Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Theranostics, a method that combines targeted therapy and diagnostic imaging, has emerged as a viable route for enhancing cancer treatment, and hybrid nanoparticles (HNPs) are at the forefront of this field. Metallic, polymeric, lipid-based, and silica-based HNPs are studied for targeting and biocompatibility. Using HNPs, chemotherapeutic drugs, small interfering RNA, and therapeutic genes can be given precisely and controlled. This enhances therapeutic efficacy and reduces adverse effects. With fluorescence dyes, MRI contrast agents, and PET tracers, real-time therapy response monitoring is conceivable. A nano platform with therapeutic and diagnostic capabilities holds great promise for personalized medicine and precision oncology. The present study discusses HNPs' biocompatibility, stability, immunogenicity, and long-term biosafety, which are crucial to the clinical translation of cancer theranostics. Further, in this in-depth investigation, we investigated the design, synthesis, and multifunctional activities of HNPs for use in cancer theranostics.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309011240606095639
2024-06-24
2025-09-12
Loading full text...

Full text loading...

References

  1. AiX. WangS. DuanY. ZhangQ. ChenM.S. GaoW. ZhangL. Emerging approaches to functionalizing cell membrane-coated nanoparticles.Biochemistry2021601394195510.1021/acs.biochem.0c0034332452667
    [Google Scholar]
  2. MottaghitalabF. FarokhiM. FatahiY. AtyabiF. DinarvandR. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment.J. Control. Release201929525026710.1016/j.jconrel.2019.01.00930639691
    [Google Scholar]
  3. HanY. WenP. LiJ. KataokaK. Targeted nanomedicine in cisplatin-based cancer therapeutics.J. Control. Release202234570972010.1016/j.jconrel.2022.03.04935367476
    [Google Scholar]
  4. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update post COVID-19 vaccines.Bioeng. Transl. Med.202163e1024610.1002/btm2.1024634514159
    [Google Scholar]
  5. LiuJ. CabralH. MiP. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release.Adv. Drug Deliv. Rev.202420711523910.1016/j.addr.2024.11523938437916
    [Google Scholar]
  6. HuangP. ChenY. LinH. YuL. ZhangL. WangL. ZhuY. ShiJ. Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality.Biomaterials2017125233710.1016/j.biomaterials.2017.02.01828226244
    [Google Scholar]
  7. DongY. SiegwartD.J. AndersonD.G. Strategies, design, and chemistry in siRNA delivery systems.Adv. Drug Deliv. Rev.201914413314710.1016/j.addr.2019.05.00431102606
    [Google Scholar]
  8. KaufmannK.B. BüningH. GalyA. SchambachA. GrezM. Gene therapy on the move.EMBO Mol. Med.20135111642166110.1002/emmm.20120228724106209
    [Google Scholar]
  9. ChenG. QianY. ZhangH. UllahA. HeX. ZhouZ. FenniriH. ShenJ. Advances in cancer theranostics using organic-inorganic hybrid nanotechnology.Appl. Mater. Today20212310100310.1016/j.apmt.2021.101003
    [Google Scholar]
  10. FasikuV AmuhayaEK RajabKM OmoloCA. Nano/microparticles encapsulation via covalent drug conjugation.Nano- and Microencapsulation - Techniques and Applications.IntechOpen2020
    [Google Scholar]
  11. OliveiraJ.P. PradoA.R. KeijokW.J. AntunesP.W.P. YapuchuraE.R. GuimarãesM.C.C. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol.Sci. Rep.2019911385910.1038/s41598‑019‑50424‑531554912
    [Google Scholar]
  12. QinX.S. GaoQ.Y. LuoZ.G. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles.Food Hydrocoll.202111610665810.1016/j.foodhyd.2021.106658
    [Google Scholar]
  13. MarquesAC CostaPJ VelhoS AmaralMH Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies.J. Control Release202032018020010.1016/j.jconrel.2020.01.035
    [Google Scholar]
  14. BaekS. Kim J. Kim H. Controlled grafting of colloidal nanoparticles on graphene through tailored electrostatic interaction.ACS Appl. Mater. Interfaces.20191112118241183310.1021/acsami.9b0151930843681
    [Google Scholar]
