Skip to content
2000
image of The Role of Lipid Rafts in the Mitogen-Activated Protein Kinase Signaling in Cancer

Abstract

Specific regions of plasma membrane enriched with cholesterol and sphingolipids, recognized as lipid rafts or membrane rafts, play an essential part in cell signal transduction. The ability to actively utilize or exempt signaling proteins for the reinforcement or inactivation of specific signaling pathways is the prominent characteristic of lipid rafts, enabling them to act as lipid-based units that can affect signal transduction and cell activity. A connection between lipid raft structure changes and enhancement of the mitogen-activated protein kinase (MAPK) pathway has been reported. Moreover, alteration in lipid raft construction in cancer has also been confirmed. Thus, this review aimed to study the relationship between lipid rafts and the MAPK signaling pathway in a variety of cancer types.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673346992250217100052
2025-03-03
2025-11-05
Loading full text...

Full text loading...

References

  1. Patra S.K. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta 2008 1785 2 182 206 18166162
    [Google Scholar]
  2. Soteriou C. Kalli A.C. Connell S.D. Tyler A.I.I. Thorne J.L. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog. Lipid Res. 2021 81 101080 10.1016/j.plipres.2020.101080 33359620
    [Google Scholar]
  3. Pike L.J. Han X. Gross R.W. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: A shotgun lipidomics study. J. Biol. Chem. 2005 280 29 26796 26804 10.1074/jbc.M503805200 15917253
    [Google Scholar]
  4. Iams W.T. Lovly C.M. Molecular pathways: Clinical applications and future direction of insulin-like growth factor-1 receptor pathway blockade. Clin. Cancer Res. 2015 21 19 4270 4277 10.1158/1078‑0432.CCR‑14‑2518 26429980
    [Google Scholar]
  5. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: An update. Nat. Rev. Cancer 2012 12 3 159 169 10.1038/nrc3215 22337149
    [Google Scholar]
  6. Huo H. Guo X. Hong S. Jiang M. Liu X. Liao K. Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. J. Biol. Chem. 2003 278 13 11561 11569 10.1074/jbc.M211785200 12538586
    [Google Scholar]
  7. Matthews L.C. Taggart M.J. Westwood M. Effect of cholesterol depletion on mitogenesis and survival: The role of caveolar and noncaveolar domains in insulin-like growth factor-mediated cellular function. Endocrinology 2005 146 12 5463 5473 10.1210/en.2005‑0236 16166225
    [Google Scholar]
  8. Mollinedo F. Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: Implications in tumor progression and therapy. J. Lipid Res. 2020 61 5 611 635 10.1194/jlr.TR119000439 33715811
    [Google Scholar]
  9. Kucka K. Wajant H. Receptor oligomerization and its relevance for signaling by receptors of the tumor necrosis factor receptor superfamily. Front. Cell Dev. Biol. 2021 8 615141 10.3389/fcell.2020.615141 33644033
    [Google Scholar]
  10. Khojasteh Poor F. Keivan M. Ramazii M. Ghaedrahmati F. Anbiyaiee A. Panahandeh S. Khoshnam S.E. Farzaneh M. Mini review: The FDA-approved prescription drugs that target the MAPK signaling pathway in women with breast cancer. Breast Dis. 2021 40 2 51 62 10.3233/BD‑201063 33896802
    [Google Scholar]
  11. Dhillon A.S. Hagan S. Rath O. Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007 26 22 3279 3290 10.1038/sj.onc.1210421 17496922
    [Google Scholar]
