Skip to content
2000
Volume 32, Issue 29
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Due to the high heterogeneity of lung adenocarcinoma (LUAD), which restricts the effectiveness of therapy, precise molecular subgrouping of LUAD is of great significance. Clinical research has demonstrated the significant potential of DNA methylation as a classification indicator for human malignancies.

Methods

WGML framework (which was developed based on weighted gene correlation network analysis (WGCNA), Gene Ontology (GO), and machine learning) was developed to precisely subgroup molecular subtypes of LUAD. This framework included two parts: the WG algorithm and the machine learning part. The WG algorithm part was an original algorithm used to obtain a crucial module, which was characterized by weighted correlation network analysis, functional annotation, and mathematical algorithms. The machine learning part utilized the Boruta algorithm, random forest algorithm, and Gradient Boosting Regression Tree algorithm to select feature genes. Then, based on the results of the WGML framework, subtypes were computed by the hierarchical clustering algorithm. A series of analyses, including dimensionality reduction methods, survival analysis, clinical stage analysis, immune infiltration analysis, tumor environment analysis, immune checkpoints analysis, TIDE analysis, CYT analysis, somatic mutation analysis, and drug sensitivity analysis, were utilized to demonstrate the effectiveness of subgrouping. GEO datasets were used to externally validate the results. Meanwhile, another subgrouping method of LUAD from another study was employed to compare with the WGML framework.

Results

By importing DNA methylation data into the WGML framework, nine genes were obtained to further subgroup LUAD. Three subtypes, the Carcinogenesis subtype, Immune-infiltration subtype, and Chemoresistance subtype, were identified. The dimensionality reduction method exhibited great distinctness between subtypes. A series of analyses were employed to exhibit the difference among the three subtypes and to demonstrate the accuracy of the definition of subtypes. Besides, the WGML framework was compared with a LUAD subgrouping method from another research, which demonstrated that WGML had better efficiency for subgrouping LUAD.

Conclusion

This study provides a novel LUAD subgrouping framework named WGML for the accurate subgrouping of lung adenocarcinoma.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309365240529143615
2024-06-05
2025-10-26
Loading full text...

Full text loading...

References

  1. GoldstrawP. BallD. JettJ.R. Le ChevalierT. LimE. NicholsonA.G. ShepherdF.A. Non-small-cell lung cancer.Lancet201137898041727174010.1016/S0140‑6736(10)62101‑021565398
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  3. CampbellJ.D. AlexandrovA. KimJ. WalaJ. BergerA.H. PedamalluC.S. ShuklaS.A. GuoG. BrooksA.N. MurrayB.A. ImielinskiM. HuX. LingS. AkbaniR. RosenbergM. CibulskisC. RamachandranA. CollissonE.A. KwiatkowskiD.J. LawrenceM.S. WeinsteinJ.N. VerhaakR.G.W. WuC.J. HammermanP.S. CherniackA.D. GetzG. ArtyomovM.N. SchreiberR. GovindanR. MeyersonM. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.Nat. Genet.201648660761610.1038/ng.356427158780
