakiJ. van der HeijdenA. van der SchouwY.T. VerschurenW.M.M. VölzkeH. WaldeyerC. WarehamN.J. WeiderpassE. WeidingerF. WildP. WilleitJ. WilleitP. WilsgaardT. WoodwardM. ZellerT. ZhangD. ZhouB. DendaleP. FerenceB.A. HalleM. TimmisA. VardasP. DaneshJ. GrahamI. SalomaaV. VisserenF. De BacquerD. BlankenbergS. DorresteijnJ. Di AngelantonioE. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe.Eur. Heart J.202142252439245410.1093/eurheartj/ehab309
    [Google Scholar]
  53. GreggE.W. JakicicJ.M. BlackburnG. BloomquistP. BrayG.A. ClarkJ.M. CodayM. CurtisJ.M. EganC. EvansM. ForeytJ. FosterG. HazudaH.P. HillJ.O. HortonE.S. HubbardV.S. JefferyR.W. JohnsonK.C. KitabchiA.E. KnowlerW.C. KriskaA. LangW. LewisC.E. MontezM.G. NathanD.M. NeibergR.H. PatricioJ. PetersA. Pi-SunyerX. PownallH. RedmonB. RegensteinerJ. RejeskiJ. RibislP.M. SaffordM. StewartK. TrenceD. WaddenT.A. WingR.R. YanovskiS.Z. Look AHEAD Research Group Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial.Lancet Diabetes Endocrinol.201641191392110.1016/S2213‑8587(16)30162‑027595918
    [Google Scholar]
  54. JonesP. KafonekS. LauroraI. HunninghakeD. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study).Am. J. Cardiol.199881558258710.1016/S0002‑9149(97)00965‑X9514454
    [Google Scholar]
  55. SattarN. PreissD. MurrayH.M. WelshP. BuckleyB.M. de CraenA.J.M. SeshasaiS.R.K. McMurrayJ.J. FreemanD.J. JukemaJ.W. MacfarlaneP.W. PackardC.J. StottD.J. WestendorpR.G. ShepherdJ. DavisB.R. PresselS.L. MarchioliR. MarfisiR.M. MaggioniA.P. TavazziL. TognoniG. KjekshusJ. PedersenT.R. CookT.J. GottoA.M. ClearfieldM.B. DownsJ.R. NakamuraH. OhashiY. MizunoK. RayK.K. FordI. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials.Lancet2010375971673574210.1016/S0140‑6736(09)61965‑620167359
    [Google Scholar]
  56. RestonJ.T. BueltA. DonahueM.P. NeubauerB. VagichevE. McSheaK. Interventions to improve statin tolerance and adherence in patients at risk for cardiovascular disease: A systematic review for the 2020 US department of veterans affairs and us department of defense guidelines for management of dyslipidemia.Ann. Intern. Med.20201731080681210.7326/M20‑468032956601
    [Google Scholar]
  57. CrandallJ.P. MatherK. RajpathakS.N. GoldbergR.B. WatsonK. FooS. RatnerR. Barrett-ConnorE. TemprosaM. Statin use and risk of developing diabetes: results from the Diabetes Prevention Program.BMJ Open Diabetes Res. Care201751e00043810.1136/bmjdrc‑2017‑00043829081977
    [Google Scholar]
  58. MoonJ. Cohen SedghR. JackeviciusC.A. Examining the nocebo effect of statins through statin adverse events reported in the food and drug administration adverse event reporting system.Circ. Cardiovasc. Qual. Outcomes2021141e00748010.1161/CIRCOUTCOMES.120.00748033161769
    [Google Scholar]
  59. CannonC.P. BlazingM.A. GiuglianoR.P. McCaggA. WhiteJ.A. TherouxP. DariusH. LewisB.S. OphuisT.O. JukemaJ.W. De FerrariG.M. RuzylloW. De LuccaP. ImK. BohulaE.A. ReistC. WiviottS.D. TershakovecA.M. MuslinerT.A. BraunwaldE. CaliffR.M. IMPROVE-IT Investigators Ezetimibe added to statin therapy after acute coronary syndromes.N. Engl. J. Med.2015372252387239710.1056/NEJMoa141048926039521
    [Google Scholar]
