Skip to content
2000
Volume 33, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Lung Squamous Cell Carcinoma (LUSC), a major subtype of non-small cell lung cancer, presents significant treatment challenges due to limited targeted therapy options. This study aims to identify novel therapeutic targets to improve therapeutic strategies for LUSC.

Methods

By employing bulk RNA sequencing, Weighted Gene Co-expression Network Analysis (WGCNA), survival analysis, and Mendelian Randomization (MR), we pinpointed genes with prognostic relevance to LUSC. These genes were further scrutinized for their therapeutic potential through LASSO regression, Protein-Protein Interaction (PPI) network analysis, and immune infiltration assessments. To delve into the roles and cell-specific expressions of these genes within the LUSC microenvironment, pathway enrichment analysis, single-cell RNA sequencing (scRNA-seq), and pseudotime analysis were conducted.

Results

Our integrative approach identified 23 prognostically significant therapeutic targets, categorized into tier-one, tier-two, and tier-three genes based on their potential therapeutic relevance. Functional enrichment analyses highlighted the significant role of these genes in immune response regulation, particularly in T-cell receptor signaling and the complement system. scRNA-seq analysis revealed cell-type-specific expression patterns and pseudotime analysis provided insights into cellular heterogeneity and developmental trajectories in LUSC.

Conclusion

In this study, we identified 3 tier-one genes (MCM6, C4B, CTC-463A16.1), 7 tier-two genes (C4A, HLA-DRB9, LIMS2, LINC00654, MYO7B, SIGLEC5, TIE1), and 13 tier-three genes (AC007743.1, AC147651.4, ALDH2, BTN3A2, BTNL9, CCR1, GIPC3, HLA-DQB1, ICAM5, LIMD1, PM20D1, RP11-302L19.3, RP11-768F21.1).

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673334210241228062116
2025-02-06
2026-02-22
Loading full text...

Full text loading...

References

  1. KimY. HammermanP.S. KimJ. YoonJ. LeeY. SunJ.M. WilkersonM.D. PedamalluC.S. CibulskisK. YooY.K. LawrenceM.S. StojanovP. CarterS.L. McKennaA. StewartC. SivachenkoA.Y. OhI.J. KimH.K. ChoiY.S. KimK. ShimY.M. KimK.S. SongS.Y. NaK.J. ChoiY.L. HayesD.N. KimJ. ChoS. KimY.C. AhnJ.S. AhnM.J. GetzG. MeyersonM. ParkK. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients.J. Clin. Oncol.201432212112810.1200/JCO.2013.50.855624323028
    [Google Scholar]
  2. TravisW. D. The 2015 world health organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification.J. Thorac. Oncol20151091243126010.1097/JTO.0000000000000630
    [Google Scholar]
  3. GaoB. LiR. SongX. HuS. YangF. miR-139-5p and miR-451a as a diagnostic biomarker in LUSC.Pharm. Genomics Pers. Med.20231631332310.2147/PGPM.S40275037063774
    [Google Scholar]
  4. YangC.Y. YangJ.C.H. YangP.C. Precision management of advanced non–small cell lung cancer.Annu. Rev. Med.202071111713610.1146/annurev‑med‑051718‑01352431986082
    [Google Scholar]
  5. WangY. XiaoX. LiY. Construction and validation of a cuproptosis-related lncRNA signature for the prediction of the prognosis of LUAD and LUSC.Sci. Rep.2023131247710.1038/s41598‑023‑29719‑136774418
    [Google Scholar]
  6. RedmanM.W. PapadimitrakopoulouV.A. MinichielloK. HirschF.R. MackP.C. SchwartzL.H. VokesE. RamalingamS. LeighlN. BradleyJ. MiaoJ. MoonJ. HighleymanL. MiwaC. LeBlancM.L. MalikS. MillerV.A. SigalE.V. AdamS. WholleyD. SigmanC. SmolichB. BlankeC.D. KellyK. GandaraD.R. HerbstR.S. Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): A biomarker-driven master protocol.Lancet Oncol.202021121589160110.1016/S1470‑2045(20)30475‑733125909