    [Google Scholar]
  4. TavernariD. BattistelloE. DheillyE. PetruzzellaA.S. MinaM. Sordet-DessimozJ. PetersS. KruegerT. GfellerD. RiggiN. OricchioE. LetovanecI. CirielloG. Nongenetic evolution drives lung adenocarcinoma spatial heterogeneity and progression.Cancer Discov.20211161490150710.1158/2159‑8290.CD‑20‑127433563664
    [Google Scholar]
  5. WangC. YuQ. SongT. WangZ. SongL. YangY. ShaoJ. LiJ. NiY. ChaoN. ZhangL. LiW. The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing.Signal Transduct. Target. Ther.20227128910.1038/s41392‑022‑01130‑836008393
    [Google Scholar]
  6. WangY. LiuB. MinQ. YangX. YanS. MaY. LiS. FanJ. WangY. DongB. TengH. LinD. ZhanQ. WuN. Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression.Cell Discov.2023919610.1038/s41421‑023‑00591‑737723144
    [Google Scholar]
  7. XiaoG. LiL. TanzhuG. LiuZ. GaoX. WanX. XiaoD. ChenL. XiaX. ZhouR. Heterogeneity of tumor immune microenvironment of EGFR/ALK-positive tumors versus EGFR/ALK-negative tumors in resected brain metastases from lung adenocarcinoma.J. Immunother. Cancer2023113e00624310.1136/jitc‑2022‑00624336868569
    [Google Scholar]
  8. YuanC. ChenH. TuS. HuangH.Y. PanY. GuiX. KuangM. ShenX. ZhengQ. ZhangY. ChengC. HongH. TaoX. PengY. YaoX. MengF. JiH. ShaoZ. SunY. A systematic dissection of the epigenomic heterogeneity of lung adenocarcinoma reveals two different subclasses with distinct prognosis and core regulatory networks.Genome Biol.202122115610.1186/s13059‑021‑02376‑134001209
    [Google Scholar]
  9. MegyesfalviZ. GayC.M. PopperH. PirkerR. OstorosG. HeekeS. LangC. HoetzeneckerK. SchwendenweinA. BoettigerK. BunnP.A.Jr Renyi-VamosF. SchelchK. ProschH. ByersL.A. HirschF.R. DomeB. Clinical insights into small cell lung cancer: Tumor heterogeneity, diagnosis, therapy, and future directions.CA Cancer J. Clin.202373662065210.3322/caac.2178537329269
    [Google Scholar]
  10. NabetB.Y. HamidiH. LeeM.C. BanchereauR. MorrisS. AdlerL. GayevskiyV. ElhossinyA.M. SrivastavaM.K. PatilN.S. SmithK.A. JesudasonR. ChanC. ChangP.S. FernandezM. RostS. McGinnisL.M. KoeppenH. GayC.M. MinnaJ.D. HeymachJ.V. ChanJ.M. RudinC.M. ByersL.A. LiuS.V. ReckM. ShamesD.S. Immune heterogeneity in small-cell lung cancer and vulnerability to immune checkpoint blockade.Cancer Cell2024423429443.e410.1016/j.ccell.2024.01.01038366589
    [Google Scholar]
  11. GoveiaJ. RohlenovaK. TavernaF. TrepsL. ConradiL.C. PircherA. GeldhofV. de RooijL.P.M.H. KaluckaJ. SokolL. García-CaballeroM. ZhengY. QianJ. TeuwenL.A. KhanS. BoeckxB. WautersE. DecaluwéH. De LeynP. VansteenkisteJ. WeynandB. SagaertX. VerbekenE. WolthuisA. TopalB. EveraertsW. BohnenbergerH. EmmertA. PanovskaD. De SmetF. StaalF.J.T. MclaughlinR.J. ImpensF. LaganiV. VinckierS. MazzoneM. SchoonjansL. DewerchinM. EelenG. KarakachT.K. YangH. WangJ. BolundL. LinL. ThienpontB. LiX. LambrechtsD. LuoY. CarmelietP. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates.Cancer Cell202037342110.1016/j.ccell.2020.03.00232183954
    [Google Scholar]
  12. YangQ. ZhuW. GongH. Subtype classification based on t cell proliferation-related regulator genes and risk model for predicting outcomes of lung adenocarcinoma.Front. Immunol.202314114848310.3389/fimmu.2023.114848337077919
    [Google Scholar]