  60. GiuglianoR.P. CannonC.P. BlazingM.A. NicolauJ.C. CorbalánR. ŠpinarJ. ParkJ.G. WhiteJ.A. BohulaE.A. BraunwaldE. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: Results from IMPROVE-IT.Circulation2018137151571158210.1161/CIRCULATIONAHA.117.03095029263150
    [Google Scholar]
  61. DurairajA. SabatesA. NievesJ. MoraesB. BaumS. Proprotein convertase subtilisin/ kexin type 9 (PCSK9) and its inhibitors: a review of physiology, biology, and clinical data.Curr. Treat. Options Cardiovasc. Med.20171985810.1007/s11936‑017‑0556‑028639183
    [Google Scholar]
  62. SchwartzG.G. StegP.G. SzarekM. BhattD.L. BittnerV.A. DiazR. EdelbergJ.M. GoodmanS.G. HanotinC. HarringtonR.A. JukemaJ.W. LecorpsG. MahaffeyK.W. MoryusefA. PordyR. QuinteroK. RoeM.T. SasielaW.J. TambyJ.F. TricociP. WhiteH.D. ZeiherA.M. ODYSSEY OUTCOMES Committees and Investigators Alirocumab and cardiovascular outcomes after acute coronary syndrome.N. Engl. J. Med.2018379222097210710.1056/NEJMoa180117430403574
    [Google Scholar]
  63. SabatineM.S. GiuglianoR.P. KeechA.C. HonarpourN. WiviottS.D. MurphyS.A. KuderJ.F. WangH. LiuT. WassermanS.M. SeverP.S. PedersenT.R. FOURIER Steering Committee and Investigators Evolocumab and clinical outcomes in patients with cardiovascular disease.N. Engl. J. Med.2017376181713172210.1056/NEJMoa161566428304224
    [Google Scholar]
  64. BruckertE. LabreucheJ. DeplanqueD. TouboulP.J. AmarencoP. Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: a systematic review and meta-analysis.J. Cardiovasc. Pharmacol.201157226727210.1097/FJC.0b013e318202709f21052016
    [Google Scholar]
  65. WardenB.A. DuellP.B. Inclisiran: a novel agent for lowering apolipoprotein B–containing lipoproteins.J. Cardiovasc. Pharmacol.2021782e157e17410.1097/FJC.000000000000105333990512
    [Google Scholar]
  66. BhattD.L. StegP.G. MillerM. BrintonE.A. JacobsonT.A. KetchumS.B. DoyleR.T.Jr JulianoR.A. JiaoL. GranowitzC. TardifJ.C. BallantyneC.M. REDUCE-IT Investigators Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.N. Engl. J. Med.20193801112210.1056/NEJMoa181279230415628
    [Google Scholar]
  67. SarwarN. SandhuM.S. RickettsS.L. ButterworthA.S. Di AngelantonioE. BoekholdtS.M. OuwehandW. WatkinsH. SamaniN.J. SaleheenD. LawlorD. ReillyM.P. HingoraniA.D. TalmudP.J. DaneshJ. Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies.Lancet201037597261634163910.1016/S0140‑6736(10)60545‑420452521
    [Google Scholar]
  68. YamazakiY. AbeK. TomaT. NishikawaM. OzawaH. OkudaA. ArakiT. OdaS. InoueK. ShibuyaK. StaelsB. FruchartJ.C. Design and synthesis of highly potent and selective human peroxisome proliferator-activated receptor α agonists.Bioorg. Med. Chem. Lett.200717164689469310.1016/j.bmcl.2007.05.06617553678
    [Google Scholar]
  69. LawranceA. LeiterM.D. FrederickJ. Inclisiran in individuals with diabetes or obesity: Post hoc pooled analyses of the ORION-9, ORION-10 and ORION-11 Phase 3 randomized trials.Diabetes Obes. Metab.20242683223323710.1111/dom.15650
    [Google Scholar]
  70. PinkoskyS.L. NewtonR.S. DayE.A. FordR.J. LhotakS. AustinR.C. BirchC.M. SmithB.K. FilippovS. GrootP.H.E. SteinbergG.R. LalwaniN.D. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis.Nat. Commun.2016711345710.1038/ncomms1345727892461
    [Google Scholar]