    [Google Scholar]
  7. SatpathyS. KrugK. Jean BeltranP.M. SavageS.R. PetraliaF. Kumar-SinhaC. DouY. RevaB. KaneM.H. AvanessianS.C. VasaikarS.V. KrekA. LeiJ.T. JaehnigE.J. OmelchenkoT. GeffenY. BergstromE.J. StathiasV. ChristiansonK.E. HeimanD.I. CieslikM.P. CaoS. SongX. JiJ. LiuW. LiK. WenB. LiY. GümüşZ.H. SelvanM.E. SoundararajanR. VisalT.H. RasoM.G. ParraE.R. BaburÖ. VatsP. AnandS. SchrainkT. CornwellM. RodriguesF.M. ZhuH. MoC.K. ZhangY. da Veiga LeprevostF. HuangC. ChinnaiyanA.M. WyczalkowskiM.A. OmennG.S. NewtonC.J. SchurerS. RugglesK.V. FenyöD. JewellS.D. ThiagarajanM. MesriM. RodriguezH. ManiS.A. UdeshiN.D. GetzG. SuhJ. LiQ.K. HostetterG. PaikP.K. DhanasekaranS.M. GovindanR. DingL. RoblesA.I. ClauserK.R. NesvizhskiiA.I. WangP. CarrS.A. ZhangB. ManiD.R. GilletteM.A. GreenA. MolinoloA. FrancisA. PaulovichA.G. KarnutaA. ColapricoA. HindenachB. PruetzB.L. KubisaB. DrukerB.J. HuynhC. GoldthwaiteC.A.Jr BirgerC. KinsingerC.R. JonesC.D. RohrerD. ValleyD.R. ChanD.W. CheslaD. HanselD. PonomarevaE.V. DuffyE. BurksE. SchadtE.E. FedorovE.S. AnE. DingF. WilsonG.D. BatraH. ZhangH. MaasJ.E. EschbacherJ. KetchumK.A. RodlandK.D. HoadleyK.A. SuzukiK. UmK.S. QiL. BernardL. WiznerowiczM. WojtyśM. DomagalskiM.J. EllisM.J. DyerM.A. BoruckiM. AnuragM. BirrerM.J. XuM. KrotevichM. RocheN. EdwardsN.J. VatanianN. MucciN.R. MaunganidzeN. GabrovskiN. PotapovaO. FadareO. GradyP. McGarveyP.B. HariharanP. ThanguduR.R. MontgomeryR. PandurenganR. SmithR.D. WelshR.J. MareeduS. PayneS.H. CottinghamS. SinghS. TsangS.X. CaiS. GabrielS. LiuT. HiltkeT. VashistT. BauerT. SovenkoV. TourtellotteW.G. MaW. BocikW. HasanW. JingX. TangX. LiaoY. Yvonne Shutack ZhangZ. HanhanZ. A proteogenomic portrait of lung squamous cell carcinoma.Cell20211841643484371.e4010.1016/j.cell.2021.07.01634358469
    [Google Scholar]
  8. SekulaP. Del Greco MF. PattaroC. KöttgenA. Mendelian randomization as an approach to assess causality using observational data.J. Am. Soc. Nephrol.201627113253326510.1681/ASN.201601009827486138
    [Google Scholar]
  9. StormC.S. KiaD.A. AlmramhiM.M. Bandres-CigaS. FinanC. NoyceA.J. KaiyrzhanovR. MiddlehurstB. TanM. HouldenH. MorrisH.R. Plun-FavreauH. HolmansP. HardyJ. TrabzuniD. QuinnJ. BubbV. MokK.Y. KinghornK.J. LewisP. SchreglmannS.R. LoveringR. R’BiboL. ManzoniC. RizigM. RytenM. GuelfiS. Escott-PriceV. ChelbanV. FoltynieT. WilliamsN. MorrisonK.E. ClarkeC. HarveyK. JacobsB.M. BriceA. DanjouF. LesageS. CorvolJ-C. MartinezM. SchulteC. BrockmannK. Simón-SánchezJ. HeutinkP. RizzuP. SharmaM. GasserT. SchneiderS.A. CooksonM.R. BlauwendraatC. CraigD.W. BillingsleyK. MakariousM.B. NarendraD.P. FaghriF. GibbsJ.R. HernandezD.G. Van Keuren-JensenK. ShulmanJ.M. IwakiH. LeonardH.L. NallsM.A. RobakL. BrasJ. GuerreiroR. LubbeS. TroycocoT. FinkbeinerS. MencacciN.E. LunguC. SingletonA.B. ScholzS.W. ReedX. UittiR.J. RossO.A. GrennF.P. MooreA. AlcalayR.N. WszolekZ.K. Gan-OrZ. RouleauG.A. KrohnL. MuftiK. van HiltenJ.J. MarinusJ. Adarmes-GómezA.D. AguilarM. AlvarezI. AlvarezV. BarreroF.J. YarzaJ.A.B. Bernal-BernalI. BlazquezM. Bonilla-ToribioM. BotíaJ.A. BoungiornoM.T. Buiza-RuedaD. CámaraA. CarrilloF. Carrión-ClaroM. CerdanD. ClarimónJ. ComptaY. Diez-FairenM. Dols-IcardoO. DuarteJ. DuranR. Escamilla-SevillaF. EzquerraM. FelizC. FernándezM. Fernández-SantiagoR. GarciaC. García-RuizP. Gómez-GarreP. HerediaM.J.G. Gonzalez-AramburuI. PagolaA.G. HoenickaJ. InfanteJ. JesúsS. Jimenez-EscrigA. KulisevskyJ. Labrador-EspinosaM.A. Lopez-SendonJ.L. de