  13. ChenQ. ZhaoH. HuJ. A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma.Aging (Albany NY)20231521123301236810.18632/aging.20518337938151
    [Google Scholar]
  14. HuaL. WuJ. GeJ. LiX. YouB. WangW. HuB. Identification of lung adenocarcinoma subtypes and predictive signature for prognosis, immune features, and immunotherapy based on immune checkpoint genes.Front. Cell Dev. Biol.202311106008610.3389/fcell.2023.106008637234773
    [Google Scholar]
  15. PattenD.K. CorleoneG. GyőrffyB. PeroneY. SlavenN. BarozziI. ErdősE. SaiakhovaA. GoddardK. VingianiA. ShoushaS. PongorL.S. HadjiminasD.J. SchiavonG. BarryP. PalmieriC. CoombesR.C. ScacheriP. PruneriG. MagnaniL. Enhancer mapping uncovers phenotypic heterogeneity and evolution in patients with luminal breast cancer.Nat. Med.20182491469148010.1038/s41591‑018‑0091‑x30038216
    [Google Scholar]
  16. HayesD.N. MontiS. ParmigianiG. GilksC.B. NaokiK. BhattacharjeeA. SocinskiM.A. PerouC. MeyersonM. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts.J. Clin. Oncol.200624315079509010.1200/JCO.2005.05.174817075127
    [Google Scholar]
  17. DietzS. LifshitzA. KazdalD. HarmsA. EndrisV. WinterH. StenzingerA. WarthA. SillM. TanayA. SültmannH. Global DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas.Int. J. Cancer201914451061107210.1002/ijc.3193930350867
    [Google Scholar]
  18. HuaX. ZhaoW. PesatoriA.C. ConsonniD. CaporasoN.E. ZhangT. ZhuB. WangM. JonesK. HicksB. SongL. SampsonJ. WedgeD.C. ShiJ. LandiM.T. Genetic and epigenetic intratumor heterogeneity impacts prognosis of lung adenocarcinoma.Nat. Commun.2020111245910.1038/s41467‑020‑16295‑532424208
    [Google Scholar]
  19. SongX. ZhangT. DingH. FengY. YangW. YinX. ChenB. LiangY. MaoQ. XiaW. YuG. XuL. DongG. JiangF. Non-genetic stratification reveals epigenetic heterogeneity and identifies vulnerabilities of glycolysis addiction in lung adenocarcinoma subtype.Oncogenesis20221116110.1038/s41389‑022‑00436‑036216804
    [Google Scholar]
  20. WadowskaK. Bil-LulaI. TrembeckiŁ. Śliwińska-MossońM. Genetic markers in lung cancer diagnosis: A review.Int. J. Mol. Sci.20202113456910.3390/ijms2113456932604993
    [Google Scholar]
  21. WangY. HuJ. WuS. FleishmanJ.S. LiY. XuY. ZouW. WangJ. FengY. ChenJ. WangH. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases.Signal Transduct. Target. Ther.20238144910.1038/s41392‑023‑01720‑038072908
    [Google Scholar]
  22. NaF. PanX. ChenJ. ChenX. WangM. ChiP. YouL. ZhangL. ZhongA. ZhaoL. DaiS. ZhangM. WangY. WangB. ZhengJ. WangY. XuJ. WangJ. WuB. ChenM. LiuH. XueJ. HuangM. GongY. ZhuJ. ZhouL. ZhangY. YuM. TianP. FanM. LuZ. XueZ. ZhaoY. YangH. ZhaoC. WangY. HanJ. YangS. XieD. ChenL. ZhongQ. ZengM. LoweS.W. LuY. LiuY. WeiY. ChenC. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming.Nat. Can.20223675376710.1038/s43018‑022‑00361‑635449309
    [Google Scholar]
  23. KimK. RyuT.Y. JungE. HanT.S. LeeJ. KimS.K. RohY.N. LeeM.S. JungC.R. LimJ.H. HamamotoR. LeeH.W. HurK. SonM.Y. KimD.S. ChoH.S. Epigenetic regulation of SMAD3 by histone methyltransferase SMYD2 promotes lung cancer metastasis.Exp. Mol. Med.202355595296410.1038/s12276‑023‑00987‑137121971
    [Google Scholar]
  24. BraitM. SidranskyD. Cancer epigenetics: Above and beyond.Toxicol. Mech. Methods201121427528810.3109/15376516.2011.56267121495866