  15. BianT. GardinA. GemenJ. HoubenL. PeregoC. LeeB. EladN. ChuZ. PavanG.M. KlajnR. Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures.Nat. Chem.2021131094094910.1038/s41557‑021‑00752‑934489564
    [Google Scholar]
  16. GaoL.Y. LiuX.Y. ChenC.J. WangJ.C. FengQ. YuM.Z. MaX.F. PeiX.W. NiuY.J. QiuC. PangW.H. ZhangQ. Core-Shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery.Biomaterials20143562066207810.1016/j.biomaterials.2013.11.04624315577
    [Google Scholar]
  17. XiangY. BanksM.K. WuR. XuW. ChenS. Synthesis of thermo-sensitive PDDA-co-PNIPAM/graphene hybrid via electrostatic interactions and its thermal modulated phase transition.Mater. Chem. Phys.2018220586510.1016/j.matchemphys.2018.08.070
    [Google Scholar]
  18. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.Angew. Chem. Int. Ed.20145346123201236410.1002/anie.20140303625294565
    [Google Scholar]
  19. DuM. OuyangY. MengF. ZhangX. MaQ. ZhuangY. LiuH. PangM. CaiT. CaiY. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer.Int. J. Pharm.201956127428210.1016/j.ijpharm.2019.03.00630851393
    [Google Scholar]
  20. TahirN. MadniA. LiW. CorreiaA. KhanM.M. RahimM.A. SantosH.A. Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery.Int. J. Pharm.202058111927510.1016/j.ijpharm.2020.11927532229283
    [Google Scholar]
  21. PramualS. LirdprapamongkolK. AtjanasuppatK. ChaisuriyaP. NiamsiriN. SvastiJ. PLGA-lipid hybrid nanoparticles for overcoming paclitaxel tolerance in anoikis-resistant lung cancer cells.Molecules20222723829510.3390/molecules2723829536500387
    [Google Scholar]
  22. StrickerL. FritzE.C. PeterlechnerM. DoltsinisN.L. RavooB.J. Arylazopyrazoles as light-responsive molecular switches in cyclodextrin-based supramolecular systems.J. Am. Chem. Soc.2016138134547455410.1021/jacs.6b0048426972671
    [Google Scholar]
  23. MaulaTA HatchHW ShenVK RangarajanS MittalJ. Designing molecular building blocks for the self-assembly of complex porous networks.Mol. Syst. Des. Eng.201941010.1039/C9ME00006B
    [Google Scholar]
  24. SongN. ZhangZ. LiuP. YangY.W. WangL. WangD. TangB.Z. Nanomaterials with supramolecular assembly based on aie luminogens for theranostic applications.Adv. Mater.20203249200420810.1002/adma.20200420833150632
    [Google Scholar]
  25. HuangJ. TanX. LiC. WuR. RanS. TaoY. MouT. Green synthesis of Au-NPs on g-C3N4 hybrid nanomaterials based on supramolecular pillar [6] arene and its applications for catalysis.ACS Omega2022721180851809310.1021/acsomega.2c0160335664603
    [Google Scholar]
  26. FuJ. LiangL. QiuL. in situ generated gold nanoparticle hybrid polymersomes for water-soluble chemotherapeutics: Inhibited leakage and pH-responsive intracellular release.Adv. Funct. Mater.20172718160498110.1002/adfm.201604981
    [Google Scholar]
  27. ValenciaL. KumarS. NomenaE.M. Salazar-AlvarezG. MathewA.P. In-situ growth of metal oxide nanoparticles on cellulose nanofibrils for dye removal and antimicrobial applications.ACS Appl. Nano Mater.2020377172718110.1021/acsanm.0c01511
    [Google Scholar]
  28. ZhangD. ZhangG. ChenL. LiaoY. ChenY. LinH. Multifunctional finishing of cotton fabric based on in situ fabrication of polymer-hybrid nanoparticles.J. Appl. Polym. Sci.201313053778378410.1002/app.39634
    [Google Scholar]
  29. MaekiM. KimuraN. SatoY. HarashimaH. TokeshiM. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems.Adv. Drug Deliv. Rev.20181288410010.1016/j.addr.2018.03.00829567396
    [Google Scholar]
  30. CareyT.R. CotnerK.L. LiB. SohnL.L. Developments in label-free microfluidic methods for single-cell analysis and sorting.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019111e152910.1002/wnan.152929687965
    [Google Scholar]
  31. YinJ. DengJ. DuC. ZhangW. JiangX. Microfluidics-based approaches for separation and analysis of circulating tumor cells.Trends Analyt. Chem.20191178410010.1016/j.trac.2019.07.018
    [Google Scholar]
  32. LiT. HuangJ. WangM. WangH. Microfluidic assembly of small-molecule prodrug cocktail nanoparticles with high reproducibility for synergistic combination of cancer therapy.Int. J. Pharm.202160812108810.1016/j.ijpharm.2021.12108834530101
