Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The term cancer is used to describe a complex pathology characterized by the uncontrollable proliferation of cells, which displays a fast metastatic spread, being a disease with difficult treatment. In this context, Phosphatidylinositol 3-kinase (PI3K) represents a promising pathway to be inhibited, aiming to develop anticancer agents, since it performs a pivotal role in regulating essential cellular processes, including cell proliferation, growth, autophagy, and apoptosis. In parallel, natural compounds can effectively represent a therapeutic strategy to fight against malignant cells. Then, compounds derived from various plant sources, such as flavonoids, terpenoids, alkaloids, coumarins, and lignans, have exhibited remarkable and in anticancer properties. This review focused in the exploration of natural products targeting the PI3K/AKT/m-TOR signaling pathway, demonstrating that these compounds could even further investigated to reveal novel and effective anticancer drugs in the future.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673325229240928040758
2024-10-10
2025-09-12
Loading full text...

Full text loading...

References

  1. OhiaguF.O. ChikezieP.C. ChikezieC.M. EnyohC.E. Anticancer Activity of Nigerian Medicinal Plants: A Review.Futur. J. Pharm. Sci.20217121
    [Google Scholar]
  2. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.2921025220842
    [Google Scholar]
  3. dos Santos NascimentoI.J. de MouraR.O. C-KIT receptor inhibition as a promising approach to design anticancer drugs.Curr. Med. Chem.202330242702270410.2174/092986733066623011111053736631920
    [Google Scholar]
  4. ZayedM.F. Medicinal chemistry of quinazolines as anticancer agents targeting tyrosine kinases.Sci. Pharm.20239121810.3390/scipharm91020018
    [Google Scholar]
  5. ZayedM.F. AhmedH.E.A. IhmaidS. OmarA.S.M. AbdelrahimA.S. Synthesis and screening of some new fluorinated quinazolinone–sulphonamide hybrids as anticancer agents.J. Taibah Univ. Med. Sci.201510333333910.1016/j.jtumed.2015.02.007
    [Google Scholar]
  6. Santos-JuniorP.F. da S. NascimentoI.J. dos S. da SilvaE.C.D. MonteiroK.L.C. de FreitasJ.D. Synthesis of hybrids thiazole–quinoline, thiazole–indole and their analogs: In vitro anti-proliferative effects on cancer cell lines, DNA binding properties and molecular modeling.New J. Chem.202145138471385910.1039/D1NJ02105B
    [Google Scholar]
  7. ZayedM.F. RatebH.S. AhmedS. KhaledO.A. IbrahimS.R.M. Quinazolinone-amino acid hybrids as dual inhibitors of EGFR kinase and tubulin polymerization.Molecules2018237169910.3390/molecules2307169930002297
    [Google Scholar]
  8. LichotaA. GwozdzinskiK. Anticancer activity of natural compounds from plant and marine environment.Int. J. Mol. Sci.20181911353310.3390/ijms1911353330423952
    [Google Scholar]
  9. ZengB. GeC. ZhaoW. FuK. LiuL. LinZ. FuQ. LiZ. LiR. GuoH. LiC. ZhaoL. HuH. YangH. HuangW. HuangY. SongX. Anticancer effect of the traditional Chinese medicine herb Maytenus compound via the EGFR/PI3K/AKT/GSK3β pathway.Transl. Cancer Res.2019852130214010.21037/tcr.2019.09.3035116963
    [Google Scholar]
  10. DingH.W. YuL. BaiM. xuan; Qin, X.C.; Song, M. tong; Zhao, Q.C. Design, synthesis and evaluation of some 1,6-disubstituted-1h-benzo[d]imidazoles derivatives targeted PI3K as anticancer agents.Bioorg. Chem.201993
    [Google Scholar]
  11. LiuH. ZhangL. ZhangX. CuiZ. PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy.OncoTargets Ther.2017102865287110.2147/OTT.S9526728652768
    [Google Scholar]
  12. EngelmanJ.A. LuoJ. CantleyL.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism.Nat. Rev. Genet.20067860661910.1038/nrg187916847462
    [Google Scholar]
  13. XinM. WangH.Y. ZhangH. ShenY. ZhangS.Q. Synthesis and biological activity of new 2,4,6-trisubstituted triazines as potential phosphoinositide 3-kinase inhibitors.J. Chem. Res.2020447-839340210.1177/1747519820904844
    [Google Scholar]
  14. YangH. LiQ. SuM. LuoF. LiuY. WangD. FanY. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition.Bioorg. Med. Chem.20214611634610.1016/j.bmc.2021.11634634403956
    [Google Scholar]
  15. Al HasanM. SabirianovM. RedwineG. GoettschK. YangS.X. ZhongH.A. Binding and selectivity studies of phosphatidylinositol 3-kinase (PI3K) inhibitors.J. Mol. Graph. Model.202312110843310.1016/j.jmgm.2023.10843336812742
    [Google Scholar]
  16. LiuP. ChengH. ThomasM. Roberts, and J.J.Z. Targeting the Phosphoinositide 3-Kinase (Pi.Cancer20118627644
    [Google Scholar]
  17. Garcia-EcheverriaC. SellersW.R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer.Oncogene200827415511552610.1038/onc.2008.24618794885
    [Google Scholar]
  18. YuM. ChenJ. XuZ. YangB. HeQ. LuoP. YanH. YangX. Development and safety of PI3K inhibitors in cancer.Arch. Toxicol.202397363565010.1007/s00204‑023‑03440‑436773078
    [Google Scholar]
  19. MengD. HeW. ZhangY. LiangZ. ZhengJ. ZhangX. ZhengX. ZhanP. ChenH. LiW. CaiL. Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review).Pharmacol. Res.202117310590010.1016/j.phrs.2021.10590034547385
    [Google Scholar]
  20. ScottW.J. HentemannM.F. RowleyR.B. BullC.O. JenkinsS. BullionA.M. JohnsonJ. RedmanA. RobbinsA.H. EslerW. FracassoR.P. GarrisonT. HamiltonM. MichelsM. WoodJ.E. WilkieD.P. XiaoH. LevyJ. StasikE. LiuN. SchaeferM. BrandsM. LefrancJ. Discovery and SAR of Novel 2,3-Dihydroimidazo[1,2- c ]quinazoline PI3K Inhibitors: Identification of Copanlisib (BAY 80-6946).ChemMedChem201611141517153010.1002/cmdc.20160014827310202
    [Google Scholar]
  21. SuhailM. AlZahraniW.M. ShakilS. TariqueM. TabrezS. ZughaibiT.A. RehanM. Analysis of some flavonoids for inhibitory mechanism against cancer target phosphatidylinositol 3-kinase (PI3K) using computational tool.Front. Pharmacol.202314123617310.3389/fphar.2023.123617337900167
    [Google Scholar]
  22. ChenH. GaoY. WangA. ZhouX. ZhengY. ZhouJ. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents.Eur. J. Med. Chem.20159264865510.1016/j.ejmech.2015.01.03125617694
    [Google Scholar]
  23. da Silva-JúniorE.F. dos Santos NascimentoI.J. TNF-α inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents.Comb. Chem. High Throughput Screen.202225142317234010.2174/138620732466621071516594334269666