    [Google Scholar]
  25. HeekeS. GayC.M. EstecioM.R. TranH. MorrisB.B. ZhangB. TangX. RasoM.G. RochaP. LaiS. ArriolaE. HofmanP. HofmanV. KopparapuP. LovlyC.M. ConcannonK. De SousaL.G. LewisW.E. KondoK. HuX. TanimotoA. VokesN.I. NilssonM.B. StewartA. JansenM. HorváthI. GagaM. PanagouliasV. RavivY. FrumkinD. WasserstromA. ShualiA. SchnabelC.A. XiY. DiaoL. WangQ. ZhangJ. Van LooP. WangJ. WistubaI.I. ByersL.A. HeymachJ.V. Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer subtypes.Cancer Cell2024422225237.e510.1016/j.ccell.2024.01.00138278149
    [Google Scholar]
  26. LiangW. ZhaoY. HuangW. GaoY. XuW. TaoJ. YangM. LiL. PingW. ShenH. FuX. ChenZ. LairdP.W. CaiX. FanJ.B. HeJ. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA).Theranostics2019972056207010.7150/thno.2811931037156
    [Google Scholar]
  27. FuY. DominissiniD. RechaviG. HeC. Gene expression regulation mediated through reversible m6A RNA methylation.Nat. Rev. Genet.201415529330610.1038/nrg372424662220
    [Google Scholar]
  28. ShenL. SongC.X. HeC. ZhangY. Mechanism and function of oxidative reversal of DNA and RNA methylation.Annu. Rev. Biochem.201483158561410.1146/annurev‑biochem‑060713‑03551324905787
    [Google Scholar]
  29. JonesP.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond.Nat. Rev. Genet.201213748449210.1038/nrg323022641018
    [Google Scholar]
  30. Capelo-DizA. Lachiondo-OrtegaS. Fernández-RamosD. Cañas-MartínJ. Goikoetxea-UsandizagaN. Serrano- MaciáM. González-RellanM.J. MoscaL. Blazquez-VicensJ. Tinahones-RuanoA. FondevilaM.F. BuyanM. DelgadoT.C. Gutierrez de JuanV. Ayuso-GarcíaP. Sánchez-RuedaA. Velasco-AvilésS. Fernández-SusavilaH. Riobello-SuárezC. DziechciarzB. Montiel-DuarteC. Lopitz-OtsoaF. BizkarguenagaM. Bilbao-GarcíaJ. Bernardo-SeisdedosG. SenraA. Soriano-NavarroM. MilletO. Díaz-LagaresÁ. CrujeirasA.B. Bao-CaamanoA. CabreraD. van LiempdS. Tamayo-CaroM. BorzacchielloL. Gomez-SantosB. BuquéX. Sáenz de UrturiD. González-RomeroF. SimonJ. Rodríguez-AgudoR. RuizA. MatuteC. BeiroaD. Falcon-PerezJ.M. AspichuetaP. Rodríguez-CuestaJ. PorcelliM. PajaresM.A. AmeneiroC. FidalgoM. AransayA.M. Lama-DíazT. BlancoM.G. LópezM. Villa-BellostaR. MüllerT.D. NogueirasR. WoodhooA. Martínez-ChantarM.L. Varela-ReyM. Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting.Cell Metab.202335813731389.e810.1016/j.cmet.2023.07.00237527658
    [Google Scholar]
  31. EhrlichM. Gama-SosaM.A. HuangL.H. MidgettR.M. KuoK.C. McCuneR.A. GehrkeC. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells.Nucleic Acids Res.19821082709272110.1093/nar/10.8.27097079182
    [Google Scholar]
  32. GuY. ZhangC.W.H. WangL. ZhaoY. WangH. YeQ. GaoS. Association analysis between body mass index and genomic DNA methylation across 15 major cancer types.J. Cancer20189142532254210.7150/jca.2353530026852
    [Google Scholar]
  33. BjaanæsM.M. FleischerT. HalvorsenA.R. DaunayA. BusatoF. SolbergS. JørgensenL. KureE. EdvardsenH. Børresen-DaleA.L. BrustugunO.T. TostJ. KristensenV. HellandÅ. Genome-wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene expression and prognosis.Mol. Oncol.201610233034310.1016/j.molonc.2015.10.02126601720
    [Google Scholar]