Munain ArreguiA.L. MaciasD. TorresI.M. MarínJ. MartiM.J. Martínez-CastrilloJ.C. Méndez-del-BarrioC. GonzálezM.M. MataM. MínguezA. MirP. RezolaE.M. MuñozE. PagonabarragaJ. PastorP. ErrazquinF.P. Periñán-TocinoT. Ruiz-MartínezJ. RuzC. RodriguezA.S. SierraM. Suarez-SanmartinE. TaberneroC. TartariJ.P. Tejera-ParradoC. TolosaE. ValldeoriolaF. Vargas-GonzálezL. VelaL. VivesF. ZimprichA. PihlstromL. ToftM. TabaP. KoksS. Hassin-BaerS. MajamaaK. SiitonenA. TienariP. OkubadejoN.U. OjoO.O. ShashkinC. ZharkinbekovaN. AkhmetzhanovV. KaishybayevaG. KarimovaA. KhaibullinT. LynchT.L. HingoraniA.D. WoodN.W. Finding genetically-supported drug targets for parkinson’s disease using Mendelian randomization of the druggable genome.Nat. Commun.2021121734210.1038/s41467‑021‑26280‑134930919
    [Google Scholar]
  10. GazianoL. GiambartolomeiC. PereiraA.C. GaultonA. PosnerD.C. SwansonS.A. HoY.L. IyengarS.K. KosikN.M. VujkovicM. GagnonD.R. BentoA.P. Barrio-HernandezI. RönnblomL. HagbergN. LundtoftC. LangenbergC. PietznerM. ValentineD. GustincichS. TartagliaG.G. AllaraE. SurendranP. BurgessS. ZhaoJ.H. PetersJ.E. PrinsB.P. AngelantonioE.D. DevineniP. ShiY. LynchK.E. DuVallS.L. GarconH. ThomannL.O. ZhouJ.J. GormanB.R. HuffmanJ.E. O’DonnellC.J. TsaoP.S. BeckhamJ.C. PyarajanS. MuralidharS. HuangG.D. RamoniR. BeltraoP. DaneshJ. HungA.M. ChangK.M. SunY.V. JosephJ. LeachA.R. EdwardsT.L. ChoK. GazianoJ.M. ButterworthA.S. CasasJ.P. Actionable druggable genome-wide mendelian randomization identifies repurposing opportunities for COVID-19.Nat. Med.202127466867610.1038/s41591‑021‑01310‑z33837377
    [Google Scholar]
  11. SchmidtA.F. FinanC. Gordillo-MarañónM. AsselbergsF.W. FreitagD.F. PatelR.S. TylB. ChopadeS. FarawayR. ZwierzynaM. HingoraniA.D. Genetic drug target validation using Mendelian randomisation.Nat. Commun.2020111325510.1038/s41467‑020‑16969‑032591531
    [Google Scholar]
  12. ZhuZ. ZhangF. HuH. BakshiA. RobinsonM.R. PowellJ.E. MontgomeryG.W. GoddardM.E. WrayN.R. VisscherP.M. YangJ. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets.Nat. Genet.201648548148710.1038/ng.353827019110
    [Google Scholar]
  13. ZhaoH. YuL. WangL. YinX. LiuK. LiuW. LinS. WangL. Integrated analysis of single-cell and bulk RNA sequencing data reveals immune-related lncRNA-mRNA prognostic signature in triple-negative breast cancer.Genes Dis.202411257157410.1016/j.gendis.2023.04.00637692501
    [Google Scholar]
  14. WangZ. LiuJ. WangY. GuoH. LiF. CaoY. ZhaoL. ChenH. Identification of key biomarkers associated with immunogenic cell death and their regulatory mechanisms in severe acute pancreatitis based on WGCNA and machine learning.Int. J. Mol. Sci.2023243303310.3390/ijms2403303336769358
    [Google Scholar]
  15. LiX. WangC.Y. From bulk, single-cell to spatial RNA sequencing.Int. J. Oral Sci.20211313610.1038/s41368‑021‑00146‑034782601
    [Google Scholar]
  16. WangS. YuH. GanY. WuZ. LiE. LiX. CaoJ. ZhuY. WangL. DengH. XieM. WangY. MaX. LiuD. ChenB. TianP. QiuZ. XianJ. RenJ. WangK. WeiW. XieF. LiZ. WangQ. XueX. LiuZ. ShiJ. LiW. TianJ. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: A multicohort study.Lancet Digit. Health202245e309e31910.1016/S2589‑7500(22)00024‑335341713
    [Google Scholar]
