Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

This study discusses the chemical perspectives of the [18F]F-PSMA probe, a pivotal tool in prostate cancer imaging. [18F]Fluorine, a positron emitter with a half-life of 109.8 minutes, is produced in a cyclotron by bombarding [18O]-enriched targets with protons. The chemistry of this isotope parallels that of stable fluorine, facilitating its use in positron emission tomography (PET). The synthesis of [18F]F-PSMA involves a nucleophilic substitution (SN1) reaction, where [18F]fluoride ion replaces a leaving group in the precursor molecule. Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer cells, making it a crucial target for imaging. PSMA-targeted radioligands, such as [68Ga]Ga-PSMA-11, [18F]F-DCFPyL, and [99mTc]Tc-PSMA-I&S, bind to the extracellular domain of PSMA, enabling precise imaging. The design of PSMA radiotracers incorporates specific targeting moieties, functional groups for radiolabeling, and linkers to maintain binding affinity and pharmacokinetics. Common linkers include aliphatic, aromatic, peptide-based, and polyethylene glycol structures, while functional groups like tosylate and PyTFP are used for efficient [18F]fluorination. This review aims to elucidate the main linker and reactions in order to optimize these components to improve imaging sensitivity and specificity in detecting prostate cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333642250102080759
2025-01-17
2025-10-25
Loading full text...

Full text loading...

References

  1. WangY. LinQ. ShiH. ChengD. Fluorine-18: Radiochemistry and target-specific PET molecular probes design.Front Chem.20221088451710.3389/fchem.2022.88451735844642
    [Google Scholar]
  2. ChavesJ.C. VargasM.J. SánchezR.S. Measurement of activation products generated in the [18F] FDG production by a 9.6MeV cyclotron.Radiat. Phys. Chem.2016126323610.1016/j.radphyschem.2016.05.006
    [Google Scholar]
  3. AlauddinM.M. Positron emission tomography (PET) imaging with (18)F-based radiotracers.Am. J. Nucl. Med. Mol. Imaging201221557623133802
    [Google Scholar]
  4. RivasM. DebnathS. GiriS. NoffelY.M. SunX. GevorgyanV. One-pot formal carboradiofluorination of alkenes: A toolkit for positron emission tomography imaging probe development.J. Am. Chem. Soc.202314535192651927310.1021/jacs.3c0454837625118
    [Google Scholar]
  5. ColeE. StewartM. LittichR. HoareauR. ScottP. Radiosyntheses using fluorine-18: The art and science of late stage fluorination.Curr. Top. Med. Chem.201414787590010.2174/156802661466614020220503524484425
    [Google Scholar]
  6. ZhangX. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers.Chem2021761451148610.1016/j.chempr.2020.11.022
    [Google Scholar]
  7. WernerR.A. DerlinT. LapaC. SheikbahaeiS. HiguchiT. GieselF.L. BehrS. DrzezgaA. KimuraH. BuckA.K. BengelF.M. PomperM.G. GorinM.A. RoweS.P. 18 F-Labeled, PSMA-targeted radiotracers: Leveraging the advantages of radiofluorination for prostate cancer molecular imaging.Theranostics202010111610.7150/thno.3789431903102
    [Google Scholar]
  8. PironS. VerhoevenJ. VanhoveC. De VosF. Recent advancements in 18F-labeled PSMA targeting PET radiopharmaceuticals.Nucl. Med. Biol.2022106-107295110.1016/j.nucmedbio.2021.12.00534998217
    [Google Scholar]
  9. SamplaskiM.K. HestonW. ElsonP. Magi-GalluzziC. HanselD.E. Folate hydrolase (prostate-specific membrane antigen) 1 expression in bladder cancer subtypes and associated tumor neovasculature.Mod. Pathol.201124111521152910.1038/modpathol.2011.11221725290
    [Google Scholar]