  12. Guo Y.J. Pan W.W. Liu S.B. Shen Z.F. Xu Y. Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020 19 3 1997 2007 32104259
    [Google Scholar]
  13. Hommes D.W. Peppelenbosch M.P. van Deventer S.J. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 2003 52 1 144 151 10.1136/gut.52.1.144 12477778
    [Google Scholar]
  14. Castellano E. Santos E. Functional specificity of ras isoforms: So similar but so different. Genes Cancer 2011 2 3 216 231 10.1177/1947601911408081 21779495
    [Google Scholar]
  15. Abankwa D. Gorfe A.A. Mechanisms of Ras membrane organization and signaling: Ras rocks again. Biomolecules 2020 10 11 1522 10.3390/biom10111522 33172116
    [Google Scholar]
  16. Shah S. Brock E.J. Ji K. Mattingly R.R. Ras and Rap1: A tale of two GTPases. Seminars in cancer biology. Elsevier 2019
    [Google Scholar]
  17. Morrison D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol. 2012 4 11 a011254 10.1101/cshperspect.a011254 23125017
    [Google Scholar]
  18. Dhanasekaran D.N. Reddy E.P. JNK signaling in apoptosis. Oncogene 2008 27 48 6245 6251 10.1038/onc.2008.301 18931691
    [Google Scholar]
  19. Johnson G.L. Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002 298 5600 1911 1912 10.1126/science.1072682 12471242
    [Google Scholar]
  20. Murphy G. Nagase H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: Destruction or repair? Nat. Clin. Pract. Rheumatol. 2008 4 3 128 135 10.1038/ncprheum0727 18253109
    [Google Scholar]
  21. Johnson G.L. Nakamura K. The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochim. Biophys. Acta Mol. Cell Res. 2007 1773 8 1341 1348 10.1016/j.bbamcr.2006.12.009 17306896
    [Google Scholar]
  22. Liu J. Lin A. Role of JNK activation in apoptosis: A double-edged sword. Cell Res. 2005 15 1 36 42 10.1038/sj.cr.7290262 15686625
    [Google Scholar]
  23. Yue J. López J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020 21 7 2346 10.3390/ijms21072346 32231094
    [Google Scholar]
  24. Wu Q. Wu W. Jacevic V. Franca T.C.C. Wang X. Kuca K. Selective inhibitors for JNK signalling: A potential targeted therapy in cancer. J. Enzyme Inhib. Med. Chem. 2020 35 1 574 583 10.1080/14756366.2020.1720013 31994958
    [Google Scholar]
  25. Roy A. Patra S.K. Lipid raft facilitated receptor organization and signaling: A functional rheostat in embryonic development, stem cell biology and cancer. Stem Cell Rev. Rep. 2023 19 1 2 25 10.1007/s12015‑022‑10448‑3 35997871
    [Google Scholar]
  26. Barnett-Norris J. Lynch D. Reggio P.H. Lipids, lipid rafts and caveolae: Their importance for GPCR signaling and their centrality to the endocannabinoid system. Life Sci. 2005 77 14 1625 1639 10.1016/j.lfs.2005.05.040 15993425
    [Google Scholar]
  27. Dietrich C. Bagatolli L.A. Volovyk Z.N. Thompson N.L. Levi M. Jacobson K. Gratton E. Lipid rafts reconstituted in model membranes. Biophys. J. 2001 80 3 1417 1428 10.1016/S0006‑3495(01)76114‑0 11222302
    [Google Scholar]
  28. Ni K. Wang C. Carnino J.M. Jin Y. The evolving role of caveolin-1: A critical regulator of extracellular vesicles. Med. Sci. 2020 8 4 46 10.3390/medsci8040046 33158117
    [Google Scholar]
  29. Allen J.A. Halverson-Tamboli R.A. Rasenick M.M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 2007 8 2 128 140 10.1038/nrn2059 17195035
    [Google Scholar]
  30. Kabouridis P.S. Jury E.C. Lipid rafts and T-lymphocyte function: Implications for autoimmunity. FEBS Lett. 2008 582 27 3711 3718 10.1016/j.febslet.2008.10.006 18930053