  17. WangT. DaiL. ShenS. YangY. YangM. YangX. QiuY. WangW. Comprehensive molecular analyses of a macrophage-related gene signature with regard to prognosis, immune features, and biomarkers for immunotherapy in hepatocellular carcinoma based on WGCNA and the LASSO algorithm.Front. Immunol.20221384340810.3389/fimmu.2022.84340835693827
    [Google Scholar]
  18. ChangZ. AnL. LeiM. SongZ. DengJ. TangR. ChengZ.J. WuW. SunB. The genetic associations of COVID-19 on genitourinary symptoms.Front. Immunol.202314121621110.3389/fimmu.2023.121621137415973
    [Google Scholar]
  19. Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; Foster, B. The genotype-tissue expression (GTEx) project.Nat. Genet.2013456580510.1038/ng.265323715323
    [Google Scholar]
  20. McKayJ.D. HungR.J. HanY. ZongX. Carreras-TorresR. ChristianiD.C. CaporasoN.E. JohanssonM. XiaoX. LiY. ByunJ. DunningA. PooleyK.A. QianD.C. JiX. LiuG. TimofeevaM.N. BojesenS.E. WuX. Le MarchandL. AlbanesD. BickeböllerH. AldrichM.C. BushW.S. TardonA. RennertG. TeareM.D. FieldJ.K. KiemeneyL.A. LazarusP. HaugenA. LamS. SchabathM.B. AndrewA.S. ShenH. HongY.C. YuanJ.M. BertazziP.A. PesatoriA.C. YeY. DiaoN. SuL. ZhangR. BrhaneY. LeighlN. JohansenJ.S. MellemgaardA. SalibaW. HaimanC.A. WilkensL.R. Fernandez-SomoanoA. Fernandez-TardonG. van der HeijdenH.F.M. KimJ.H. DaiJ. HuZ. DaviesM.P.A. MarcusM.W. BrunnströmH. ManjerJ. MelanderO. MullerD.C. OvervadK. TrichopoulouA. TuminoR. DohertyJ.A. BarnettM.P. ChenC. GoodmanG.E. CoxA. TaylorF. WollP. BrüskeI. WichmannH.E. ManzJ. MuleyT.R. RischA. RosenbergerA. GrankvistK. JohanssonM. ShepherdF.A. TsaoM.S. ArnoldS.M. HauraE.B. BolcaC. HolcatovaI. JanoutV. KonticM. LissowskaJ. MukeriaA. OgnjanovicS. OrlowskiT.M. SceloG. SwiatkowskaB. ZaridzeD. BakkeP. SkaugV. ZienolddinyS. DuellE.J. ButlerL.M. KohW.P. GaoY.T. HoulstonR.S. McLaughlinJ. StevensV.L. JoubertP. LamontagneM. NickleD.C. ObeidatM. TimensW. ZhuB. SongL. KachuriL. ArtigasM.S. TobinM.D. WainL.V. RafnarT. ThorgeirssonT.E. ReginssonG.W. StefanssonK. HancockD.B. BierutL.J. SpitzM.R. GaddisN.C. LutzS.M. GuF. JohnsonE.O. KamalA. PikielnyC. ZhuD. LindströemS. JiangX. TyndaleR.F. Chenevix-TrenchG. BeesleyJ. BosséY. ChanockS. BrennanP. LandiM.T. AmosC.I. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.Nat. Genet.20174971126113210.1038/ng.389228604730
    [Google Scholar]
  21. GiambartolomeiC. VukcevicD. SchadtE.E. FrankeL. HingoraniA.D. WallaceC. PlagnolV. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics.PLoS Genet.2014105e100438310.1371/journal.pgen.100438324830394
    [Google Scholar]
  22. FreshourS.L. KiwalaS. CottoK.C. CoffmanA.C. McMichaelJ.F. SongJ.J. GriffithM. GriffithO.L. WagnerA.H. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts.Nucleic Acids Res.202149D1D1144D115110.1093/nar/gkaa108433237278
    [Google Scholar]
  23. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  24. ZhouY. ZhangY. ZhaoD. YuX. ShenX. ZhouY. WangS. QiuY. ChenY. ZhuF. TTD: Therapeutic target database describing target druggability information.Nucleic Acids Res.202452D1D1465D147710.1093/nar/gkad75137713619
    [Google Scholar]
  25. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality wrldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  26. ZappaC. MousaS.A. Non-small cell lung cancer: Current treatment and future advances.Transl. Lung Cancer Res.20165328830010.21037/tlcr.2016.06.0727413711
    [Google Scholar]
  27. JanssenE.M. DyS.M. MearaA.S. KneuertzP.J. PresleyC.J. BridgesJ.F.P. Analysis of patient preferences in lung cancer – Estimating acceptable tradeoffs between treatment benefit and side effects.Patient Prefer. Adherence20201492793710.2147/PPA.S23543032581519