  10. KaittanisC. AndreouC. HieronymusH. MaoN. FossC.A. EiberM. WeirichG. PanchalP. GopalanA. ZuritaJ. AchilefuS. ChiosisG. PonomarevV. SchwaigerM. CarverB.S. PomperM.G. GrimmJ. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors.J. Exp. Med.2018215115917510.1084/jem.2017105229141866
    [Google Scholar]
  11. HawkeyN. M. SartorA. O. MorrisM. J. ArmstrongA. J. Prostate-specific membrane antigen-targeted theranostics: Past, present, and future approaches.Clin. Adv. Hematol. Oncol.2022204227238
    [Google Scholar]
  12. SzponarP. PetraszP. Brzeźniakiewicz-JanusK. DrewaT. ZorgaP. AdamowiczJ. Precision strikes: PSMA- targeted radionuclide therapy in prostate cancer – A narrative review.Front. Oncol.202313123911810.3389/fonc.2023.123911838033494
    [Google Scholar]
  13. SheehanB. GuoC. NeebA. PaschalisA. SandhuS. de BonoJ.S. Prostate-specific membrane antigen biology in lethal prostate cancer and its therapeutic implications.Eur. Urol. Focus2022851157116810.1016/j.euf.2021.06.00634167925
    [Google Scholar]
  14. DeshayesE. FersingC. ThibaultC. RoumiguieM. PourquierP. HouédéN. Innovation in radionuclide therapy for the treatment of prostate cancers: Radiochemical perspective and recent therapeutic practices.Cancers20231512313310.3390/cancers1512313337370743
    [Google Scholar]
  15. Calderon TobarM.N. ÖnnerH. YavuzC. 68Ga-PSMA uptake in solar elastosis.Clin. Nucl. Med.202449110610710.1097/RLU.000000000000496738015624
    [Google Scholar]
  16. MehrensD. KramerK.K.M. UnterrainerL.M. BeyerL. BartensteinP. FroelichM.F. TollensF. RickeJ. RübenthalerJ. Schmidt-HegemannN.S. HerlemannA. UnterrainerM. KunzW.G. Cost-effectiveness analysis of 177Lu-PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer.J. Natl. Compr. Canc. Netw.20232114350.e210.6004/jnccn.2022.707036634610
    [Google Scholar]
  17. SathekgeM. BruchertseiferF. VorsterM. LawalI.O. MokoalaK. ReedJ. MaseremuleL. NdlovuH. HlongwaK. MaesA. MorgensternA. Van de WieleC. 225Ac-PSMA-617 radioligand therapy of de novo metastatic hormone-sensitive prostate carcinoma (mHSPC): Preliminary clinical findings.Eur. J. Nucl. Med. Mol. Imaging20235072210221810.1007/s00259‑023‑06165‑936864360
    [Google Scholar]
  18. RaoZ. HeZ. HeY. GuoZ. KongD. LiuJ. MicroRNA-512-3p is upregulated, and promotes proliferation and cell cycle progression, in prostate cancer cells.Mol. Med. Rep.201710.3892/mmr.2017.784429115469
    [Google Scholar]
  19. WangH. DingL. XuF. HeL. YeL. HuangL. ZhangL. LuoB. Construction of novel amphiphilic chitosan-polylactide graft copolymer nanodroplets for contrast enhanced ultrasound tumor imaging.J. Biomater. Appl.202136461362510.1177/0885328221101176633899561
    [Google Scholar]
  20. DebnathS. ZhouN. McLaughlinM. RiceS. PillaiA.K. HaoG. SunX. PSMA-targeting imaging and theranostic agents-current status and future perspective.Int. J. Mol. Sci.2022233115810.3390/ijms2303115835163083
    [Google Scholar]
  21. GuoB. LiZ. TuP. TangH. TuY. Molecular imaging and non-molecular imaging of atherosclerotic plaque thrombosis.Front. Cardiovasc. Med.2021869291510.3389/fcvm.2021.69291534291095
    [Google Scholar]
  22. NaikM. KhanS.R. LewingtonV. ChallapalliA. EcclesA. BarwickT.D. Imaging and therapy in prostate cancer using prostate specific membrane antigen radioligands.Br. J. Radiol.20249711601391140410.1093/bjr/tqae09238733571
    [Google Scholar]
  23. YanY. ZhuoH. LiT. ZhangJ. TanM. ChenY. Advancements in PSMA ligand radiolabeling for diagnosis and treatment of prostate cancer: A systematic review.Front. Oncol.202414137360610.3389/fonc.2024.137360638577331
    [Google Scholar]