    [Google Scholar]
  24. XieS.B. HeX.X. YaoS.K. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells.Int. J. Oncol.201547251752610.3892/ijo.2015.302326034977
    [Google Scholar]
  25. YinZ. YangY. GuoT. VeeraraghavanV.P. WangX. Potential chemotherapeutic effect of betalain against human non-small cell lung cancer through PI3K /Akt/mTOR signaling pathway.Environ. Toxicol.20213661011102010.1002/tox.2310033522684
    [Google Scholar]
  26. LiG. ZhangC. LiangW. ZhangY. ShenY. TianX. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells.Pharm. Biol.2021591213010.1080/13880209.2020.186540733417512
    [Google Scholar]
  27. ZhengX. LiW. XuH. LiuJ. RenL. YangY. LiS. WangJ. JiT. DuG. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway.Acta Pharm. Sin. B202111113465348010.1016/j.apsb.2021.05.02734900530
    [Google Scholar]
  28. QiX. ChenY. LiuS. LiuL. YuZ. YinL. FuL. DengM. LiangS. LüM. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway.Pharm. Biol.202361169670910.1080/13880209.2023.220078737092313
    [Google Scholar]
  29. JangJ.H. ParkJ.E. HanJ.S. Scopoletin increases glucose uptake through activation of PI3K and AMPK signaling pathway and improves insulin sensitivity in 3T3-L1 cells.Nutr. Res.202074526110.1016/j.nutres.2019.12.00331945607
    [Google Scholar]
  30. RasulA. YuB. KhanM. ZhangK. IqbalF. MaT. YangH. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways.Int. J. Oncol.20124041153116110.3892/ijo.2011.127722139054
    [Google Scholar]
  31. YangM. WangH. ZhouM. LiuW. KuangP. LiangH. YuanQ. The natural compound sulforaphene, as a novel anticancer reagent, targeting PI3K-AKT signaling pathway in lung cancer.Oncotarget2016747766567666610.18632/oncotarget.1230727765931
    [Google Scholar]
  32. RongL. LiZ. LengX. LiH. MaY. ChenY. SongF. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway.Biomed. Pharmacother.202012210972610.1016/j.biopha.2019.10972631918283
    [Google Scholar]
  33. HasibuanP.A.Z. HarahapU. SitorusP. SatriaD. The anticancer activities of Vernonia amygdalina Delile. Leaves on 4T1 breast cancer cells through phosphoinositide 3-kinase (PI3K) pathway.Heliyon202067e0444910.1016/j.heliyon.2020.e0444932715129
    [Google Scholar]
  34. CDC. Global Noncommunicable disease: advancing innovative, evidence-based interventions to prevent and control NCDS. CDC Stacks.2023e1e2Available from: https://stacks.cdc.gov/view/cdc/141891
  35. WHO. A global compact to save lives and improve livelihoods for people living with NCDs. World Health Organization.2022Available from: https://www.who.int/initiatives/global-noncommunicable-diseases-compact-2020-2030 (Accessed on: november 1st, 2024).
  36. WHO. Global cancer burden growing, amidst mounting need for services. World Health Organization.2024Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (Accessed on: november 1st, 2024).
  37. CamposA.D. WeisS.M. ChereshD.A. Metastasis is a highly stressful process.Cancer Metastasis Rev.20203941021102210.1007/s10555‑020‑09938‑y33159274
    [Google Scholar]
  38. SuhailY. CainM.P. VanajaK. KurywchakP.A. LevchenkoA. KalluriR. Kshitiz. Systems biology of cancer metastasis.Cell Syst.20199210912710.1016/j.cels.2019.07.00331465728
    [Google Scholar]
  39. JinX. DemereZ. NairK. AliA. FerraroG.B. NatoliT. DeikA. PetronioL. TangA.A. ZhuC. WangL. RosenbergD. MangenaV. RothJ. ChungK. JainR.K. ClishC.B. Vander HeidenM.G. GolubT.R. A metastasis map of human cancer cell lines.Nature2020588783733133610.1038/s41586‑020‑2969‑233299191
    [Google Scholar]
  40. LuY. ChanY.T. TanH.Y. LiS. WangN. FengY. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy.Mol. Cancer20201917910.1186/s12943‑020‑01197‑332340605
    [Google Scholar]
  41. ZhouY. ZhangY. GongH. LuoS. CuiY. The role of exosomes and their applications in cancer.Int. J. Mol. Sci.202122221220410.3390/ijms22221220434830085
    [Google Scholar]
  42. ChenS. CaoZ. PrettnerK. KuhnM. YangJ. JiaoL. WangZ. LiW. GeldsetzerP. BärnighausenT. BloomD.E. WangC. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050.JAMA Oncol.20239446547210.1001/jamaoncol.2022.782636821107
    [Google Scholar]
  43. XiaoY. LiuP. WeiJ. ZhangX. GuoJ. LinY. Recent progress in targeted therapy for non-small cell lung cancer.Front. Pharmacol.202314112554710.3389/fphar.2023.112554736909198
    [Google Scholar]
  44. CDC. Cancer Treatments.Available from: https://www.cdc.gov/cancer-survivors/patients/treatments.html
    [Google Scholar]
  45. PanZ. ZhuangJ. JiC. CaiZ. LiaoW. HuangZ. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression.Oncol. Lett.20181544821482610.3892/ol.2018.798829552121
    [Google Scholar]
  46. HuangM. LuJ.J. DingJ. Natural products in cancer therapy: Past, present and future.Nat. Prod. Bioprospect.202111151310.1007/s13659‑020‑00293‑733389713
    [Google Scholar]
  47. MiricescuD. TotanA. Stanescu-SpinuI.I. BadoiuS.C. StefaniC. GreabuM. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects.Int. J. Mol. Sci.202022117310.3390/ijms2201017333375317
    [Google Scholar]
  48. KhanK. QuispeC. JavedZ. IqbalM.J. SadiaH. RazaS. IrshadA. SalehiB. ReinerŽ. Sharifi-RadJ. Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer.Cancer Cell Int.202020156010.1186/s12935‑020‑01660‑733292283
    [Google Scholar]
  49. TewariD. PatniP. BishayeeA. SahA.N. BishayeeA. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy.Semin. Cancer Biol.20228011710.1016/j.semcancer.2019.12.00831866476
    [Google Scholar]
  50. CarneroA. Blanco-AparicioC. RennerO. LinkW. LealJ. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications.Curr. Cancer Drug Targets20088318719810.2174/15680090878429365918473732
    [Google Scholar]
  51. HennessyB.T. SmithD.L. RamP.T. LuY. MillsG.B. Exploiting the PI3K/AKT pathway for cancer drug discovery.Nat. Rev. Drug Discov.2005412988100410.1038/nrd190216341064
    [Google Scholar]
  52. FattahiS. Amjadi-MohebF. TabaripourR. AshrafiG.H. Akhavan-NiakiH. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond.Life Sci.202026211851310.1016/j.lfs.2020.11851333011222
    [Google Scholar]