  34. FabrizioF.P. MazzaT. CastellanaS. SparaneoA. MuscarellaL.A. Epigenetic scanning of KEAP1 CpG sites uncovers new molecular-driven patterns in lung adeno and squamous cell carcinomas.Antioxidants20209990410.3390/antiox909090432971994
    [Google Scholar]
  35. WangJ. HeL. TangY. LiD. YangY. ZengZ. Development and validation of a nomogram with an epigenetic signature for predicting survival in patients with lung adenocarcinoma.Aging20201222232002321610.18632/aging.10409033221751
    [Google Scholar]
  36. ZhangM. ZhangX. MaT. WangC. ZhaoJ. GuY. ZhangY. Precise subtyping reveals immune heterogeneity for hormone receptor-positive breast cancer.Comput. Biol. Med.202316310722210.1016/j.compbiomed.2023.10722237413851
    [Google Scholar]
  37. WoutersJ. VizosoM. Martinez-CardusA. CarmonaF.J. GovaereO. LagunaT. JosephJ. DynoodtP. AuraC. FothM. ClootsR. van den HurkK. BalintB. MurphyI.G. McDermottE.W. SheahanK. JirströmK. NodinB. Mallya-UdupiG. van den OordJ.J. GallagherW.M. EstellerM. Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma.BMC Med.201715110110.1186/s12916‑017‑0851‑328578692
    [Google Scholar]
  38. YuR. HuangX. LinJ. LinS. ShenG. ChenW. Bioinformatics analysis based on DNA methylation data identified in lung adenocarcinoma subgroups with different immune characteristics and clinical outcomes.J. Thorac. Dis.20231542184219710.21037/jtd‑23‑49437197548
    [Google Scholar]
  39. ColapricoA. SilvaT.C. OlsenC. GarofanoL. CavaC. GaroliniD. SabedotT.S. MaltaT.M. PagnottaS.M. CastiglioniI. CeccarelliM. BontempiG. NoushmehrH. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.Nucleic Acids Res.2016448e7110.1093/nar/gkv150726704973
    [Google Scholar]
  40. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: Archive for functional genomics data sets-update.Nucleic Acids Res.201341Database issueD991D99523193258
    [Google Scholar]
  41. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  42. LiberzonA. BirgerC. ThorvaldsdóttirH. GhandiM. MesirovJ.P. TamayoP. The Molecular Signatures Database (MSigDB) hallmark gene set collection.Cell Syst.20151641742510.1016/j.cels.2015.12.00426771021
    [Google Scholar]
  43. YangW. SoaresJ. GreningerP. EdelmanE.J. LightfootH. ForbesS. BindalN. BeareD. SmithJ.A. ThompsonI.R. RamaswamyS. FutrealP.A. HaberD.A. StrattonM.R. BenesC. McDermottU. GarnettM.J. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells.Nucleic Acids Res.201341Database issueD955D96123180760
    [Google Scholar]
  44. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  45. KanehisaM. FurumichiM. TanabeM. SatoY. MorishimaK. KEGG: new perspectives on genomes, pathways, diseases and drugs.Nucleic Acids Res.201745D1D353D36110.1093/nar/gkw109227899662
    [Google Scholar]
  46. ColeS.P.C. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter.J. Biol. Chem.201428945308803088810.1074/jbc.R114.60924825281745
    [Google Scholar]
  47. RobeyR.W. PluchinoK.M. HallM.D. FojoA.T. BatesS.E. GottesmanM.M. Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat. Rev. Cancer201818745246410.1038/s41568‑018‑0005‑829643473
    [Google Scholar]