  24. WangR. JinW. LuoY. HongH. ZhaoR. LiL. YanL. QiaoJ. PloesslK. ZhuL. KungH.F. Novel [68 Ga/ 177 Lu] Ga/Lu-AZ-093 as PSMA-targeting agent for diagnosis and radiotherapy.Mol. Pharm.20242173256326710.1021/acs.molpharmaceut.4c0002038856975
    [Google Scholar]
  25. LundmarkF. AbouzayedA. RinneS.S. TimofeevV. SipkinaN. NaanM. KirichenkoA. VasyutinaM. RyzhkovaD. TolmachevV. RosenströmU. OrlovaA. Preclinical characterisation of PSMA/GRPR-targeting heterodimer [68Ga]Ga-BQ7812 for PET diagnostic imaging of prostate cancer: A step towards clinical translation.Cancers202315244210.3390/cancers1502044236672390
    [Google Scholar]
  26. VerhoevenM. RuigrokE.A.M. van LeendersG.J.L.H. van den BrinkL. BalciogluH.E. van WeerdenW.M. DalmS.U. GRPR versus PSMA: Expression profiles during prostate cancer progression demonstrate the added value of GRPR-targeting theranostic approaches.Front. Oncol.202313119943210.3389/fonc.2023.119943237719014
    [Google Scholar]
  27. BrauneA. OehmeL. FreudenbergR. HofheinzF. van den HoffJ. KotzerkeJ. HoberückS. Comparison of image quality and spatial resolution between 18F, 68Ga, and 64Cu phantom measurements using a digital Biograph Vision PET/CT.EJNMMI Phys.2022915810.1186/s40658‑022‑00487‑736064989
    [Google Scholar]
  28. TateishiU. Prostate-specific membrane antigen (PSMA)–ligand positron emission tomography and radioligand therapy (RLT) of prostate cancer.Jpn. J. Clin. Oncol.202050434935610.1093/jjco/hyaa00432147685
    [Google Scholar]
  29. PetrovS.A. ZykN.Y. MachulkinA.E. BeloglazkinaE.K. MajougaA.G. PSMA-targeted low-molecular double conjugates for diagnostics and therapy.Eur. J. Med. Chem.202122511375210.1016/j.ejmech.2021.11375234464875
    [Google Scholar]
  30. LundmarkF. OlandersG. RinneS.S. AbouzayedA. OrlovaA. RosenströmU. Design, synthesis, and evaluation of linker-optimised PSMA-targeting radioligands.Pharmaceutics2022145109810.3390/pharmaceutics1405109835631684
    [Google Scholar]
  31. BenešováM. Bauder-WüstU. SchäferM. KlikaK.D. MierW. HaberkornU. KopkaK. EderM. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors.J. Med. Chem.20165951761177510.1021/acs.jmedchem.5b0121026878194
    [Google Scholar]
  32. MurceE. de BloisE. van den BergS. de JongM. SeimbilleY. Synthesis and radiolabelling of PSMA-targeted derivatives containing GYK/MVK cleavable linkers.R. Soc. Open Sci.202310322095010.1098/rsos.22095036908985
    [Google Scholar]
  33. UspenskayaA.A. NimenkoE.A. MachulkinA.E. BeloglazkinaE.K. MajougaA.G. The importance of linkers in the structure of PSMA ligands.Curr. Med. Chem.202229226829810.2174/092986732866621080409220034348608
    [Google Scholar]
  34. FaillaM. FlorestaG. AbbateV. Peptide-based positron emission tomography probes: Current strategies for synthesis and radiolabelling.RSC Med. Chem.202314459262310.1039/D2MD00397J37122545
    [Google Scholar]
  35. ArchibaldS.J. AllottL. The aluminium-[18F]fluoride revolution: Simple radiochemistry with a big impact for radiolabelled biomolecules.EJNMMI Radiopharm. Chem.2021613010.1186/s41181‑021‑00141‑034436693
    [Google Scholar]
  36. JacobsonO. KiesewetterD.O. ChenX. Fluorine-18 radiochemistry, labeling strategies and synthetic routes.Bioconjug. Chem.201526111810.1021/bc500475e25473848
    [Google Scholar]
  37. ChenY. FossC.A. ByunY. NimmagaddaS. PullambhatlaM. FoxJ.J. CastanaresM. LupoldS.E. BabichJ.W. MeaseR.C. PomperM.G. Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer.J. Med. Chem.200851247933794310.1021/jm801055h19053825
    [Google Scholar]
  38. DavisR.A. FettingerJ.C. N, N, N -Trimethyl-5-[(2,3,5,6-tetrafluorophenoxy)carbonyl]pyridin-2-aminium trifluoromethanesulfonate a precursor for the synthesis of 2,3,5,6-tetrafluorophenyl 6-[18 F]-fluoronicotinate.Acta Crystallogr. C Struct. Chem.201874560460710.1107/S205322961800543029726470