  53. SinghS.S. YapW.N. ArfusoF. KarS. WangC. CaiW. DharmarajanA.M. SethiG. KumarA.P. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?World J. Gastroenterol.20152143122611227310.3748/wjg.v21.i43.1226126604635
    [Google Scholar]
  54. ParkJ.H. PyunW.Y. ParkH.W. Cancer metabolism: Phenotype, signaling and therapeutic targets.Cells2020910230810.3390/cells910230833081387
    [Google Scholar]
  55. GoldarS. KhanianiM.S. DerakhshanS.M. BaradaranB. Molecular mechanisms of apoptosis and roles in cancer development and treatment.Asian Pac. J. Cancer Prev.20151662129214410.7314/APJCP.2015.16.6.212925824729
    [Google Scholar]
  56. BalakrishnanA. ChailletJ.R. Role of the inositol polyphosphate-4-phosphatase type II Inpp4b in the generation of ovarian teratomas.Dev. Biol.2013373111812910.1016/j.ydbio.2012.10.01123078915
    [Google Scholar]
  57. ParkJ.B. LeeC.S. JangJ.H. GhimJ. KimY.J. YouS. HwangD. SuhP.G. RyuS.H. Phospholipase signalling networks in cancer.Nat. Rev. Cancer2012121178279210.1038/nrc337923076158
    [Google Scholar]
  58. SarbassovD.D. GuertinD.A. AliS.M. SabatiniD.M. Phosphorylation and regulation of Akt/PKB by the rictor-MTOR complex.Science2005307571210981101
    [Google Scholar]
  59. VanhaesebroeckB. Guillermet-GuibertJ. GrauperaM. BilangesB. The emerging mechanisms of isoform-specific PI3K signalling.Nat. Rev. Mol. Cell Biol.201011532934110.1038/nrm288220379207
    [Google Scholar]
  60. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑534916492
    [Google Scholar]
  61. WendelH.G. StanchinaE. FridmanJ.S. MalinaA. RayS. KoganS. Cordon-CardoC. PelletierJ. LoweS.W. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy.Nature2004428698033233710.1038/nature0236915029198
    [Google Scholar]
  62. ZinzallaV. StrackaD. OppligerW. HallM.N. Activation of mTORC2 by association with the ribosome.Cell2011144575776810.1016/j.cell.2011.02.01421376236
    [Google Scholar]
  63. DossouA.S. BasuA. The emerging roles of mTORC1 in macromanaging autophagy.Cancers (Basel)20191110142210.3390/cancers1110142231554253
    [Google Scholar]
  64. UekiK. FrumanD.A. YballeC.M. FasshauerM. KleinJ. AsanoT. CantleyL.C. KahnC.R. Positive and negative roles of p85α and p85β regulatory subunits of phosphoinositide 3-kinase in insulin signaling.J. Biol. Chem.201729213560810.1074/jbc.A117.30560228363934
    [Google Scholar]
  65. LeeH.J. Venkatarame Gowda SaralammaV. KimS.M. HaS.E. RahaS. LeeW.S. KimE.H. LeeS.J. HeoJ.D. KimG.S. Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway.Nutrients2018108104310.3390/nu1008104330096805
    [Google Scholar]
  66. AhmadI. HoqueM. AlamS.S.M. ZughaibiT.A. TabrezS. Curcumin and plumbagin synergistically target the PI3K/Akt/mTOR pathway: A prospective role in cancer treatment.Int. J. Mol. Sci.2023247665110.3390/ijms2407665137047624
    [Google Scholar]
  67. DoustvandiM.A. MohammadnejadF. MansooriB. TajalliH. MohammadiA. MokhtarzadehA. BaghbaniE. KhazeV. HajiasgharzadehK. MoghaddamM.M. HamblinM.R. BaradaranB. Photodynamic therapy using zinc phthalocyanine with low dose of diode laser combined with doxorubicin is a synergistic combination therapy for human SK-MEL-3 melanoma cells.Photodiagn. Photodyn. Ther.201928889710.1016/j.pdpdt.2019.08.02731454716
    [Google Scholar]
  68. YuanY. LongH. ZhouZ. FuY. JiangB. PI3K–AKT-targeting breast cancer treatments: Natural products and synthetic compounds.Biomolecules20231319310.3390/biom1301009336671478
    [Google Scholar]
  69. DanielP.M. FilizG. BrownD.V. ChristieM. WaringP.M. ZhangY. HaynesJ.M. PoutonC. FlanaganD. VincanE. JohnsT.G. MontgomeryK. PhillipsW.A. MantamadiotisT. PI3K activation in neural stem cells drives tumorigenesis which can be ameliorated by targeting the cAMP response element binding protein.Neuro-oncol.201820101344135510.1093/neuonc/noy06829718345
    [Google Scholar]
  70. JungC.H. RoS.H. CaoJ. OttoN.M. KimD.H. mTOR regulation of autophagy.FEBS Lett.201058471287129510.1016/j.febslet.2010.01.01720083114
    [Google Scholar]
  71. DüvelK. YeciesJ.L. MenonS. RamanP. LipovskyA.I. SouzaA.L. TriantafellowE. MaQ. GorskiR. CleaverS. Vander HeidenM.G. MacKeiganJ.P. FinanP.M. ClishC.B. MurphyL.O. ManningB.D. Activation of a metabolic gene regulatory network downstream of mTOR complex 1.Mol. Cell201039217118310.1016/j.molcel.2010.06.02220670887
    [Google Scholar]
  72. DeprezJ. VertommenD. AlessiD.R. HueL. RiderM.H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades.J. Biol. Chem.199727228172691727510.1074/jbc.272.28.172699211863
    [Google Scholar]
  73. WaldhartA.N. DykstraH. PeckA.S. BoguslawskiE.A. MadajZ.B. WenJ. VeldkampK. HollowellM. ZhengB. CantleyL.C. McGrawT.E. WuN. Phosphorylation of TXNIP by AKT mediates acute influx of glucose in response to insulin.Cell Rep.201719102005201310.1016/j.celrep.2017.05.04128591573
    [Google Scholar]
  74. LeeJ.V. CarrerA. ShahS. SnyderN.W. WeiS. VennetiS. WorthA.J. YuanZ.F. LimH.W. LiuS. JacksonE. AielloN.M. HaasN.B. RebbeckT.R. JudkinsA. WonK.J. ChodoshL.A. GarciaB.A. StangerB.Z. FeldmanM.D. BlairI.A. WellenK.E. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation.Cell Metab.201420230631910.1016/j.cmet.2014.06.00424998913
    [Google Scholar]
  75. CourtneyK.D. CorcoranR.B. EngelmanJ.A. The PI3K pathway as drug target in human cancer.J. Clin. Oncol.20102861075108310.1200/JCO.2009.25.364120085938
    [Google Scholar]
  76. YangJ. NieJ. MaX. WeiY. PengY. WeiX. Targeting PI3K in cancer: mechanisms and advances in clinical trials.Mol. Cancer20191812610.1186/s12943‑019‑0954‑x30782187
    [Google Scholar]
  77. NakanishiY. WalterK. SpoerkeJ.M. O’BrienC. HuwL.Y. HamptonG.M. LacknerM.R. Activating mutations in PIK3CB confer resistance to PI3K inhibition and define a novel oncogenic role for p110β.Cancer Res.20167651193120310.1158/0008‑5472.CAN‑15‑220126759240
    [Google Scholar]
  78. EngelmanJ.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations.Nat. Rev. Cancer20099855056210.1038/nrc266419629070
    [Google Scholar]
  79. ShahN.P. KasapC. WeierC. BalbasM. NicollJ.M. BleickardtE. NicaiseC. SawyersC.L. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis.Cancer Cell200814648549310.1016/j.ccr.2008.11.00119061839
    [Google Scholar]