    [Google Scholar]
  28. WangC.L. SunB.S. TangY. ZhuangH.Q. CaoW.Z. CCR1 knockdown suppresses human non-small cell lung cancer cell invasion.J. Cancer Res. Clin. Oncol.2009135569570110.1007/s00432‑008‑0505‑018972130
    [Google Scholar]
  29. YamamotoT. KawadaK. ItataniY. InamotoS. OkamuraR. IwamotoM. MiyamotoE. Chen-YoshikawaT.F. HiraiH. HasegawaS. DateH. TaketoM.M. SakaiY. Loss of SMAD4 promotes lung metastasis of colorectal cancer by accumulation of CCR1+ tumor-associated neutrophils through CCL15-CCR1 axis.Clin. Cancer Res.201723383384410.1158/1078‑0432.CCR‑16‑052027492974
    [Google Scholar]
  30. LiuF. WuH. CC chemokine receptors in lung adenocarcinoma: The inflammation-related prognostic biomarkers and immunotherapeutic targets.J. Inflamm. Res.20211426728510.2147/JIR.S27839533574689
    [Google Scholar]
  31. VuchkovskaA. GlanvilleD.G. ScurtiG.M. NishimuraM.I. WhiteP. UlijaszA.T. IwashimaM. Siglec-5 is an inhibitory immune checkpoint molecule for human T cells.Immunology2022166223824810.1111/imm.1347035290663
    [Google Scholar]
  32. Montalbán-HernándezK. Casalvilla-DueñasJ.C. Cruz- CastellanosP. Gutierrez-SainzL. Lozano-RodríguezR. Avendaño-OrtizJ. del FresnoC. de Castro-CarpeñoJ. López-CollazoE. Identification of sSIGLEC5 and sLAG3 as new relapse predictors in lung cancer.Biomedicines2022105104710.3390/biomedicines1005104735625783
    [Google Scholar]
  33. SunX. CaoJ. SunP. YangH. LiH. MaW. WuX. HeX. LiJ. LiZ. HuangJ. Pretreatment soluble Siglec-5 protein predicts early progression and R-CHOP efficacy in diffuse large B-cell lymphoma.Biomarkers Med.202317314315810.2217/bmm‑2022‑076437097021
    [Google Scholar]
  34. WielgatP. RogowskiK. CzarnomysyR. Wawrusiewicz-KurylonekN. NarejkoK. BielawskiK. CarH. Tamoxifen modulates the immune landscape of the tumour microenvironment: The paired siglec-5/14 checkpoint in anti-tumour immunity in an in vitro model of breast cancer.Int. J. Mol. Sci.2023246551210.3390/ijms2406551236982588
    [Google Scholar]
  35. ZhangL. LiM. DengB. DaiN. FengY. ShanJ. YangY. MaoC. HuangP. XuC. WangD. HLA-DQB1 expression on tumor cells is a novel favorable prognostic factor for relapse in early-stage lung adenocarcinoma.Cancer Manag. Res.2019112605261610.2147/CMAR.S19785531114327
    [Google Scholar]
  36. WangL. LiuW. LiuK. WangL. YinX. BoL. XuH. LinS. FengK. ZhouX. LinL. FeiM. ZhangC. NingS. ZhaoH. The dynamic dysregulated network identifies stage-specific markers during lung adenocarcinoma malignant progression and metastasis.Mol. Ther. Nucleic Acids20223063364710.1016/j.omtn.2022.11.01936514354
    [Google Scholar]
  37. YuP. DingG. HuangX. WangC. FangJ. HuangL. YeZ. XuQ. WuX. YanJ. OuQ. DuY. ChengX. Genomic and immune microenvironment features influencing chemoimmunotherapy response in gastric cancer with peritoneal metastasis: A retrospective cohort study.Int. J. Surg.202411063504351710.1097/JS9.000000000000128138502852
    [Google Scholar]
  38. ChristopherM.J. PettiA.A. RettigM.P. MillerC.A. ChendamaraiE. DuncavageE.J. KlcoJ.M. HeltonN.M. O’LaughlinM. FronickC.C. FultonR.S. WilsonR.K. WartmanL.D. WelchJ.S. HeathS.E. BatyJ.D. PaytonJ.E. GraubertT.A. LinkD.C. WalterM.J. WesterveltP. LeyT.J. DiPersioJ.F. Immune escape of relapsed AML cells after allogeneic transplantation.N. Engl. J. Med.2018379242330234110.1056/NEJMoa180877730380364
    [Google Scholar]