  71. VoightB.F. PelosoG.M. Orho-MelanderM. Frikke-SchmidtR. BarbalicM. JensenM.K. HindyG. HólmH. DingE.L. JohnsonT. SchunkertH. SamaniN.J. ClarkeR. HopewellJ.C. ThompsonJ.F. LiM. ThorleifssonG. Newton-ChehC. MusunuruK. PirruccelloJ.P. SaleheenD. ChenL. StewartA.F.R. SchillertA. ThorsteinsdottirU. ThorgeirssonG. AnandS. EngertJ.C. MorganT. SpertusJ. StollM. BergerK. MartinelliN. GirelliD. McKeownP.P. PattersonC.C. EpsteinS.E. DevaneyJ. BurnettM.S. MooserV. RipattiS. SurakkaI. NieminenM.S. SinisaloJ. LokkiM.L. PerolaM. HavulinnaA. de FaireU. GiganteB. IngelssonE. ZellerT. WildP. de BakkerP.I.W. KlungelO.H. Maitland-van der ZeeA.H. PetersB.J.M. de BoerA. GrobbeeD.E. KamphuisenP.W. DeneerV.H.M. ElbersC.C. Onland-MoretN.C. HofkerM.H. WijmengaC. VerschurenW.M.M. BoerJ.M.A. van der SchouwY.T. RasheedA. FrossardP. DemissieS. WillerC. DoR. OrdovasJ.M. AbecasisG.R. BoehnkeM. MohlkeK.L. DalyM.J. GuiducciC. BurttN.P. SurtiA. GonzalezE. PurcellS. GabrielS. MarrugatJ. PedenJ. ErdmannJ. DiemertP. WillenborgC. KönigI.R. FischerM. HengstenbergC. ZieglerA. BuysschaertI. LambrechtsD. Van de WerfF. FoxK.A. El MokhtariN.E. RubinD. SchrezenmeirJ. SchreiberS. SchäferA. DaneshJ. BlankenbergS. RobertsR. McPhersonR. WatkinsH. HallA.S. OvervadK. RimmE. BoerwinkleE. Tybjaerg-HansenA. CupplesL.A. ReillyM.P. MelanderO. MannucciP.M. ArdissinoD. SiscovickD. ElosuaR. StefanssonK. O’DonnellC.J. SalomaaV. RaderD.J. PeltonenL. SchwartzS.M. AltshulerD. KathiresanS. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study.Lancet2012380984157258010.1016/S0140‑6736(12)60312‑222607825
    [Google Scholar]
  72. KeeneD. PriceC. Shun-ShinM.J. FrancisD.P. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: Meta-analysis of randomised controlled trials including 117 411 patients.BMJ2014349jul18 2g437910.1136/bmj.g437925038074
    [Google Scholar]
  73. MadsenC.M. VarboA. NordestgaardB.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies.Eur. Heart J.201738322478248610.1093/eurheartj/ehx16328419274
    [Google Scholar]
  74. BoweB. XieY. XianH. BalasubramanianS. ZayedM.A. Al-AlyZ. High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. veterans.Clin. J. Am. Soc. Nephrol.201611101784179310.2215/CJN.0073011627515591
    [Google Scholar]
  75. ParkY. HarrisW.S. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance.J. Lipid Res.200344345546310.1194/jlr.M200282‑JLR20012562865
    [Google Scholar]
  76. HolubB.J. Docosahexaenoic acid (DHA) and cardiovascular disease risk factors.Prostaglandins Leukot. Essent. Fatty Acids2009812-319920410.1016/j.plefa.2009.05.01619545988
    [Google Scholar]
  77. MyhreP.L. KalstadA.A. TveitS.H. LaakeK. SchmidtE.B. SmithP. NilsenD.W.T. TveitA. SolheimS. ArnesenH. SeljeflotI. Changes in eicosapentaenoic acid and docosahexaenoic acid and risk of cardiovascular events and atrial fibrillation: A secondary analysis of the OMEMI trial.J. Intern. Med.2022291563764710.1111/joim.1344234982486
    [Google Scholar]
  78. DeFronzoR.A. International textbook of diabetes mellitus.Wiley-Blackwell201510.1002/9781118387658
    [Google Scholar]
  79. BahiruE. HsiaoR. PhilipsoD. Mechanisms and treatment of dyslipidemia in diabetes.Curr. Cardiol. Rep.20212342610.1007/s11886‑021‑01455‑w
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673336501241001093417
Loading
/content/journals/cmc/10.2174/0109298673336501241001093417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test