  80. YapT.A. GarrettM.D. WaltonM.I. RaynaudF. de BonoJ.S. WorkmanP. Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises.Curr. Opin. Pharmacol.20088439341210.1016/j.coph.2008.08.00418721898
    [Google Scholar]
  81. FoukasL.C. ClaretM. PearceW. OkkenhaugK. MeekS. PeskettE. SanchoS. SmithA.J.H. WithersD.J. VanhaesebroeckB. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation.Nature2006441709136637010.1038/nature0469416625210
    [Google Scholar]
  82. ZhangJ. GrindleyJ.C. YinT. JayasingheS. HeX.C. RossJ.T. HaugJ.S. RuppD. Porter-WestpfahlK.S. WiedemannL.M. WuH. LiL. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention.Nature2006441709251852210.1038/nature0474716633340
    [Google Scholar]
  83. EdiriweeraM.K. TennekoonK.H. SamarakoonS.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance.Semin. Cancer Biol.20195914716010.1016/j.semcancer.2019.05.01231128298
    [Google Scholar]
  84. JeanS. KigerA.A. Classes of phosphoinositide 3-kinases at a glance.J. Cell Sci.2014127592392810.1242/jcs.09377324587488
    [Google Scholar]
  85. YuanT.L. CantleyL.C. PI3K pathway alterations in cancer: variations on a theme.Oncogene200827415497551010.1038/onc.2008.24518794884
    [Google Scholar]
  86. FritschR. DownwardJ. SnapShot: Class I PI3K isoform signaling.Cell20131544940940.e110.1016/j.cell.2013.07.04523953121
    [Google Scholar]
  87. KimC. LeeJ.H. KoJ.H. ChinnathambiA. AlharbiS.A. ShairO.H.M. SethiG. AhnK.S. Formononetin regulates multiple oncogenic signaling cascades and enhances sensitivity to bortezomib in a multiple myeloma mouse model.Biomolecules20199726210.3390/biom907026231284669
    [Google Scholar]
  88. YapT.A. CardenC.P. KayeS.B. Beyond chemotherapy: targeted therapies in ovarian cancer.Nat. Rev. Cancer20099316718110.1038/nrc258319238149
    [Google Scholar]
  89. TriscottJ. RubinM.A. Prostate power play: Does Pik3ca accelerate Pten -deficient cancer progression?Cancer Discov.20188668268510.1158/2159‑8290.CD‑18‑036929858226
    [Google Scholar]
  90. BrazzattiJ.A. Klingler-HoffmannM. Haylock-JacobsS. Harata-LeeY. NiuM. HigginsM.D. KochetkovaM. HoffmannP. McCollS.R. Differential roles for the p101 and p84 regulatory subunits of PI3Kγ in tumor growth and metastasis.Oncogene201231182350236110.1038/onc.2011.41421996737
    [Google Scholar]
  91. CroessmannS. SheehanJ.H. LeeK. SliwoskiG. HeJ. NagyR. RiddleD. MayerI.A. BalkoJ.M. LanmanR. MillerV.A. CantleyL.C. MeilerJ. ArteagaC.L. PIK3CA C2 domain deletions hyperactivate phosphoinositide 3-kinase (PI3K), generate oncogene dependence, and are exquisitely sensitive to PI3K α inhibitors.Clin. Cancer Res.20182461426143510.1158/1078‑0432.CCR‑17‑214129284706
    [Google Scholar]
  92. WalkerE.H. PerisicO. RiedC. StephensL. WilliamsR.L. Structural insights into phosphoinositide 3-kinase catalysis and signalling.Nature1999402675931332010.1038/4631910580505
    [Google Scholar]
  93. ZhaoL. VogtP.K. Class I PI3K in oncogenic cellular transformation.Oncogene200827415486549610.1038/onc.2008.24418794883
    [Google Scholar]
  94. MuruganA.K. MunirajanA.K. TsuchidaN. Genetic deregulation of the PIK3CA oncogene in oral cancer.Cancer Lett.2013338219320310.1016/j.canlet.2013.04.00523597702
    [Google Scholar]
  95. MartiniM. De SantisM.C. BracciniL. GulluniF. HirschE. PI3K/AKT signaling pathway and cancer: an updated review.Ann. Med.201446637238310.3109/07853890.2014.91283624897931
    [Google Scholar]
  96. BackerJ.M. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34.Biochem. J.2016473152251227110.1042/BCJ2016017027470591
    [Google Scholar]
  97. DobbinZ. LandenC. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer.Int. J. Mol. Sci.20131448213822710.3390/ijms1404821323591839
    [Google Scholar]
  98. VidottoT. MeloC.M. Lautert-DutraW. ChavesL.P. ReisR.B. SquireJ.A. Pan-cancer genomic analysis shows hemizygous PTEN loss tumors are associated with immune evasion and poor outcome.Sci. Rep.2023131504910.1038/s41598‑023‑31759‑636977733
    [Google Scholar]
  99. JiaS. LiuZ. ZhangS. LiuP. ZhangL. LeeS.H. ZhangJ. SignorettiS. LodaM. RobertsT.M. ZhaoJ.J. Essential roles of PI(3)K–p110β in cell growth, metabolism and tumorigenesis.Nature2008454720577677910.1038/nature0709118594509
    [Google Scholar]
  100. CarneroA. ParamioJ.M. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models.Front. Oncol.2014425210.3389/fonc.2014.0025225295225
    [Google Scholar]
  101. ZhuK. WuY. HeP. FanY. ZhongX. ZhengH. LuoT. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer.Cells20221116250810.3390/cells1116250836010585
    [Google Scholar]
  102. PengY. WangY. ZhouC. MeiW. ZengC. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway?Front. Oncol.20221281912810.3389/fonc.2022.81912835402264
    [Google Scholar]
  103. XuW. YangZ. LuN. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition.Cell Adhes. Migr.20159431732410.1080/19336918.2015.101668626241004
    [Google Scholar]
  104. VaraJ.Á.F. CasadoE. de CastroJ. CejasP. Belda-IniestaC. González-BarónM. PI3K/Akt signalling pathway and cancer.Cancer Treat. Rev.200430219320410.1016/j.ctrv.2003.07.00715023437
    [Google Scholar]
  105. LiuR. ChenY. LiuG. LiC. SongY. CaoZ. LiW. HuJ. LuC. LiuY. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers.Cell Death Dis.202011979710.1038/s41419‑020‑02998‑632973135
    [Google Scholar]
  106. HillmannP. FabbroD. PI3K/mTOR pathway inhibition: Opportunities in oncology and rare genetic diseases.Int. J. Mol. Sci.20192022579210.3390/ijms2022579231752127
    [Google Scholar]
  107. SheridanC. DownwardJ. Inhibiting the RAS-PI3K pathway in cancer therapy.Enzymes.201334Pt B1073610.1016/B978‑0‑12‑420146‑0.00005‑6
    [Google Scholar]
  108. NoorolyaiS. ShajariN. BaghbaniE. SadreddiniS. BaradaranB. The relation between PI3K/AKT signalling pathway and cancer.Gene201969812012810.1016/j.gene.2019.02.07630849534
    [Google Scholar]
  109. RaynaudF.I. EcclesS.A. PatelS. AlixS. BoxG. ChuckowreeI. FolkesA. GowanS. De Haven BrandonA. Di StefanoF. HayesA. HenleyA.T. LensunL. Pergl-WilsonG. RobsonA. SaghirN. ZhyvoloupA. McDonaldE. SheldrakeP. ShuttleworthS. ValentiM. WanN.C. ClarkeP.A. WorkmanP. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941.Mol. Cancer Ther.2009871725173810.1158/1535‑7163.MCT‑08‑120019584227
    [Google Scholar]