  48. ChenY.N.P. LaMarcheM.J. ChanH.M. FekkesP. Garcia-FortanetJ. AckerM.G. AntonakosB. ChenC.H.T. ChenZ. CookeV.G. DobsonJ.R. DengZ. FeiF. FirestoneB. FodorM. FridrichC. GaoH. GrunenfelderD. HaoH.X. JacobJ. HoS. HsiaoK. KangZ.B. KarkiR. KatoM. LarrowJ. La BonteL.R. LenoirF. LiuG. LiuS. MajumdarD. MeyerM.J. PalermoM. PerezL. PuM. PriceE. QuinnC. ShakyaS. ShultzM.D. SliszJ. VenkatesanK. WangP. WarmuthM. WilliamsS. YangG. YuanJ. ZhangJ.H. ZhuP. RamseyT. KeenN.J. SellersW.R. StamsT. FortinP.D. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.Nature2016535761014815210.1038/nature1862127362227
    [Google Scholar]
  49. NilssonM.B. YangY. HeekeS. PatelS.A. PoteeteA. UdagawaH. ElaminY.Y. MoranC.A. KashimaY. ArumugamT. YuX. RenX. DiaoL. ShenL. WangQ. ZhangM. RobichauxJ.P. ShiC. PfeilA.N. TranH. GibbonsD.L. BockJ. WangJ. MinnaJ.D. KobayashiS.S. LeX. HeymachJ.V. CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance.Cancer Cell2023412340355.e610.1016/j.ccell.2023.01.00736787696
    [Google Scholar]
  50. RowshanravanB. HallidayN. SansomD.M. CTLA-4: A moving target in immunotherapy.Blood20181311586710.1182/blood‑2017‑06‑74103329118008
    [Google Scholar]
  51. HuangC.T. WorkmanC.J. FliesD. PanX. MarsonA.L. ZhouG. HipkissE.L. RaviS. KowalskiJ. LevitskyH.I. PowellJ.D. PardollD.M. DrakeC.G. VignaliD.A.A. Role of LAG-3 in regulatory T cells.Immunity200421450351310.1016/j.immuni.2004.08.01015485628
    [Google Scholar]
  52. SolomonB.L. Garrido-LagunaI. TIGIT: A novel immunotherapy target moving from bench to bedside.Cancer Immunol. Immunother.201867111659166710.1007/s00262‑018‑2246‑530232519
    [Google Scholar]
  53. Herrera-JuárezM. Serrano-GómezC. Bote-de-CaboH. Paz-AresL. Targeted therapy for lung cancer: Beyond EGFR and ALK.Cancer2023129121803182010.1002/cncr.3475737073562
    [Google Scholar]
  54. PlanchardD. BesseB. GroenH.J.M. SouquetP.J. QuoixE. BaikC.S. BarlesiF. KimT.M. MazieresJ. NovelloS. RigasJ.R. UpalawannaA. D’AmelioA.M.Jr ZhangP. MookerjeeB. JohnsonB.E. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial.Lancet Oncol.201617798499310.1016/S1470‑2045(16)30146‑227283860
    [Google Scholar]
  55. DiaoY. MaX. MinW. LinS. KangH. DaiZ. WangX. ZhaoY. Dasatinib promotes paclitaxel-induced necroptosis in lung adenocarcinoma with phosphorylated caspase-8 by c-Src.Cancer Lett.20163791122310.1016/j.canlet.2016.05.00327195913
    [Google Scholar]
  56. NarayananS. WuZ.X. WangJ.Q. MaH. AcharekarN. KoyaJ. YoganathanS. FangS. ChenZ.S. PanY. The spleen tyrosine kinase inhibitor, entospletinib (gs-9973) restores chemosensitivity in lung cancer cells by modulating abcg2-mediated multidrug resistance.Int. J. Biol. Sci.202117102652266510.7150/ijbs.6122934326700
    [Google Scholar]
  57. FujinoT. SudaK. KogaT. HamadaA. OharaS. ChibaM. ShimojiM. TakemotoT. SohJ. MitsudomiT. Foretinib can overcome common on-target resistance mutations after capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation.J. Hematol. Oncol.20221517910.1186/s13045‑022‑01299‑z35690785
    [Google Scholar]
  58. FennellD.A. PorterC. LesterJ. DansonS. BlackhallF. NicolsonM. NixonL. GardnerG. WhiteA. GriffithsG. CasbardA. Olaparib maintenance versus placebo monotherapy in patients with advanced non-small cell lung cancer (PIN): A multicentre, randomised, controlled, phase 2 trial.E Clinic. Med.20225210159510.1016/j.eclinm.2022.10159535990583
    [Google Scholar]
  59. GaoW. WangM. WangL. LuH. WuS. DaiB. OuZ. ZhangL. HeymachJ.V. GoldK.A. MinnaJ. RothJ.A. HofstetterW.L. SwisherS.G. FangB. Selective antitumor activity of ibrutinib in EGFR-mutant non-small cell lung cancer cells.J. Natl. Cancer Inst.20141069dju20410.1093/jnci/dju20425214559