    [Google Scholar]
  39. IannoneM.N. StucchiS. TurollaE.A. BerettaC. CiceriS. ChinelloC. PaganiL. ToddeS. FerraboschiP. Synthesis and automated fluorine-18 radiolabeling of new PSMA-617 derivatives with a CuAAC radiosynthetic approach.J. Labelled Comp. Radiopharm.2022653486210.1002/jlcr.395934964165
    [Google Scholar]
  40. DerksY.H.W. RijpkemaM. Amatdjais-GroenenH.I.V. LoeffC.C. de RoodeK.E. KipA. LavermanP. LütjeS. HeskampS. LöwikD.W.P.M. Strain-promoted azide–alkyne cycloaddition-based PSMA-targeting ligands for multimodal intraoperative tumor detection of prostate cancer.Bioconjug. Chem.202233119420510.1021/acs.bioconjchem.1c0053734957825
    [Google Scholar]
  41. AzagarsamyM.A. AnsethK.S. Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell culture scaffolds.ACS Macro Lett.2013215910.1021/mz300585q23336091
    [Google Scholar]
  42. MushtaqS. YunS.J. JeonJ. Recent advances in bioorthogonal click chemistry for efficient synthesis of radiotracers and radiopharmaceuticals.Molecules20192419356710.3390/molecules2419356731581645
    [Google Scholar]
  43. RichardM. HinnenF. KuhnastB. Novel [18F]-labeled thiol for the labeling of Dha- or maleimide-containing biomolecules.EJNMMI Radiopharm. Chem.202271710.1186/s41181‑022‑00160‑535384570
    [Google Scholar]
  44. GendronT. SanderK. CybulskaK. BenhamouL. SinP.K.B. KhanA. WoodM. PorterM.J. ÅrstadE. Ring-closing synthesis of dibenzothiophene sulfonium salts and their use as leaving groups for aromatic 18 F-fluorination.J. Am. Chem. Soc.201814035111251113210.1021/jacs.8b0673030132661
    [Google Scholar]
  45. KwonH. LimH. HaH. ChoiD. SonS-H. NamH. MinnI. ByunY. Structure-activity relationship studies of prostate-specific membrane antigen (PSMA) inhibitors derived from α-amino acid with (S)- or (R)-configuration at P1′ region.Bioorg Chem202010410430410.1016/j.bioorg.2020.104304
    [Google Scholar]
  46. PtacekJ. ZhangD. QiuL. KruspeS. MotlovaL. KolenkoP. NovakovaZ. ShubhamS. HavlinovaB. BaranovaP. ChenS.J. ZouX. GiangrandeP. BarinkaC. Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer.Nucleic Acids Res.20204819111301114510.1093/nar/gkaa49432525981
    [Google Scholar]
  47. ZhangJ. RakhimbekovaA. DuanX. YinQ. FossC.A. FanY. XuY. LiX. CaiX. KutilZ. WangP. YangZ. ZhangN. PomperM.G. WangY. BařinkaC. YangX. A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging.Nat. Commun.2021121546010.1038/s41467‑021‑25746‑634526506
    [Google Scholar]
  48. HolikH.A. IbrahimF.M. ElaineA.A. PutraB.D. AchmadA. KartamihardjaA.H.S. The chemical scaffold of theranostic radiopharmaceuticals: Radionuclide, bifunctional chelator, and pharmacokinetics modifying linker.Molecules20222710306210.3390/molecules2710306235630536
    [Google Scholar]
  49. LiM. WangS. KongQ. ChengX. YanH. XingY. LanX. JiangD. Advances in macrocyclic chelators for positron emission tomography imaging.VIEW2023452023004210.1002/VIW.20230042
    [Google Scholar]
  50. BleiM.K. WaurickL. ReissigF. KopkaK. StumpfT. DrobotB. KretzschmarJ. MamatC. Equilibrium thermodynamics of macropa complexes with selected metal isotopes of radiopharmaceutical interest.Inorg. Chem.20236250206992070910.1021/acs.inorgchem.3c0198337702665
    [Google Scholar]
  51. OkoyeN.C. BaumeisterJ.E. Najafi KhosroshahiF. HennkensH.M. JurissonS.S. Chelators and metal complex stability for radiopharmaceutical applications.Radiochim. Acta20191079-111087112010.1515/ract‑2018‑3090
    [Google Scholar]