  39. CaoY. YanX. BaiX. TangF. SiP. BaiC. TuohetiK. GuoL. YishaZ. LiuT. LiuT. UCHL5 promotes proliferation and migration of bladder cancer cells by activating c-Myc via AKT/mTOR signaling.Cancers20221422553810.3390/cancers1422553836428630
    [Google Scholar]
  40. LiZ. YingY. ZengX. LiuJ. XieY. DengZ. HuZ. YangJ. DNMT1/DNMT3a-mediated promoter hypermethylation and transcription activation of ICAM5 augments thyroid carcinoma progression.Funct. Integr. Genomics20242411210.1007/s10142‑024‑01293‑338228798
    [Google Scholar]
  41. LiuB. ZhengH. MaG. ShenH. PangZ. HuangG. SongQ. WangG. DuJ. Involvement of ICAM5 in carcinostasis effects on LUAD based on the ROS1-related prognostic model.J. Inflamm. Res.2024176583660210.2147/JIR.S47508839318995
    [Google Scholar]
  42. MaruyaS.I. MyersJ.N. WeberR.S. RosenthalD.I. LotanR. El-NaggarA.K. ICAM-5 (telencephalin) gene expression in head and neck squamous carcinoma tumorigenesis and perineural invasion!Oral Oncol.200541658058810.1016/j.oraloncology.2005.01.00215975520
    [Google Scholar]
  43. AkwiiR.G. SajibM.S. ZahraF.T. MikelisC.M. Role of angiopoietin-2 in vascular physiology and pathophysiology.Cells20198547110.3390/cells805047131108880
    [Google Scholar]
  44. GongZ. ZhengQ. LiB. WangH. ChenH. LinS. Identification of the expression of TIE1 and its mediated immunosuppression in gastric cancer.J. Cancer202415102994300910.7150/jca.9089138706903
    [Google Scholar]
  45. MeltzerM. EliashN. AzoulayZ. HadadU. PapoN. In vitro inhibition of cancer angiogenesis and migration by a nanobody that targets the orphan receptor Tie1.Cell. Mol. Life Sci.202279631210.1007/s00018‑022‑04336‑935604495
    [Google Scholar]
  46. LiuP. XieL. WuQ. HuangL. LiuX. LiW. CaiJ. WangZ. YangP. CaiL. TIE1 promotes cervical cancer progression via Basigin-matrix metalloproteinase axis.Int. J. Biol. Sci.20242062297230910.7150/ijbs.9366738617545
    [Google Scholar]
  47. YeF. LeH. HeF. TuH. PengD. RuanS. Prognostic value of an integrin-based signature in hepatocellular carcinoma and the identification of immunological role of LIMS2.Dis. Markers2022202211510.1155/2022/735629736212176
    [Google Scholar]
  48. YangS. WangL. GuL. WangZ. WangY. WangJ. ZhangY. Mesenchymal stem cell-derived extracellular vesicles alleviate cervical cancer by delivering microRNA-331-3p to reduce LIM zinc finger domain containing 2 methylation in tumor cells.Hum. Mol. Genet.202231223829384510.1093/hmg/ddac13035708510
    [Google Scholar]
  49. ParkC.H. RhaS.Y. AhnJ.B. ShinS.J. KwonW.S. KimT.S. AnS. KimN.K. YangW. ChungH.C. PINCH-2 presents functional copy number variation and suppresses migration of colon cancer cells by paracrine activity.Int. J. Cancer2015136102273228310.1002/ijc.2927325346044
    [Google Scholar]
  50. KhanK.A. KerbelR.S. A new Tie1 targeted antibody blocks tumor cell extravasation and metastasis.EMBO Mol. Med.2020126e1235510.15252/emmm.20201235532406209
    [Google Scholar]
  51. ZhangH. LiuX. LiJ. MengJ. HuangW. SuX. ZhangX. GaoG. WangX. SuH. ZhangF. ZhangT. ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163.Front. Med.202418587889510.1007/s11684‑024‑1057‑739269568
    [Google Scholar]
  52. La PortaS. RothL. SinghalM. MoglerC. SpeggC. SchiebB. QuX. AdamsR.H. BaldwinH.S. SavantS. AugustinH.G. Endothelial Tie1–mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis.J. Clin. Invest.2018128283484510.1172/JCI9467429355844
    [Google Scholar]