    [Google Scholar]
  60. RossH.J. BlumenscheinG.R.Jr AisnerJ. DamjanovN. DowlatiA. GarstJ. RigasJ.R. SmylieM. HassaniH. AllenK.E. LeopoldL. ZaksT.Z. ShepherdF.A. Randomized phase II multicenter trial of two schedules of lapatinib as first- or second-line monotherapy in patients with advanced or metastatic non-small cell lung cancer.Clin. Cancer Res.20101661938194910.1158/1078‑0432.CCR‑08‑332820215545
    [Google Scholar]
  61. CiuleanuT.E. AhmedS. KimJ.H. MezgerJ. ParkK. ThomasM. ChenJ. PoondruS. VanTornoutJ.M. WhitcombD. BlackhallF. Randomised Phase 2 study of maintenance linsitinib (OSI-906) in combination with erlotinib compared with placebo plus erlotinib after platinum-based chemotherapy in patients with advanced non-small cell lung cancer.Br. J. Cancer2017117675776610.1038/bjc.2017.22628772281
    [Google Scholar]
  62. ChiapporiA. WilliamsC. NorthfeltD.W. AdamsJ.W. MalikS. EdelmanM.J. RosenP. Van EchoD.A. BergerM.S. HauraE.B. Obatoclax mesylate, a pan-bcl-2 inhibitor, in combination with docetaxel in a phase 1/2 trial in relapsed non-small-cell lung cancer.J. Thorac. Oncol.20149112112510.1097/JTO.000000000000002724346101
    [Google Scholar]
  63. SantoroA. SuW.C. NavarroA. SimonelliM. CH YangJ. ArdizzoniA. BarlesiF. Hyoung KangJ. DiDominickS. AbdelhadyA. ChenX. StammbergerU. FelipE. Phase Ib/II study of ceritinib in combination with ribociclib in patients with ALK-rearranged non–small cell lung cancer.Lung Cancer202216617017710.1016/j.lungcan.2022.02.01035298959
    [Google Scholar]
  64. YuH.A. PerezL. ChangQ. GaoS.P. KrisM.G. RielyG.J. BrombergJ. A phase 1/2 trial of ruxolitinib and erlotinib in patients with EGFR -mutant lung adenocarcinomas with acquired resistance to erlotinib.J. Thorac. Oncol.201712110210910.1016/j.jtho.2016.08.14027613527
    [Google Scholar]
  65. WangX.Y. WangY. LiuH.C. Tamoxifen lowers the MMP-9/TIMP-1 ratio and inhibits the invasion capacity of ER-positive non-small cell lung cancer cells.Biomed. Pharmacother.201165752552810.1016/j.biopha.2011.06.00221993004
    [Google Scholar]
  66. AhnM.J. KimD.W. ChoB.C. KimS.W. LeeJ.S. AhnJ.S. KimT.M. LinC.C. KimH.R. JohnT. KaoS. GoldmanJ.W. SuW.C. NataleR. RabbieS. HarropB. OverendP. YangZ. YangJ.C.H. Activity and safety of AZD3759 in EGFR-mutant non-small-cell lung cancer with CNS metastases (BLOOM): A phase 1, open-label, dose-escalation and dose-expansion study.Lancet Respir. Med.201751189190210.1016/S2213‑2600(17)30378‑829056570
    [Google Scholar]
  67. WangJ. WangY. MeiH. YinZ. GengY. ZhangT. WuG. LinZ. The BET bromodomain inhibitor JQ1 radiosensitizes non-small cell lung cancer cells by upregulating p21.Cancer Lett.201739114115110.1016/j.canlet.2017.01.03128143717
    [Google Scholar]
  68. LaraP.N.Jr LongmateJ. MackP.C. KellyK. SocinskiM.A. SalgiaR. GitlitzB. LiT. KoczywasM. ReckampK.L. GandaraD.R. Phase II study of the AKT inhibitor MK-2206 plus erlotinib in patients with advanced non–small cell lung cancer who previously progressed on erlotinib.Clin. Cancer Res.201521194321432610.1158/1078‑0432.CCR‑14‑328126106072
    [Google Scholar]