  52. PetrovS.A. YusubovM.S. BeloglazkinaE.K. NenajdenkoV.G. Synthesis of radioiodinated compounds. Classical approaches and achievements of recent years.Int. J. Mol. Sci.202223221378910.3390/ijms23221378936430267
    [Google Scholar]
  53. CavinaL. van der BornD. KlarenP.H.M. FeitersM.C. BoermanO.C. RutjesF.P.J.T. Design of radioiodinated pharmaceuticals: Structural features affecting metabolic stability towards in vivo deiodination.Eur. J. Org. Chem.20172017243387341410.1002/ejoc.20160163828736501
    [Google Scholar]
  54. BowdenG.D. ScottP.J.H. BorosE. Radiochemistry: A hot field with opportunities for cool chemistry.ACS Cent. Sci.20239122183219510.1021/acscentsci.3c0105038161375
    [Google Scholar]
  55. ChoiJ.Y. LeeB.C. Click reaction: An applicable radiolabeling method for molecular imaging.Nucl. Med. Mol. Imaging201549425826710.1007/s13139‑015‑0377‑626550044
    [Google Scholar]
  56. LuuT. GristwoodK. KnightJ.C. JörgM. Click chemistry: Reaction rates and their suitability for biomedical applications.Bioconjug. Chem.202435671573110.1021/acs.bioconjchem.4c0008438775705
    [Google Scholar]
  57. BauerD. CornejoM.A. HoangT.T. LewisJ.S. ZeglisB.M. Click chemistry and radiochemistry: An update.Bioconjug. Chem.202334111925195010.1021/acs.bioconjchem.3c0028637737084
    [Google Scholar]
  58. StrazielleN. Ghersi-EgeaJ.F. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules.Mol. Pharm.20131051473149110.1021/mp300518e23298398
    [Google Scholar]
  59. NauR. SörgelF. EiffertH. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections.Clin. Microbiol. Rev.201023485888310.1128/CMR.00007‑1020930076
    [Google Scholar]
  60. SarjiS.A. Physiological uptake in FDG PET simulating disease.Biomed. Imaging Interv. J.200624e5910.2349/biij.2.4.e59
    [Google Scholar]
  61. LeverS.Z. FanK.H. LeverJ.R. Tactics for preclinical validation of receptor-binding radiotracers.Nucl. Med. Biol.20174443010.1016/j.nucmedbio.2016.08.01527755986
    [Google Scholar]
  62. KianiY.S. JabeenI. Lipophilic metabolic efficiency (LipMetE) and drug efficiency indices to explore the metabolic properties of the substrates of selected cytochrome P450 Sci World Jisoforms.ACS Omega20205117918810.1021/acsomega.9b0234431956764
    [Google Scholar]
  63. TsopelasC. Radiotracers used for the scintigraphic detection of infection and inflammation.Sci World J20152015167671910.1155/2015/67671925741532
    [Google Scholar]
  64. KucharM. MamatC. Methods to increase the metabolic stability of 18F-radiotracers.Molecules2015209161861622010.3390/molecules20091618626404227
    [Google Scholar]
  65. FanJ. de LannoyI.A.M. Pharmacokinetics.Biochem. Pharmacol.20148719312010.1016/j.bcp.2013.09.00724055064
    [Google Scholar]
  66. HansenS.B. BenderD. Advancement in production of radiotracers.Semin. Nucl. Med.202252326627510.1053/j.semnuclmed.2021.10.00334836618
    [Google Scholar]
  67. MorrisZ.S. WangA.Z. KnoxS.J. The radiobiology of radiopharmaceuticals.Semin. Radiat. Oncol.2021311202710.1016/j.semradonc.2020.07.00233246632
    [Google Scholar]
  68. StringerR.E. Radiochemical methods | Pharmaceutical Applications.Encyclopedia of Analytical ScienceElsevier2005869310.1016/B0‑12‑369397‑7/00527‑6
    [Google Scholar]
  69. BoellaardR. Delgado-BoltonR. OyenW.J.G. GiammarileF. TatschK. EschnerW. VerzijlbergenF.J. BarringtonS.F. PikeL.C. WeberW.A. StroobantsS. DelbekeD. DonohoeK.J. HolbrookS. GrahamM.M. TestaneraG. HoekstraO.S. ZijlstraJ. VisserE. HoekstraC.J. PruimJ. WillemsenA. ArendsB. KotzerkeJ. BockischA. BeyerT. ChitiA. KrauseB.J. European Association of Nuclear Medicine (EANM) FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0.Eur. J. Nucl. Med. Mol. Imaging201542232835410.1007/s00259‑014‑2961‑x25452219