  110. LiuP. ChengH. RobertsT.M. ZhaoJ.J. Targeting the phosphoinositide 3-kinase pathway in cancer.Nat. Rev. Drug Discov.20098862764410.1038/nrd292619644473
    [Google Scholar]
  111. LiuN. RowleyB.R. BullC.O. SchneiderC. HaegebarthA. SchatzC.A. FracassoP.R. WilkieD.P. HentemannM. WilhelmS.M. ScottW.J. MumbergD. ZiegelbauerK. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models.Mol. Cancer Ther.201312112319233010.1158/1535‑7163.MCT‑12‑0993‑T24170767
    [Google Scholar]
  112. JankuF. YapT.A. Meric-BernstamF. Targeting the PI3K pathway in cancer: are we making headway?Nat. Rev. Clin. Oncol.201815527329110.1038/nrclinonc.2018.2829508857
    [Google Scholar]
  113. GlavianoA. FooA.S.C. LamH.Y. YapK.C.H. JacotW. JonesR.H. EngH. NairM.G. MakvandiP. GeoergerB. KulkeM.H. BairdR.D. PrabhuJ.S. CarboneD. PecoraroC. TehD.B.L. SethiG. CavalieriV. LinK.H. Javidi-SharifiN.R. ToskaE. DavidsM.S. BrownJ.R. DianaP. StebbingJ. FrumanD.A. KumarA.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer.Mol. Cancer202322113810.1186/s12943‑023‑01827‑637596643
    [Google Scholar]
  114. CidadoJ. ParkB.H. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy.J. Mammary Gland Biol. Neoplasia2012173-420521610.1007/s10911‑012‑9264‑222865098
    [Google Scholar]
  115. MassacesiC. Di TomasoE. UrbanP. GermaC. QuadtC. TrandafirL. AimoneP. FretaultN. DharanB. TavorathR. HirawatS. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design.Onco Targets Ther.2016920321010.2147/OTT.S8996726793003
    [Google Scholar]
  116. FuretP. GuagnanoV. FairhurstR.A. Imbach-WeeseP. BruceI. KnappM. FritschC. BlascoF. BlanzJ. AichholzR. HamonJ. FabbroD. CaravattiG. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation.Bioorg. Med. Chem. Lett.201323133741374810.1016/j.bmcl.2013.05.00723726034
    [Google Scholar]
  117. NascimentoI.J.S. CavalcantiM.A.T. de MouraR.O. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases.Eur. J. Med. Chem.202325811555010.1016/j.ejmech.2023.11555037336067
    [Google Scholar]
  118. dos Santos NascimentoI.J. da Silva RodriguesÉ.E. da SilvaM.F. de Araújo-JúniorJ.X. de MouraR.O. Advances in computational methods to discover new NS2B-NS3 inhibitors useful against dengue and zika viruses.Curr. Top. Med. Chem.202222292435246210.2174/156802662366622112212133036415099
    [Google Scholar]
  119. dos Santos NascimentoI.J. da Silva-JúniorE.F. de AquinoT.M. Molecular modeling targeting transmembrane serine protease 2 (TMPRSS2) as an alternative drug target against coronaviruses.Curr. Drug Targets202223324025910.2174/138945012266621080909090934370633
    [Google Scholar]
  120. dos Santos NascimentoI.J. de AquinoT.M. da Silva JúniorE.F. computer-aided drug design of anti-inflammatory agents targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1).Curr. Med. Chem.202229335397541910.2174/092986732966622031712294835301943
    [Google Scholar]
  121. dos Santos NascimentoI.J. Santana GomesJ.N. de Oliveira VianaJ. The power of molecular dynamics simulations and their applications to discover cysteine protease inhibitors.Mini-Reviews. Med. Chem.2023241111251146
    [Google Scholar]
  122. Santos NascimentoI.J. Applied Computer-Aided Drug Design: Models and MethodsBentham Science Publishers2023
    [Google Scholar]
  123. SinghP. BastF. Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components.Med. Chem. Res.20142341690170010.1007/s00044‑013‑0774‑2
    [Google Scholar]
  124. DotoloS. CervelleraC. RussoM. RussoG.L. FacchianoA. Virtual screening of natural compounds as potential PI3K-AKT1 signaling pathway inhibitors and experimental validation.Molecules202126249210.3390/molecules2602049233477701
    [Google Scholar]
  125. GulatiN. LaudetB. ZohrabianV.M. MuraliR. Jhanwar-UniyalM. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway.Anticancer Res.2006262A1177118116619521
    [Google Scholar]
  126. YuanZ. LongC. JunmingT. QihuanL. YoushunZ. ChanZ. Quercetin-induced apoptosis of HL-60 cells by reducing PI3K/Akt.Mol. Biol. Rep.20123977785779310.1007/s11033‑012‑1621‑022555976
    [Google Scholar]
  127. GranatoM. RizzelloC. Gilardini MontaniM.S. CuomoL. VitilloM. SantarelliR. GonnellaR. D’OraziG. FaggioniA. CironeM. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways.J. Nutr. Biochem.20174112413610.1016/j.jnutbio.2016.12.01128092744
    [Google Scholar]
  128. YanW. MaX. ZhaoX. ZhangS. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro.Drug Des. Devel. Ther.2018123961397210.2147/DDDT.S18193930510404
    [Google Scholar]
  129. RajendranP. AmmarR.B. Al-SaeediF.J. MohamedM.E. ElNaggarM.A. Al-RamadanS.Y. BekhetG.M. SolimanA.M. Kaempferol inhibits zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-Mediated Nrf2 signaling pathway: in vitro and in vivo studies.Int. J. Mol. Sci.202022121710.3390/ijms2201021733379332
    [Google Scholar]
  130. LiL. LinZ. YuanJ. LiP. WangQ. ChoN. WangY. LinZ. The neuroprotective mechanisms of naringenin: Inhibition of apoptosis through the PI3K/AKT pathway after hypoxic-ischemic brain damage.J. Ethnopharmacol.2024318Pt A11694110.1016/j.jep.2023.11694137480970
    [Google Scholar]
  131. JiangH. ZhangL. KuoJ. KuoK. GautamS.C. GrocL. RodriguezA.I. KoubiD. Jackson HunterT. CorcoranG.B. SeidmanM.D. LevineR.A. Resveratrol-induced apoptotic death in human U251 glioma cells.Mol. Cancer Ther.20054455456110.1158/1535‑7163.MCT‑04‑005615827328
    [Google Scholar]
  132. ZengY.H. ZhouL.Y. ChenQ.Z. LiY. ShaoY. RenW.Y. LiaoY.P. WangH. ZhuJ.H. HuangM. HeF. WangJ. WuK. HeB.C. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells.Oncol. Rep.201738145646410.3892/or.2017.566228534975
    [Google Scholar]
  133. YangM.D. SunY. ZhouW.J. XieX.Z. ZhouQ.M. LuY.Y. SuS.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer MDA-MB-231 cell models in vivo and in vitro.Molecules2021268220410.3390/molecules2608220433921192
    [Google Scholar]
  134. LimH.S. KimO.S. KimB.Y. JeongS.J. Apigetrin from scutellaria baicalensis georgi inhibits neuroinflammation in BV-2 microglia and exerts neuroprotective effect in HT22 hippocampal cells.J. Med. Food201619111032104010.1089/jmf.2016.007427845861
    [Google Scholar]