  69. LinS. RuanH. QinL. ZhaoC. GuM. WangZ. LiuB. WangH. WangJ. Acquired resistance to EGFR-TKIs in NSCLC mediates epigenetic downregulation of MUC17 by facilitating NF-κB activity via UHRF1/DNMT1 complex.Int. J. Biol. Sci.202319383285110.7150/ijbs.7596336778111
    [Google Scholar]
  70. HjortebjergR. EspelundU. RasmussenT.R. FolkersenB. SteinicheT. GeorgsenJ.B. OxvigC. FrystykJ. Pregnancy-associated plasma protein-a2 is associated with mortality in patients with lung cancer.Front. Endocrinol.20201161410.3389/fendo.2020.0061432982990
    [Google Scholar]
  71. NevesJ.B. RobertsK. NguyenJ.S. El SheikhS. Tran-DangM.A. HorsfieldC. MumtazF. CampbellP. StaussH. TranM.G.B. MitchellT. Defining the origin, evolution, and immune composition of SDH-deficient renal cell carcinoma.iScience2022251110538910.1016/j.isci.2022.10538936345344
    [Google Scholar]
  72. SandovalJ. Mendez-GonzalezJ. NadalE. ChenG. CarmonaF.J. SayolsS. MoranS. HeynH. VizosoM. GomezA. Sanchez-CespedesM. AssenovY. MüllerF. BockC. TaronM. MoraJ. MuscarellaL.A. LiloglouT. DaviesM. PollanM. PajaresM.J. TorreW. MontuengaL.M. BrambillaE. FieldJ.K. RozL. Lo IaconoM. ScagliottiG.V. RosellR. BeerD.G. EstellerM. A prognostic DNA methylation signature for stage I non-small-cell lung cancer.J. Clin. Oncol.201331324140414710.1200/JCO.2012.48.551624081945
    [Google Scholar]
  73. DengL. ChaoH. DengH. YuZ. ZhaoR. HuangL. GongY. ZhuY. WangQ. LiF. LiuL. HeL. TangZ. LiaoC. QiY. WangX. ZengT. ZouH. A novel and sensitive DNA methylation marker for the urine-based liquid biopsies to detect bladder cancer.BMC Cancer202222151010.1186/s12885‑022‑09616‑y35524222
    [Google Scholar]
  74. AndreevK. Denis Iulian TrufaI. SiegemundR. RiekerR. HartmannA. SchmidtJ. SirbuH. FinottoS. Impaired T-bet-pSTAT1α and perforin-mediated immune responses in the tumoral region of lung adenocarcinoma.Br. J. Cancer2015113690291310.1038/bjc.2015.25526348446
    [Google Scholar]
  75. DaugaardI. DominguezD. KjeldsenT.E. KristensenL.S. HagerH. WojdaczT.K. HansenL.L. Identification and validation of candidate epigenetic biomarkers in lung adenocarcinoma.Sci. Rep.2016613580710.1038/srep3580727782156
    [Google Scholar]
  76. FurutaJ. NobeyamaY. UmebayashiY. OtsukaF. KikuchiK. UshijimaT. Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG islands in putative promoter regions in human malignant melanomas.Cancer Res.200666126080608610.1158/0008‑5472.CAN‑06‑015716778180
    [Google Scholar]
  77. HanL. XuG. XuC. LiuB. LiuD. Potential prognostic biomarkers identified by DNA methylation profiling analysis for patients with lung adenocarcinoma.Oncol. Lett.20181533552355710.3892/ol.2018.779029467875
    [Google Scholar]
  78. UmS.W. KimY. LeeB.B. KimD. LeeK.J. KimH.K. HanJ. KimH. ShimY.M. KimD.H. Genome-wide analysis of DNA methylation in bronchial washings.Clin. Epigenetics20181016510.1186/s13148‑018‑0498‑829796116
    [Google Scholar]
  79. LiM. ZhangC. ZhouL. LiS. CaoY.J. WangL. XiangR. ShiY. PiaoY. Identification and validation of novel DNA methylation markers for early diagnosis of lung adenocarcinoma.Mol. Oncol.202014112744275810.1002/1878‑0261.1276732688456
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309365240529143615
Loading
/content/journals/cmc/10.2174/0109298673309365240529143615
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test