    [Google Scholar]
  31. Mastick C.C. Sanguinetti A.R. Knesek J.H. Mastick G.S. Newcomb L.F. Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp. Cell Res. 2001 266 1 142 154 10.1006/excr.2001.5205 11339833
    [Google Scholar]
  32. Pradhan B.S. Prószyński T.J. A role for caveolin-3 in the pathogenesis of muscular dystrophies. Int. J. Mol. Sci. 2020 21 22 8736 10.3390/ijms21228736 33228026
    [Google Scholar]
  33. Cohen A.W. Combs T.P. Scherer P.E. Lisanti M.P. Role of caveolin and caveolae in insulin signaling and diabetes. Am. J. Physiol. Endocrinol. Metab. 2003 285 6 E1151 E1160 10.1152/ajpendo.00324.2003 14607781
    [Google Scholar]
  34. Zhou M. Shi S.X. Liu N. Jiang Y. Karim M.S. Vodovoz S.J. Wang X. Zhang B. Dumont A.S. Caveolae- mediated endothelial transcytosis across the blood-brain barrier in acute ischemic stroke. J. Clin. Med. 2021 10 17 3795 10.3390/jcm10173795 34501242
    [Google Scholar]
  35. Nada S. Hondo A. Kasai A. Koike M. Saito K. Uchiyama Y. Okada M. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes. EMBO J. 2009 28 5 477 489 10.1038/emboj.2008.308 19177150
    [Google Scholar]
  36. Daumann I.M. Hiesinger P.R. Lipid rafts, Rab GTPases, and a late endosomal checkpoint for plasma membrane recycling. Proc. Natl. Acad. Sci. USA 2023 120 14 e2302320120 10.1073/pnas.2302320120 36972457
    [Google Scholar]
  37. Bai Z. Grant B.D. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc. Natl. Acad. Sci. USA 2015 112 12 E1443 E1452 10.1073/pnas.1418651112 25775511
    [Google Scholar]
  38. DeNies M.S. Rosselli-Murai L.K. Schnell S. Liu A.P. Clathrin heavy chain knockdown impacts CXCR4 signaling and post-translational modification. Front. Cell Dev. Biol. 2019 7 77 10.3389/fcell.2019.00077 31139626
    [Google Scholar]
  39. Lajoie P. Nabi I.R. Regulation of raft-dependent endocytosis. J. Cell. Mol. Med. 2007 11 4 644 653 10.1111/j.1582‑4934.2007.00083.x 17760830
    [Google Scholar]
  40. Colin D. Limagne E. Jeanningros S. Jacquel A. Lizard G. Athias A. Gambert P. Hichami A. Latruffe N. Solary E. Delmas D. Endocytosis of resveratrol via lipid rafts and activation of downstream signaling pathways in cancer cells. Cancer Prev. Res. 2011 4 7 1095 1106 10.1158/1940‑6207.CAPR‑10‑0274 21467134
    [Google Scholar]
  41. Le Roy C. Wrana J.L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat. Rev. Mol. Cell Biol. 2005 6 2 112 126 10.1038/nrm1571 15687999
    [Google Scholar]
  42. Biedi C. Panetta D. Segat D. Cordera R. Maggi D. Specificity of insulin-like growth factor I and insulin on Shc phosphorylation and Grb2 recruitment in caveolae. Endocrinology 2003 144 12 5497 5503 10.1210/en.2003‑0417 12960075
    [Google Scholar]
  43. Mollinedo F. Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv. Biol. Regul. 2015 57 130 146 10.1016/j.jbior.2014.10.003 25465296
    [Google Scholar]
  44. Wang Y. Miao Z. Qin X. Yang Y. Wu S. Miao Q. Li B. Zhang M. Wu P. Han Y. Li B. Transcriptomic landscape based on annotated clinical features reveals PLPP2 involvement in lipid raft-mediated proliferation signature of early-stage lung adenocarcinoma. J. Exp. Clin. Cancer Res. 2023 42 1 315 10.1186/s13046‑023‑02877‑w 37996944
    [Google Scholar]
  45. Greenlee J.D. Subramanian T. Liu K. King M.R. Rafting down the metastatic cascade: The role of lipid rafts in cancer metastasis, cell death, and clinical outcomes. Cancer Res. 2021 81 1 5 17 10.1158/0008‑5472.CAN‑20‑2199 32999001