  135. WangN. YiW.J. TanL. ZhangJ.H. XuJ. ChenY. QinM. YuS. GuanJ. ZhangR. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense.In Vitro Cell. Dev. Biol. Anim.201753655456310.1007/s11626‑017‑0135‑428181104
    [Google Scholar]
  136. LiuM.M. MaR.H. NiZ.J. ThakurK. Cespedes-AcuñaC.L. JiangL. WeiZ.J. Apigenin 7-O-glucoside promotes cell apoptosis through the PTEN/PI3K/AKT pathway and inhibits cell migration in cervical cancer HeLa cells.Food Chem. Toxicol.202014611184310.1016/j.fct.2020.11184333152472
    [Google Scholar]
  137. KimS.M. VetrivelP. HaS.E. KimH.H. KimJ.A. KimG.S. Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell.J. Nutr. Biochem.20208310842710.1016/j.jnutbio.2020.10842732559585
    [Google Scholar]
  138. MinatoK. MiyakeY. FukumotoS. YamamotoK. KatoY. ShimomuraY. OsawaT. Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver.Life Sci.200372141609161610.1016/S0024‑3205(02)02443‑812551749
    [Google Scholar]
  139. ZengB. ChenK. DuP. WangS.S. RenB. RenY.L. YanH.S. LiangY. WuF.H. Phenolic compounds from clinopodium chinense (Benth.) O. Kuntze and their inhibitory effects on α -glucosidase and vascular endothelial cells injury.Chem. Biodivers.201613559660110.1002/cbdv.20150018727088891
    [Google Scholar]
  140. HeP. YanS. ZhengJ. GaoY. ZhangS. LiuZ. LiuX. XiaoC. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells.J. Agric. Food Chem.20186639102051021410.1021/acs.jafc.8b0373130208700
    [Google Scholar]
  141. KwonE.Y. ChoiM.S. Dietary Eriodictyol Alleviates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obese Mice.Int. J. Mol. Sci.2019205122710.3390/ijms2005122730862092
    [Google Scholar]
  142. LvP. YuJ. XuX. LuT. XuF. Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells.J. Cell. Biochem.201912045644565110.1002/jcb.2784830317656
    [Google Scholar]
  143. XieG. MengX. WangF. BaoY. HuoJ. Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2.Oncotarget2017840686686867410.18632/oncotarget.1982228978146
    [Google Scholar]
  144. LiuY. YanX. Eriodictyol inhibits survival and inflammatory responses and promotes apoptosis in rheumatoid arthritis fibroblast-like synoviocytes through AKT/FOXO1 signaling.J. Cell. Biochem.20191209146281463510.1002/jcb.2872431009103
    [Google Scholar]
  145. LiW. DuQ. LiX. ZhengX. LvF. XiX. HuangG. YangJ. LiuS. Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/Akt/NF-KB signaling pathway.Front. Pharmacol.202011
    [Google Scholar]
  146. CanadaA.T. GiannellaE. NguyenT.D. MasonR.P. The production of reactive oxygen species by dietary flavonols.Free Radic. Biol. Med.19909544144910.1016/0891‑5849(90)90022‑B1963417
    [Google Scholar]
  147. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m11410016
    [Google Scholar]
  148. YeC. ZhangC. HuangH. YangB. XiaoG. KongD. TianQ. SongQ. SongY. TanH. WangY. ZhouT. ZiX. SunY. The natural compound myricetin effectively represses the malignant progression of prostate cancer by inhibiting PIM1 and disrupting the PIM1/CXCR4 interaction.Cell. Physiol. Biochem.20184831230124410.1159/00049200930045021
    [Google Scholar]
  149. RodgersE.H. GrantM.H. The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells.Chem. Biol. Interact.1998116321322810.1016/S0009‑2797(98)00092‑19920463
    [Google Scholar]
  150. FengJ. ChenX. WangY. DuY. SunQ. ZangW. ZhaoG. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.Mol. Cell. Biochem.20154081-216317010.1007/s11010‑015‑2492‑126112905
    [Google Scholar]
  151. ZhangS. WangL. LiuH. ZhaoG. MingL. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells.Diagn. Pathol.2014916810.1186/1746‑1596‑9‑6824650056
    [Google Scholar]
  152. ZhuM. ZhangP. JiangM. YuS. WangL. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells.BMC Complementary Medicine and Therapies202020120910.1186/s12906‑020‑02965‑w32631392
    [Google Scholar]
  153. AhmedS. KhanH. AschnerM. HasanM.M. HassanS.T.S. Therapeutic potential of naringin in neurological disorders.Food Chem. Toxicol.201913211064610.1016/j.fct.2019.11064631252025
    [Google Scholar]
  154. YoshinagaA. KajiyaN. OishiK. KamadaY. IkedaA. ChigwechokhaP.K. KibeT. KishidaM. KishidaS. KomatsuM. ShiozakiK. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.Eur. J. Pharmacol.2016782212910.1016/j.ejphar.2016.04.03527105818
    [Google Scholar]
  155. LiH. YangB. HuangJ. XiangT. YinX. WanJ. LuoF. ZhangL. LiH. RenG. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway.Toxicol. Lett.2013220321922810.1016/j.toxlet.2013.05.00623694763
    [Google Scholar]
  156. LinR. HuX. ChenS. ShiQ. ChenH. Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells.Acta Biochim. Pol.202067218118832343512
    [Google Scholar]
  157. RameshE. AlshatwiA.A. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells.Food Chem. Toxicol.2013519710510.1016/j.fct.2012.07.03322847135
    [Google Scholar]
  158. RahaS. YumnamS. HongG.E. LeeH.J. SaralammaV.V.G. ParkH.S. HeoJ.D. LeeS.J. KimE.H. KimJ.A. KimG.S. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells.Int. J. Oncol.20154731061106910.3892/ijo.2015.309526201693
    [Google Scholar]
  159. SaleemM. AfaqF. AdhamiV.M. MukhtarH. Lupeol modulates NF-κB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice.Oncogene200423305203521410.1038/sj.onc.120764115122342
    [Google Scholar]
  160. SaleemM. Lupeol, a novel anti-inflammatory and anti- cancer dietary triterpene.Cancer Lett.2009285210911510.1016/j.canlet.2009.04.03319464787
    [Google Scholar]
  161. NagarajM. SunithaS. VaralakshmiP. Effect of lupeol, a pentacyclic triterpene, on the lipid peroxidation and antioxidant status in rat kidney after chronic cadmium exposure.J. Appl. Toxicol.200020541341710.1002/1099‑1263(200009/10)20:5<413::AID‑JAT706>3.0.CO;2‑Y11139172
    [Google Scholar]
  162. YangJ. RenX. ZhangL. LiY. ChengB. XiaJ. Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway.Biomed. Pharmacother.201810022623210.1016/j.biopha.2018.02.01129432993
    [Google Scholar]
  163. ReddyD. GhoshP. KumavathR. Strophanthidin attenuates MAPK, PI3K/AKT/mTOR, and Wnt/β-catenin signaling pathways in human cancers.Front. Oncol.20209146910.3389/fonc.2019.0146932010609
    [Google Scholar]