    [Google Scholar]
  70. ScottP. J. HockleyB. G. KungH. F. ManchandaR. ZhangW. KilbournM. R. Studies into radiolytic decomposition of fluorine-18 labeled radiopharmaceuticals for positron emission tomography.Appl. Radiat. Isot.2009671889410.1016/j.apradiso.2008.08.015
    [Google Scholar]
  71. JacobsonM. S. DankwartH. R. MahoneyD. W. Radiolysis of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and the role of ethanol and radioactive concentration.Appl. Radiat. Isot.200967699099510.1016/j.apradiso.2009.01.005
    [Google Scholar]
  72. JiangN. Damage by induced electric field versus radiolysis.Microsc. Microanal.201925S21674167510.1017/S1431927619009103
    [Google Scholar]
  73. DomnanichK.A. SeverinG.W. A model for radiolysis in a flowing-water target during high-intensity proton irradiation.ACS Omega2022729258602587310.1021/acsomega.2c0354035910120
    [Google Scholar]
  74. GeisslerP.R. WillardJ.E. Solute-solvent interactions in the radiolysis of alkyl halide-pentane solutionsJ. Am. Chem. Soc.196284244627463310.1021/ja00883a003
    [Google Scholar]
  75. WeissJ. CollinsC.H. Radiolysis of aromatic compounds: Toluene.Radiat. Res.196628111210.2307/35719235931749
    [Google Scholar]
  76. FeldmanV.I. Astrochemically relevant radicals and radical–molecule complexes: A new insight from matrix isolation.Int. J. Mol. Sci.202324191451010.3390/ijms24191451037833965
    [Google Scholar]
  77. WileyR.H. PattersonR.L.S. ChesnutG.F. GrünhutE. The gamma-irradiation-induced decomposition of amides in carbon tetrachloride.Radiat. Res.196422225326310.2307/357165714168889
    [Google Scholar]
  78. YuS. HuJ. WangJ. Gamma radiation-induced degradation of p-nitrophenol (PNP) in the presence of hydrogen peroxide (H2O2) in aqueous solution.J. Hazard. Mater.20101771-31061106710.1016/j.jhazmat.2010.01.02820097472
    [Google Scholar]
  79. ErshovB.G. Kinetics, mechanism and intermediates of some radiation-induced reactions in aqueous solutions.Russ. Chem. Rev.200473110111310.1070/RC2004v073n01ABEH000865
    [Google Scholar]
  80. OwenT.C. EllisD.R. Radiation-induced mixed-disulfide formation from cystamine and aliphatic disulfides in aqueous solution.Radiat. Res.1973531243210.2307/35734444685480
    [Google Scholar]
  81. RaleighJ.A. WhitehouseR. KremersW. Effect of oxygen and nitroaromatic cell radiosensitizers on radiation-induced phosphate release from 3′ and 5′-nucleotides: A model for nucleic acids.Radiat. Res.197459245346510.2307/35739944418521
    [Google Scholar]
  82. KnightJ. A. Radiolysis of aniline.Radiat Res197251359059810.2307/3573627
    [Google Scholar]
  83. WillisC. BackR.A. MorrisR.H. Radiation chemistry of acetylene at high intensity: The initial product distributions.Can. J. Chem.197755183288329310.1139/v77‑458
    [Google Scholar]
  84. TuY.J. NjusD. SchlegelH.B. A theoretical study of ascorbic acid oxidation and HOO ˙/ O 2 ˙ − radical scavenging.Org. Biomol. Chem.201715204417443110.1039/C7OB00791D28485446
    [Google Scholar]
  85. KozmérZ. TakácsE. WojnárovitsL. AlapiT. HernádiK. DombiA. The influence of radical transfer and scavenger materials in various concentrations on the gamma radiolysis of phenol.Radiat. Phys. Chem.2016124525710.1016/j.radphyschem.2015.12.011
    [Google Scholar]
  86. HayaL. OsanteI. MainarA.M. CativielaC. UrietaJ.S. Intramolecular hydrogen-bonding activation in cysteines: A new effective radical scavenger.Phys. Chem. Chem. Phys.201315239407941310.1039/c3cp50743b23665681
    [Google Scholar]
  87. CirianoM.V. KorthH-G. van ScheppingenW.B. MulderP. Thermal stability of 2,2,6,6-Tetramethyl- piperidine-1-oxyl (TEMPO) and related N -alkoxyamines.J. Am. Chem. Soc.1999121276375638110.1021/ja9837102