    [Google Scholar]
  46. Tahir S.A. Park S. Thompson T.C. Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol. Ther. 2009 8 23 2284 2294 10.4161/cbt.8.23.10138 19923922
    [Google Scholar]
  47. Park M. Lim J.W. Kim H. Docoxahexaenoic acid induces apoptosis of pancreatic cancer cells by suppressing activation of STAT3 and NF-κB. Nutrients 2018 10 11 1621 10.3390/nu10111621 30400136
    [Google Scholar]
  48. Chiang S.K. Chen S.E. Chang L.C. The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells 2021 10 9 2401 10.3390/cells10092401 34572050
    [Google Scholar]
  49. Pashirzad M. Khorasanian R. Fard M.M. Arjmand M.H. Langari H. Khazaei M. Soleimanpour S. Rezayi M. Ferns G.A. Hassanian S.M. Avan A. The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer. Curr. Cancer Drug Targets 2021 21 11 932 943 10.2174/1568009621666211103113339 34732116
    [Google Scholar]
  50. Khan N. Afaq F. Saleem M. Ahmad N. Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 2006 66 5 2500 2505 10.1158/0008‑5472.CAN‑05‑3636 16510563
    [Google Scholar]
  51. Zhang Z. Wang L. Du J. Li Y. Yang H. Li C. Li H. Hu H. Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway. Oncol. Lett. 2016 12 6 4991 4998 10.3892/ol.2016.5307 28101233
    [Google Scholar]
  52. Zuo W. Chen Y.G. Specific activation of mitogen-activated protein kinase by transforming growth factor-β receptors in lipid rafts is required for epithelial cell plasticity. Mol. Biol. Cell 2009 20 3 1020 1029 10.1091/mbc.e08‑09‑0898 19056678
    [Google Scholar]
  53. Sun Y.S. Zhao Z. Yang Z.N. Xu F. Lu H.J. Zhu Z.Y. Shi W. Jiang J. Yao P.P. Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017 13 11 1387 1397 10.7150/ijbs.21635 29209143
    [Google Scholar]
  54. Kwon M.J. Matrix metalloproteinases as therapeutic targets in breast cancer. Front. Oncol. 2023 12 1108695 10.3389/fonc.2022.1108695 36741729
    [Google Scholar]
  55. Raghu H. Sodadasu P.K. Malla R.R. Gondi C.S. Estes N. Rao J.S. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 2010 10 1 647 10.1186/1471‑2407‑10‑647 21106094
    [Google Scholar]
  56. Yamaguchi H. Takeo Y. Yoshida S. Kouchi Z. Nakamura Y. Fukami K. Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res. 2009 69 22 8594 8602 10.1158/0008‑5472.CAN‑09‑2305 19887621
    [Google Scholar]
  57. Lu P. Takai K. Weaver V.M. Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011 3 12 a005058 10.1101/cshperspect.a005058 21917992
    [Google Scholar]
  58. Abdel-Hamid N.M. Abass S.A. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting. Mol. Biol. Rep. 2021 48 9 6525 6538 10.1007/s11033‑021‑06635‑z 34379286
    [Google Scholar]
  59. Wolczyk D. Zaremba-Czogalla M. Hryniewicz-Jankowska A. Tabola R. Grabowski K. Sikorski A.F. Augoff K. TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol. 2016 39 4 353 363 10.1007/s13402‑016‑0280‑x 27042827
    [Google Scholar]
  60. Labianca R. Beretta G.D. Kildani B. Milesi L. Merlin F. Mosconi S. Pessi M.A. Prochilo T. Quadri A. Gatta G. de Braud F. Wils J. Colon cancer. Crit. Rev. Oncol. Hematol. 2010 74 2 106 133 10.1016/j.critrevonc.2010.01.010 20138539
    [Google Scholar]
  61. Ye D.M. Ye S.C. Yu S.Q. Shu F.F. Xu S.S. Chen Q.Q. Wang Y.L. Tang Z.T. Pan C. Drug-resistance reversal in colorectal cancer cells by destruction of flotillins, the key lipid rafts proteins. Neoplasma 2019 66 4 576 583 10.4149/neo_2018_180820N633 30943747