  164. IyerA.K.V. ZhouM. AzadN. ElbazH. WangL. RogalskyD.K. RojanasakulY. O’DohertyG.A. LangenhanJ.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O -glycosides.ACS Med. Chem. Lett.20101732633010.1021/ml100093321103068
    [Google Scholar]
  165. GhanemA. EmaraH.A. MuawiaS. Abd El MaksoudA.I. Al-KarmalawyA.A. ElshalM.F. Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: in vitro and molecular docking studies.New J. Chem.20204440173741738110.1039/D0NJ04088F
    [Google Scholar]
  166. LvC. ZengH.W. WangJ.X. YuanX. ZhangC. FangT. YangP.M. WuT. ZhouY.D. NagleD.G. ZhangW.D. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG.Cell Death Dis.20189216510.1038/s41419‑017‑0247‑529416003
    [Google Scholar]
  167. LinR. WangW.R. LiuJ.T. YangG.D. HanC.J. Protective effect of tanshinone IIA on human umbilical vein endothelial cell injured by hydrogen peroxide and its mechanism.J. Ethnopharmacol.2006108221722210.1016/j.jep.2006.05.00416797899
    [Google Scholar]
  168. JinU.H. SuhS.J. ChangH.W. SonJ.K. LeeS.H. SonK.H. ChangY.C. KimC.H. Tanshinone IIA from salvia miltiorrhiza BUNGE inhibits human aortic smooth muscle cell migration and MMP-9 activity through AKT signaling pathway.J. Cell. Biochem.20081041152610.1002/jcb.2159917979138
    [Google Scholar]
  169. ChengG. LiL. LiQ. LianS. ChuH. DingY. LiC. LengY. β-elemene suppresses tumor metabolism and stem cell-like properties of non-small cell lung cancer cells by regulating PI3K/AKT/mTOR signaling.Am. J. Cancer Res.20221241535155535530288
    [Google Scholar]
  170. LiuS. ZhouL. ZhaoY. YuanY. β-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway.Oncol. Rep.201534294395110.3892/or.2015.405026062577
    [Google Scholar]
  171. ZhanY.H. LiuJ. QuX.J. HouK.Z. WangK.F. LiuY.P. WuB. β-Elemene induces apoptosis in human renal- cell carcinoma 786-0 cells through inhibition of MAPK/ERK and PI3K/Akt/ mTOR signalling pathways.Asian Pac. J. Cancer Prev.20121362739274410.7314/APJCP.2012.13.6.273922938451
    [Google Scholar]
  172. LiC.L. ChangL. GuoL. ZhaoD. LiuH.B. WangQ.S. ZhangP. DuW.Z. LiuX. ZhangH.T. LiuY. ZhangY. XieJ.H. MingJ.G. CuiY.Q. SunY. ZhangZ.R. JiangC.L. β-elemene induces caspase-dependent apoptosis in human glioma cells in vitro through the upregulation of Bax and Fas/ FasL and downregulation of Bcl-2.Asian Pac. J. Cancer Prev.20151523104071041210.7314/APJCP.2014.15.23.1040725556484
    [Google Scholar]
  173. AggarwalB.B. SungB. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets.Trends Pharmacol. Sci.2009302859410.1016/j.tips.2008.11.00219110321
    [Google Scholar]
  174. EsatbeyogluT. HuebbeP. ErnstI.M.A. ChinD. WagnerA.E. RimbachG. Curcumin-from molecule to biological function.Angew. Chem. Int. Ed.201251225308533210.1002/anie.20110772422566109
    [Google Scholar]
  175. SeoB.R. MinK. ChoI.J. KimS.C. KwonT.K. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.PLoS One201494e9558810.1371/journal.pone.009558824743574
    [Google Scholar]
  176. PatridgeE. GareissP. KinchM.S. HoyerD. An analysis of FDA-approved drugs: natural products and their derivatives.Drug Discov. Today201621220420710.1016/j.drudis.2015.01.00925617672
    [Google Scholar]
  177. VeeraraghavanJ. NatarajanM. LagisettyP. AwasthiV. HermanT.S. AravindanN. Impact of curcumin, raspberry extract, and neem leaf extract on rel protein-regulated cell death/radiosensitization in pancreatic cancer cells.Pancreas20114071107111910.1097/MPA.0b013e31821f677d21697760
    [Google Scholar]
  178. González-SarríasA. EspínJ.C. Tomás-BarberánF.A. García-ConesaM.T. Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins.Mol. Nutr. Food Res.200953668669810.1002/mnfr.20080015019437480
    [Google Scholar]
  179. KimJ.Y. ChoiY.J. KimH.J. Determining the effect of ellagic acid on the proliferation and migration of pancreatic cancer cell lines.Transl. Cancer Res.202110142443310.21037/tcr‑20‑244635116272
    [Google Scholar]
  180. LeiF. XingD.M. XiangL. ZhaoY.N. WangW. ZhangL.J. DuL.J. Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2003796118919410.1016/S1570‑0232(03)00610‑X14552830
    [Google Scholar]
  181. HeilmanJ. AndreuxP. TranN. RinschC. Blanco- BoseW. Safety assessment of Urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid.Food Chem. Toxicol.2017108Pt A28929710.1016/j.fct.2017.07.05028757461
    [Google Scholar]
  182. GossageL. EisenT. Targeting multiple kinase pathways: a change in paradigm.Clin. Cancer Res.20101671973197810.1158/1078‑0432.CCR‑09‑318220215532
    [Google Scholar]
  183. Tomás-BarberánF.A. González-SarríasA. García-VillalbaR. Núñez-SánchezM.A. SelmaM.V. García-ConesaM.T. EspínJ.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status.Mol. Nutr. Food Res.2017611150090110.1002/mnfr.20150090127158799
    [Google Scholar]
  184. TotigerT.M. SrinivasanS. JalaV.R. LamichhaneP. DoschA.R. GaidarskiA.A.III JoshiC. RangappaS. CastellanosJ. VemulaP.K. ChenX. KwonD. KashikarN. VanSaunM. MerchantN.B. NagathihalliN.S. Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer.Mol. Cancer Ther.201918230131110.1158/1535‑7163.MCT‑18‑046430404927
    [Google Scholar]
  185. DienstmannR. RodonJ. SerraV. TaberneroJ. Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors.Mol. Cancer Ther.20141351021103110.1158/1535‑7163.MCT‑13‑063924748656
    [Google Scholar]
  186. ClarkC.E. BeattyG.L. VonderheideR.H. Immunosurveillance of pancreatic adenocarcinoma: Insights from genetically engineered mouse models of cancer.Cancer Lett.200927911710.1016/j.canlet.2008.09.03719013709
    [Google Scholar]
  187. PiotrowskaH. KucinskaM. MuriasM. Biological activity of piceatannol: Leaving the shadow of resveratrol.Mutat. Res. Rev. Mutat. Res.20127501608210.1016/j.mrrev.2011.11.00122108298
    [Google Scholar]
  188. RossiM. CarusoF. AntoniolettiR. VigliantiA. TraversiG. LeoneS. BassoE. CozziR. Scavenging of hydroxyl radical by resveratrol and related natural stilbenes after hydrogen peroxide attack on DNA.Chem. Biol. Interact.2013206217518510.1016/j.cbi.2013.09.01324075811
    [Google Scholar]
  189. KukrejaA. Piceatannol: A potential futuristic natural stilbene as fetal haemoglobin inducer.J Clin Diagn Res.2013712302831
    [Google Scholar]
  190. HsiehT.C. LinC.Y. LinH.Y. WuJ.M. AKT/mTOR as novel targets of polyphenol piceatannol possibly contributing to inhibition of proliferation of cultured prostate cancer cells.ISRN Urol.201220121810.5402/2012/27269722567414