    [Google Scholar]
  88. SrokaZ. CisowskiW. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids.Food Chem Toxicol200341675375810.1016/S0278‑6915(02)00329‑0
    [Google Scholar]
  89. ReddyV.P. Chapter 7-Organofluorine compounds as positron emission tomography tracers.Organofluorine Compounds in Biology and MedicineElsevier201520124010.1016/B978‑0‑444‑53748‑5.00007‑1
    [Google Scholar]
  90. LuuT.G. KimH.K. Recent progress on radiofluorination using metals: Strategies for generation of C– 18F bonds.Org. Chem. Front.202310225746578110.1039/D3QO00772C
    [Google Scholar]
  91. LiuZ. SunY. LiuT. Recent advances in synthetic methodologies to form C-18F bonds.Front. Chemical.20221088386610.3389/fchem.2022.88386635494631
    [Google Scholar]
  92. OhY.H. JeongJ.G. KimD.W. LeeS. Nucleophilic reactions using alkali metal fluorides activated by crown ethers and derivatives.Catalysts202313347947910.3390/catal13030479
    [Google Scholar]
  93. OhY.H. YunW. KimC.H. JangS.W. LeeS.S. LeeS. KimD.W. Inter- and intra-molecular organocatalysis of SN2 fluorination by crown ether: Kinetics and quantum chemical analysis.Molecules20212610294710.3390/molecules2610294734063489
    [Google Scholar]
  94. ShindeS.S. BolikK.V. MaschauerS. PranteO. 18F-fluorination using tri-tert-butanol ammonium iodide as phase-transfer catalyst: An alternative minimalist approach.Pharmaceuticals202114983310.3390/ph1409083334577533
    [Google Scholar]
  95. InksterJ. a. H. AkurathiV. SromekA. W. ChenY. NeumeyerJ. L. PackardA. B. A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18 F-fluorination chemistry.Scientific Reports20201011910.1038/s41598‑020‑61845‑y
    [Google Scholar]
  96. ScroggieK.R. PerkinsM.V. ChalkerJ.M. Reaction of [18F] fluoride at heteroatoms and metals for imaging of peptides and proteins by positron emission tomography.Front Chem.2021968767810.3389/fchem.2021.68767834249861
    [Google Scholar]
  97. FersingC. BouhlelA. CantelliC. GarrigueP. LisowskiV. GuilletB. A comprehensive review of non-covalent radiofluorination approaches using aluminum [18F]fluoride: Will [18F]AlF replace 68Ga for metal chelate labeling?Molecules20192416286610.3390/molecules2416286631394799
    [Google Scholar]
  98. KrasikovaR.N. OrlovskayaV.V. Phase transfer catalysts and role of reaction environment in nucleophilc radiofluorinations in automated synthesizers.Appl. Sci.202112132132110.3390/app12010321
    [Google Scholar]
  99. ZhangK. FengW. MouZ. ChenJ. TangX. LiZ. 18F-labeling chemistry in aqueous media.Chemistry20232937e20230024810.1002/chem.20230024837102671
    [Google Scholar]
  100. GoudN.S. JoshiR.K. BharathR.D. KumarP. Fluorine-18: A radionuclide with diverse range of radiochemistry and synthesis strategies for target based PET diagnosis.Eur. J. Med. Chem.202018711197910.1016/j.ejmech.2019.11197931877537
    [Google Scholar]
  101. GhoshK.K. PadmanabhanP. YangC.T. MishraS. HalldinC. GulyásB. Dealing with PET radiometabolites.EJNMMI Res.202010110910.1186/s13550‑020‑00692‑432997213
    [Google Scholar]
  102. LengqvistJ. Mata de UrquizaA. PerlmannT. SjövallJ. GriffithsW.J. Specificity of receptor–ligand interactions and their effect on dimerisation as observed by electrospray mass spectrometry: Bile acids form stable adducts to the RXRα.J. Mass Spectrom.200540111448146110.1002/jms.92516258897
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333642250102080759
Loading
/content/journals/cmc/10.2174/0109298673333642250102080759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test