    [Google Scholar]
  62. Zhu W. Li M.C. Wang F.R. Mackenzie G.G. Oteiza P.I. The inhibitory effect of ECG and EGCG dimeric procyanidins on colorectal cancer cells growth is associated with their actions at lipid rafts and the inhibition of the epidermal growth factor receptor signaling. Biochem. Pharmacol. 2020 175 113923 10.1016/j.bcp.2020.113923 32217102
    [Google Scholar]
  63. Yoon Y.J. Kim D.K. Yoon C.M. Park J. Kim Y.K. Roh T.Y. Gho Y.S. EGR-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One 2014 9 12 e115170 10.1371/journal.pone.0115170 25502753
    [Google Scholar]
  64. Cascinu S. Falconi M. Valentini V. Jelic S. Pancreatic cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2010 21 Suppl. 5 v55 v58 10.1093/annonc/mdq165 20555103
    [Google Scholar]
  65. Siegel R Miller K Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017 67 1 7 30
    [Google Scholar]
  66. Shi H. Fang W. Liu M. Fu D. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling. Int. J. Cancer 2017 141 7 1389 1401 10.1002/ijc.30831 28608366
    [Google Scholar]
  67. Xu R. Song J. Ruze R. Chen Y. Yin X. Wang C. Zhao Y. SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. Cell Death Dis. 2023 14 8 497 10.1038/s41419‑023‑05987‑7 37542052
    [Google Scholar]
  68. Jin H. Koh M. Lim H. Yong H.Y. Kim E.S. Kim S.Y. Kim K. Jung J. Ryu W.J. Choi K.Y. Moon A. Lipid raft protein flotillin-1 is important for the interaction between SOS1 and H-Ras/K-Ras, leading to Ras activation. Int. J. Cancer 2023 152 9 1933 1946 10.1002/ijc.34443 36691829
    [Google Scholar]
  69. Litwin M.S. Tan H.J. The diagnosis and treatment of prostate cancer: A review. JAMA 2017 317 24 2532 2542 10.1001/jama.2017.7248 28655021
    [Google Scholar]
  70. Škara L. Huđek Turković A. Pezelj I. Vrtarić A. Sinčić N. Krušlin B. Ulamec M. Prostate cancer—Focus on cholesterol. Cancers 2021 13 18 4696 10.3390/cancers13184696 34572923
    [Google Scholar]
  71. Aldahl J. Mi J. Pineda A. Kim W.K. Olson A. Hooker E. He Y. Yu E.J. Le V. Lee D.H. Geradts J. Sun Z. Aberrant activation of hepatocyte growth factor/MET signaling promotes β-catenin–mediated prostatic tumorigenesis. J. Biol. Chem. 2020 295 2 631 644 10.1074/jbc.RA119.011137 31819003
    [Google Scholar]
  72. Comoglio P.M. Giordano S. Trusolino L. Drug development of MET inhibitors: Targeting oncogene addiction and expedience. Nat. Rev. Drug Discov. 2008 7 6 504 516 10.1038/nrd2530 18511928
    [Google Scholar]
  73. Duhon D. Bigelow R.L.H. Coleman D.T. Steffan J.J. Yu C. Langston W. Kevil C.G. Cardelli J.A. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol. Carcinog. 2010 49 8 n/a 10.1002/mc.20649 20623641
    [Google Scholar]
  74. Chinni S.R. Sivalogan S. Dong Z. Filho J.C.T. Deng X. Bonfil R.D. Cher M.L. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: The role of bone microenvironment-associated CXCL12. Prostate 2006 66 1 32 48 10.1002/pros.20318 16114056
    [Google Scholar]
  75. Chinni S.R. Yamamoto H. Dong Z. Sabbota A. Bonfil R.D. Cher M.L. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Mol. Cancer Res. 2008 6 3 446 457 10.1158/1541‑7786.MCR‑07‑0117 18337451
    [Google Scholar]
  76. Kukreja P. Abdel-Mageed A.B. Mondal D. Liu K. Agrawal K.C. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1α (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res. 2005 65 21 9891 9898 10.1158/0008‑5472.CAN‑05‑1293 16267013