  53. LiC. YangN. ChenZ. XiaN. ShanQ. WangZ. LuJ. ShangM. WangZ. Hypoxia-induced Tie1 drives stemness and cisplatin resistance in non-small cell lung carcinoma cells.Cancer Cell Int.20212115710.1186/s12935‑020‑01729‑333461544
    [Google Scholar]
  54. KarnaniP. KairemoK. The new Tie-1 monoclonal antibodies detect angiogenesis in metastatic malignancies.Clin. Cancer Res.2003910 Pt 23827S3830S14506179
    [Google Scholar]
  55. ZengT. The DNA replication regulator MCM6: An emerging cancer biomarker and target.Clin Chim Acta2021517929810.1016/j.cca.2021.02.005
    [Google Scholar]
  56. MisonoS. MizunoK. SuetsuguT. TanigawaK. NohataN. UchidaA. SanadaH. OkadaR. MoriyaS. InoueH. SekiN. Molecular signature of small cell lung cancer after treatment failure: The MCM complex as therapeutic target.Cancers 2021136118710.3390/cancers1306118733801812
    [Google Scholar]
  57. ZhangY. TsengJ.T.C. LienI.C. LiF. WuW. LiH. mRNAsi index: Machine learning in mining lung adenocarcinoma stem cell biomarkers.Genes 202011325710.3390/genes1103025732121037
    [Google Scholar]
  58. Kemkes-MatthesB. PlusczykT. LaschH.G. Coagulation inhibitors in pulmonary cancer patients.Thromb. Res.1992651859410.1016/0049‑3848(92)90228‑31318586
    [Google Scholar]
  59. OkrojM. HsuY.F. AjonaD. PioR. BlomA.M. Non-small cell lung cancer cells produce a functional set of complement factor I and its soluble cofactors.Mol. Immunol.200845116917910.1016/j.molimm.2007.04.02517548110
    [Google Scholar]
  60. LiuR. ZhangY.S. ZhangS. ChengZ.M. YuJ.L. ZhouS. SongJ. MiR-126-3p suppresses the growth, migration and invasion of NSCLC via targeting CCR1.Eur. Rev. Med. Pharmacol. Sci.201923267968910.26355/eurrev_201901_1688130720175
    [Google Scholar]
  61. RosenbergerA. SohnsM. FriedrichsS. HungR.J. FehringerG. McLaughlinJ. AmosC.I. BrennanP. RischA. BrüskeI. CaporasoN.E. LandiM.T. ChristianiD.C. WeiY. BickeböllerH. Gene-set meta-analysis of lung cancer identifies pathway related to systemic lupus erythematosus.PLoS One2017123e017333910.1371/journal.pone.017333928273134
    [Google Scholar]
  62. GuoS. JinY. ZhouJ. ZhuQ. JiangT. BianY. ZhangR. ChangC. XuL. ShenJ. ZhengX. ShenY. QinY. ChenJ. TangX. ChengP. DingQ. ZhangY. LiuJ. ChengQ. GuoM. LiuZ. QiuW. QianY. SunY. ShenY. NieH. SchrodiS.J. HeD. MicroRNA variants and HLA-miRNA interactions are novel rheumatoid arthritis susceptibility factors.Front. Genet.20211274727410.3389/fgene.2021.74727434777472
    [Google Scholar]
  63. LiuT.Y. LiaoW.L. WangT.Y. ChanC.J. ChangJ.G. ChenY.C. LuH.F. YangH.H. ChenS.Y. TsaiF.J. Genome-wide association study of hyperthyroidism based on electronic medical record from Taiwan.Front. Med. (Lausanne)2022983062110.3389/fmed.2022.83062135991636
    [Google Scholar]
  64. SuC. CaiX. XuT. WuY. WangL. ChenP. SuC. LIMS2 is downregulated in osteosarcoma and inhibits cell growth and migration.J. Oncol.2022202211310.1155/2022/481126036276291
    [Google Scholar]
  65. ChenY. LiC. WangN. WuZ. ZhangJ. YanJ. WeiY. PengQ. QiJ. Identification of LINC00654-NINL regulatory axis in diffuse large B-cell lymphoma in silico analysis.Front. Oncol.20221288330110.3389/fonc.2022.88330135719990
    [Google Scholar]
  66. WeckM.L. CrawleyS.W. StoneC.R. TyskaM.J. Myosin-7b promotes distal tip localization of the intermicrovillar adhesion complex.Curr. Biol.201626202717272810.1016/j.cub.2016.08.01427666969
    [Google Scholar]
  67. FengH. FengJ. HanX. YingY. LouW. LiuL. ZhangL. The potential of siglecs and sialic acids as biomarkers and therapeutic targets in tumor immunotherapy.Cancers 202416228910.3390/cancers1602028938254780