    [Google Scholar]
  191. WangB. LiJ. Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway.Cancer Manag. Res.2020122631264010.2147/CMAR.S23817332368141
    [Google Scholar]
  192. ShahrzadS. AoyagiK. WinterA. KoyamaA. BitschI. Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans.J. Nutr.200113141207121010.1093/jn/131.4.120711285327
    [Google Scholar]
  193. AbdelwahedA. BouhlelI. SkandraniI. ValentiK. KadriM. GuiraudP. SteimanR. MariotteA.M. GhediraK. LaporteF. Dijoux-FrancaM.G. Chekir-GhediraL. Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus.Chem. Biol. Interact.2007165111310.1016/j.cbi.2006.10.00317129579
    [Google Scholar]
  194. Velderrain-RodríguezG. Torres-MorenoH. Villegas-OchoaM. Ayala-ZavalaJ. Robles-ZepedaR. Wall-MedranoA. González-AguilarG. Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘Ataulfo’ mango peel on LS180 cells.Molecules201823369510.3390/molecules2303069529562699
    [Google Scholar]
  195. KimS.W. HanY.W. LeeS.T. JeongH.J. KimS.H. KimI.H. LeeS.O. KimD.G. KimS.H. KimS.Z. ParkW.H. A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis.Mol. Carcinog.200847211412510.1002/mc.2036917620290
    [Google Scholar]
  196. SorrentinoE. SucciM. TipaldiL. PannellaG. MaiuroL. SturchioM. CoppolaR. TremonteP. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles.Int. J. Food Microbiol.201826618318910.1016/j.ijfoodmicro.2017.11.02629227905
    [Google Scholar]
  197. LeeJ.H. OhM. SeokJ. KimS. LeeD. BaeG. BaeH.I. BaeS. HongY.M. KwonS.O. LeeD.H. SongC.S. MunJ. ChungM. KimK. Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection.Viruses20168615710.3390/v806015727275830
    [Google Scholar]
  198. DludlaP.V. NkambuleB.B. JackB. MkandlaZ. MutizeT. SilvestriS. OrlandoP. TianoL. LouwJ. Mazibuko-MbejeS.E. Inflammation and oxidative stress in an obese state and the protective effects of gallic acid.Nutrients20181112310.3390/nu1101002330577684
    [Google Scholar]
  199. YouB.R. MoonH.J. HanY.H. ParkW.H. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis.Food Chem. Toxicol.20104851334134010.1016/j.fct.2010.02.03420197077
    [Google Scholar]
  200. SubramanianA.P. JaganathanS.K. MandalM. SupriyantoE. MuhamadI.I. Gallic acid induced apoptotic events in HCT-15 colon cancer cells.World J. Gastroenterol.201622153952396110.3748/wjg.v22.i15.395227099438
    [Google Scholar]
  201. TangH.M. CheungP.C.K. Gallic acid triggers iron-dependent cell death with apoptotic, ferroptotic, and necroptotic features.Toxins (Basel)201911949210.3390/toxins1109049231455047
    [Google Scholar]
  202. PhanA.N.H. HuaT.N.M. KimM.K. VoV.T.A. ChoiJ.W. KimH.W. RhoJ.K. KimK.W. JeongY. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer.Oncotarget2016734547025471310.18632/oncotarget.1058127419630
    [Google Scholar]
  203. LiaoC-C. ChenS-C. HuangH-P. WangC-J. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS).Yao Wu Shi Pin Fen Xi201826262062729567231
    [Google Scholar]
  204. KangD.Y. SpN. JoE.S. RugambaA. HongD.Y. LeeH.G. YooJ.S. LiuQ. JangK.J. YangY.M. The inhibitory mechanisms of tumor PD-L1 expression by natural bioactive gallic acid in non-small-cell lung cancer (NSCLC) cells.Cancers (Basel)202012372710.3390/cancers1203072732204508
    [Google Scholar]
  205. ChenJ. JiangC.C. JinL. ZhangX.D. Regulation of PD-L1: a novel role of pro-survival signalling in cancer.Ann. Oncol.201627340941610.1093/annonc/mdv61526681673
    [Google Scholar]
  206. LúcioA.S.S.C. Da Silva AlmeidaJ.R.G. Barbosa-FilhoJ.M. PitaJ.C.L.R. BrancoM.V.S.C. De Fátima Formiga Melo DinizM. De Fátima AgraM. Da-CunhaE.V.L. Da SilvaM.S. TavaresJ.F. Azaphenanthrene alkaloids with antitumoral activity from Anaxagorea dolichocarpa Sprague & Sandwith (Annonaceae).Molecules20111687125713110.3390/molecules1608712521860364
    [Google Scholar]
  207. BrayS.J. Notch signalling in context.Nat. Rev. Mol. Cell Biol.2016171172273510.1038/nrm.2016.9427507209
    [Google Scholar]
  208. SulzmaierF.J. JeanC. SchlaepferD.D. FAK in cancer: mechanistic findings and clinical applications.Nat. Rev. Cancer201414959861010.1038/nrc379225098269
    [Google Scholar]
  209. BrendanD.M. TokerA. AKT/PKB signaling: Navigating the network brendan.Physiol. Behav.2011176139148
    [Google Scholar]
  210. SaxtonR.A. SabatiniD.M. mTOR signaling in growth, metabolism, and disease.Cell2017169236137110.1016/j.cell.2017.03.03528388417
    [Google Scholar]
  211. VousdenK.H. PrivesC. Blinded by the light: The growing complexity of p53.Cell2009137341343110.1016/j.cell.2009.04.03719410540
    [Google Scholar]
  212. HardieD.G. RossF.A. HawleyS.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis.Nat. Rev. Mol. Cell Biol.201213425126210.1038/nrm331122436748
    [Google Scholar]
  213. BhuiaM.S. WilairatanaP. ChowdhuryR. RakibA.I. KamliH. ShaikhA. CoutinhoH.D.M. IslamM.T. Anticancer potentials of the lignan magnolin: A systematic review.Molecules2023289367110.3390/molecules2809367137175081
    [Google Scholar]
  214. KhanM.A. JainV.K. RizwanullahM. AhmadJ. JainK. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges.Drug Discov. Today201924112181219110.1016/j.drudis.2019.09.00131520748
    [Google Scholar]
  215. CheaibB. AugusteA. LearyA. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges.Chin. J. Cancer201534141610.5732/cjc.014.1028925556614
    [Google Scholar]
  216. CermaK. PiacentiniF. MoscettiL. BarboliniM. CaninoF. TornincasaA. CaggiaF. CerriS. MolinaroA. DominiciM. OmariniC. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges.Biomedicines202311110910.3390/biomedicines1101010936672617
    [Google Scholar]
  217. SanaeiM.J. RaziS. Pourbagheri-SigaroodiA. BashashD. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles.Transl. Oncol.20221810136410.1016/j.tranon.2022.10136435168143
    [Google Scholar]
  218. FrumanD.A. RommelC. PI3K and cancer: lessons, challenges and opportunities.Nat. Rev. Drug Discov.201413214015610.1038/nrd420424481312
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673325229240928040758
Loading
/content/journals/cmc/10.2174/0109298673325229240928040758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test