    [Google Scholar]
  77. Chen J. Qin P. Tao Z. Ding W. Yao Y. Xu W. Yin D. Tan S. Anticancer activity of methyl protodioscin against prostate cancer by modulation of cholesterol-associated MAPK signaling pathway via FOXO1 induction. Biol. Pharm. Bull. 2023 46 4 574 585 10.1248/bpb.b22‑00682 37005301
    [Google Scholar]
  78. Oh H.Y. Lee E.J. Yoon S. Chung B.H. Cho K.S. Hong S.J. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate 2007 67 10 1061 1069 10.1002/pros.20593 17469127
    [Google Scholar]
  79. Abbasi-Tajarag K. Divsalar A. Saboury A.A. Ghalandari B. Ghourchian H. Destructive effect of anticancer oxali-palladium on heme degradation through the generation of endogenous hydrogen peroxide. J. Biomol. Struct. Dyn. 2016 34 11 2493 2504 10.1080/07391102.2015.1121408 26651835
    [Google Scholar]
  80. Vaidya F.U. Sufiyan Chhipa A. Mishra V. Gupta V.K. Rawat S.G. Kumar A. Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep. 2022 5 12 e1291 10.1002/cnr2.1291 33052041
    [Google Scholar]
  81. Karthika C. Sureshkumar R. Zehravi M. Akter R. Ali F. Ramproshad S. Mondal B. Tagde P. Ahmed Z. Khan F.S. Rahman M.H. Cavalu S. Multidrug resistance of cancer cells and the vital role of P-glycoprotein. Life 2022 12 6 897 10.3390/life12060897 35743927
    [Google Scholar]
  82. Kawano T. Inokuchi J. Eto M. Murata M. Kang J.H. Activators and inhibitors of protein kinase C (PKC): Their applications in clinical trials. Pharmaceutics 2021 13 11 1748 10.3390/pharmaceutics13111748 34834162
    [Google Scholar]
  83. Qin J. Ye L. Wen X. Zhang X. Di Y. Chen Z. Wang Z. Fatty acids in cancer chemoresistance. Cancer Lett. 2023 572 216352 10.1016/j.canlet.2023.216352 37597652
    [Google Scholar]
  84. Kopecka J. Trouillas P. Gašparović A.Č. Gazzano E. Assaraf Y.G. Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist. Updat. 2020 49 100670 10.1016/j.drup.2019.100670 31846838
    [Google Scholar]
  85. Zeng Y. Zhang X. Lin D. Feng X. Liu Y. Fang Z. Zhang W. Chen Y. Zhao M. Wu J. Jiang L. A lysosome-targeted dextran-doxorubicin nanodrug overcomes doxorubicin-induced chemoresistance of myeloid leukemia. J. Hematol. Oncol. 2021 14 1 189 10.1186/s13045‑021‑01199‑8 34749790
    [Google Scholar]
  86. Mukerjee S. Saeedan A.S. Ansari M.N. Singh M. Polyunsaturated fatty acids mediated regulation of membrane biochemistry and tumor cell membrane integrity. Membranes 2021 11 7 479 10.3390/membranes11070479 34203433
    [Google Scholar]
  87. Kaiser F. Huebecker M. Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett. 2020 594 22 3652 3667 10.1002/1873‑3468.13816 32415987
    [Google Scholar]
  88. Yan A. Jia Z. Qiao C. Wang M. Ding X. Cholesterol metabolism in drug-resistant cancer (Review). Int. J. Oncol. 2020 57 5 1103 1115 33491740
    [Google Scholar]
  89. Gupta V.K. Sharma N.S. Kesh K. Dauer P. Nomura A. Giri B. Dudeja V. Banerjee S. Bhattacharya S. Saluja A. Banerjee S. Metastasis and chemoresistance in CD133 expressing pancreatic cancer cells are dependent on their lipid raft integrity. Cancer Lett. 2018 439 101 112 10.1016/j.canlet.2018.09.028 30290209
    [Google Scholar]
  90. Shen H. Xu W. Luo W. Zhou L. Yong W. Chen F. Wu C. Chen Q. Han X. Upregulation of MDR1 gene is related to activation of the MAPK/ERK signal transduction pathway and YB-1 nuclear translocation in B-cell lymphoma. Exp. Hematol. 2011 39 5 558 569 10.1016/j.exphem.2011.01.013 21300134