    [Google Scholar]
  68. SinghalM. GengenbacherN. La PortaS. GehrsS. ShiJ. KamiyamaM. BodenmillerD.M. FischlA. SchiebB. BesemfelderE. ChintharlapalliS. AugustinH.G. Preclinical validation of a novel metastasis-inhibiting Tie1 function-blocking antibody.EMBO Mol. Med.2020126e1116410.15252/emmm.20191116432302470
    [Google Scholar]
  69. MinegishiY. TsukinoH. MutoM. GotoK. GemmaA. TsuganeS. KudohS. NishiwakiY. EsumiH. Susceptibility to lung cancer and genetic polymorphisms in the alcohol metabolite-related enzymes alcohol dehydrogenase 3, aldehyde dehydrogenase 2, and cytochrome P450 2E1 in the Japanese population.Cancer2007110235336210.1002/cncr.2279517559142
    [Google Scholar]
  70. MaW. LiangJ. MoJ. ZhangS. HuN. TianD. ChenZ. Butyrophilin-like 9 expression is associated with outcome in lung adenocarcinoma.BMC Cancer2021211109610.1186/s12885‑021‑08790‑934635082
    [Google Scholar]
  71. YangY. XuS. JiaG. YuanF. PingJ. GuoX. TaoR. ShuX.O. ZhengW. LongJ. CaiQ. Integrating genomics and proteomics data to identify candidate plasma biomarkers for lung cancer risk among European descendants.Br. J. Cancer202312991510151510.1038/s41416‑023‑02419‑337679517
    [Google Scholar]
  72. DavidsonK. GrevittP. Contreras-GerenasM.F. BridgeK.S. HermidaM. ShahK.M. MardakhehF.K. StubbsM. BurkeR. CasadoP. CutillasP.R. MartinS.A. SharpT.V. Targeted therapy for LIMD1-deficient non-small cell lung cancer subtypes.Cell Death Dis.20211211107510.1038/s41419‑021‑04355‑734764236
    [Google Scholar]
  73. LinY. ZhouH. LiS. BTN3A2 expression is connected with favorable prognosis and high infiltrating immune in lung adenocarcinoma.Front. Genet.20221384847610.3389/fgene.2022.84847635873496
    [Google Scholar]
  74. OhriC.M. ShikotraA. GreenR.H. WallerD.A. BraddingP. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer.BMC Cancer201010117210.1186/1471‑2407‑10‑17220429924
    [Google Scholar]
  75. WangN. HuY. WangS. XuQ. JiaoX. WangY. YanL. CaoH. ShaoF. Development of a novel disulfidptosis-related lncRNA signature for prognostic and immune response prediction in clear cell renal cell carcinoma.Sci. Rep.202414162410.1038/s41598‑024‑51197‑238182642
    [Google Scholar]
  76. PatmanathanS.N. TongB.T. TeoJ.H.J. TingY.Z.J. TanN.S. SimS.H.K. TaY.C. WooW.M. A PDZ protein GIPC3 positively modulates hedgehog signaling and melanoma growth.J. Invest. Dermatol.20221421179188.e410.1016/j.jid.2021.04.03334224745
    [Google Scholar]
  77. DingX. PhilipS. MartinB.K. PangY. BurkettS. SwingD.A. PamalaC. RittD.A. ZhouM. MorrisonD.K. JiX. SharanS.K. Survival of BRCA2-deficient cells is promoted by GIPC3, a novel genetic interactor of BRCA2.Genetics201720741335134510.1534/genetics.117.30035729021281
    [Google Scholar]
  78. KimJ.T. JedrychowskiM.P. WeiW. FernandezD. FischerC.R. BanikS.M. SpiegelmanB.M. LongJ.Z. A plasma protein network regulates PM20D1 and N-Acyl amino acid bioactivity.Cell Chem. Biol.202027911301139.e410.1016/j.chembiol.2020.04.00932402239
    [Google Scholar]
  79. ChenY. Identifying potential therapeutic targets in lung adenocarcinoma: a multi-omics approach integrating bulk and single-cell RNA sequencing with Mendelian randomization.Front. Pharmacol.202415143314710.3389/fphar.2024.1433147
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673334210241228062116
Loading
/content/journals/cmc/10.2174/0109298673334210241228062116
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test