    [Google Scholar]
  91. Lian W.J. Liu G. Liu Y.J. Zhao Z.W. Yi T. Zhou H.Y. Downregulation of BMP6 enhances cell proliferation and chemoresistance via activation of the ERK signaling pathway in breast cancer. Oncol. Rep. 2013 30 1 193 200 10.3892/or.2013.2462 23674072
    [Google Scholar]
  92. Chen S. Wang Y. Ruan W. Wang X. Pan C. Reversing multidrug resistance in hepatocellular carcinoma cells by inhibiting extracellular signal-regulated kinase/mitogen-activated protein kinase signaling pathway activity. Oncol. Lett. 2014 8 5 2333 2339 10.3892/ol.2014.2521 25295120
    [Google Scholar]
  93. Wei J. Wang R. Lu Y. He S. Ding Y. Flotillin-1 promotes progression and dampens chemosensitivity to cisplatin in gastric cancer via ERK and AKT signaling pathways. Eur. J. Pharmacol. 2022 916 174631 10.1016/j.ejphar.2021.174631 34774850
    [Google Scholar]
  94. Gajate C. Gonzalez-Camacho F. Mollinedo F. Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochem. Biophys. Res. Commun. 2009 380 4 780 784 10.1016/j.bbrc.2009.01.147 19338752
    [Google Scholar]
  95. Gniadecki R. Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem. Biophys. Res. Commun. 2004 320 1 165 169 10.1016/j.bbrc.2004.05.145 15207716
    [Google Scholar]
  96. Miyaji M. Jin Z.X. Yamaoka S. Amakawa R. Fukuhara S. Sato S.B. Kobayashi T. Domae N. Mimori T. Bloom E.T. Okazaki T. Umehara H. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J. Exp. Med. 2005 202 2 249 259 10.1084/jem.20041685 16009715
    [Google Scholar]
  97. Iwai K. Kondo T. Watanabe M. Yabu T. Kitano T. Taguchi Y. Umehara H. Takahashi A. Uchiyama T. Okazaki T. Ceramide increases oxidative damage due to inhibition of catalase by caspase-3-dependent proteolysis in HL-60 cell apoptosis. J. Biol. Chem. 2003 278 11 9813 9822 10.1074/jbc.M201867200 12511568
    [Google Scholar]
  98. Gilad L.A. Bresler T. Gnainsky J. Smirnoff P. Schwartz B. Regulation of vitamin D receptor expression via estrogen-induced activation of the ERK 1/2 signaling pathway in colon and breast cancer cells. J. Endocrinol. 2005 185 3 577 592 10.1677/joe.1.05770 15930183
    [Google Scholar]
  99. Hino M. Doihara H. Kobayashi K. Aoe M. Shimizu N. Caveolin-1 as tumor suppressor gene in breast cancer. Surg. Today 2003 33 7 486 490 10.1007/s10595‑002‑2538‑4 14506991
    [Google Scholar]
  100. Patlolla J. Swamy M. Raju J. Rao C. Overexpression of caveolin-1 in experimental colon adenocarcinomas and human colon cancer cell lines. Oncol. Rep. 2004 11 5 957 963 10.3892/or.11.5.957 15069532
    [Google Scholar]
  101. Sarnataro D. Grimaldi C. Pisanti S. Gazzerro P. Laezza C. Zurzolo C. Bifulco M. Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cancer cells. FEBS Lett. 2005 579 28 6343 6349 10.1016/j.febslet.2005.10.016 16263116
    [Google Scholar]
  102. Tamashiro P.M. Furuya H. Shimizu Y. Kawamori T. Sphingosine kinase 1 mediates head & neck squamous cell carcinoma invasion through sphingosine 1-phosphate receptor 1. Cancer Cell Int. 2014 14 1 76 10.1186/s12935‑014‑0076‑x 25197261
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673346992250217100052
Loading
/content/journals/cmc/10.2174/0109298673346992250217100052
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: MAPK ; ERK1/2 ; tumor ; signal transduction ; chemoresistance ; Lipid rafts
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test