    [Google Scholar]
  33. WangJ. ChenW. SunJ. LiuC. YinQ. ZhangL. XianyuY. ShiX. HuG. JiangX. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.Lab Chip201414101673167710.1039/C4LC00080C24675980
    [Google Scholar]
  34. FangR.H. KrollA.V. GaoW. ZhangL. Cell membrane coating nanotechnology.Adv. Mater.20183023170675910.1002/adma.20170675929582476
    [Google Scholar]
  35. DehainiD WeiX FangRH MassonS AngsantikulP LukBT ZhangY YingM JiangY KrollAV GaoW ZhangL. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization.Adv. Mater.2017291620160620910.1002/adma.201606209
    [Google Scholar]
  36. WangD. DongH. LiM. CaoY. YangF. ZhangK. DaiW. WangC. ZhangX. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma.ACS Nano20181265241525210.1021/acsnano.7b0835529800517
    [Google Scholar]
  37. LiuY. WangX. OuyangB. LiuX. DuY. CaiX. GuoH. PangZ. YangW. ShenS. Erythrocyte–platelet hybrid membranes coating polypyrrol nanoparticles for enhanced delivery and photothermal therapy.J. Mater. Chem. B Mater. Biol. Med.20186437033704110.1039/C8TB02143K32254586
    [Google Scholar]
  38. TanS. WuT. ZhangD. ZhangZ. Cell or cell membrane-based drug delivery systems.Theranostics20155886388110.7150/thno.1185226000058
    [Google Scholar]
  39. LiR. HeY. ZhangS. QinJ. WangJ. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment.Acta Pharm. Sin. B201881142210.1016/j.apsb.2017.11.00929872619
    [Google Scholar]
  40. SunH. SuJ. MengQ. YinQ. ChenL. GuW. ZhangP. ZhangZ. YuH. WangS. LiY. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors.Adv. Mater.201628439581958810.1002/adma.20160217327628433
    [Google Scholar]
  41. GongC. YuX. YouB. WuY. WangR. HanL. WangY. GaoS. YuanY. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy.J. Nanobiotechnology20201819210.1186/s12951‑020‑00649‑832546174
    [Google Scholar]
  42. LiX.R. ChengX.H. ZhangG.N. WangX.X. HuangJ.M. Cardiac safety analysis of first-line chemotherapy drug pegylated liposomal doxorubicin in ovarian cancer.J. Ovarian Res.20221519610.1186/s13048‑022‑01029‑635971131
    [Google Scholar]
  43. IbrahimM. AbuwatfaW.H. AwadN.S. SabouniR. HusseiniG.A. Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and metal-organic frameworks: A review.Pharmaceutics202214225410.3390/pharmaceutics1402025435213987
    [Google Scholar]
  44. SomaniS. DufèsC. Applications of dendrimers for brain delivery and cancer therapy.Nanomedicine20149152403241410.2217/nnm.14.13025413857
    [Google Scholar]
  45. RamanS. MurugaiyahV. ParumasivamT. Andrographis paniculata dosage forms and advances in nanoparticulate delivery systems: An overview.Molecules20222719616410.3390/molecules2719616436234698
    [Google Scholar]
  46. NunesD. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Polymeric nanoparticles-loaded hydrogels for biomedical applications: A systematic review on in vivo findings.Polymers2022145101010.3390/polym1405101035267833
    [Google Scholar]
  47. KwonI.C. Chitosan-based nanoparticles for cancer therapy; Tumor specificity and enhanced therapeutic efficacy in tumor-bearing mice.J. Control. Release20081323e69e7010.1016/j.jconrel.2008.09.06418627784
    [Google Scholar]
  48. GowsalyaK. KarthikeyanL. VivekR. Near-infrared light-activated dual targeting with peptide-conjugated mesoporous silica nanoparticles for multimodal anticancer therapy.ACS Appl. Nano Mater.2022511171051712210.1021/acsanm.2c03994
    [Google Scholar]
  49. KordiM. BorzouyiZ. ChitsazS. AsmaeiM. SalamiR. TabarzadM. Antimicrobial peptides with anticancer activity: Today status, trends and their computational design.Arch. Biochem. Biophys.202373310948410.1016/j.abb.2022.10948436473507
    [Google Scholar]
  50. MohammapdourR. GhandehariH. Mechanisms of immune response to inorganic nanoparticles and their degradation products.Adv. Drug Deliv. Rev.202218011402210.1016/j.addr.2021.11402234740764
    [Google Scholar]
  51. BhardwajB.K. ThankachanS. MageshP. VenkateshT. TsutsumiR. SureshP.S. Current update on nanotechnology-based approaches in ovarian cancer therapy.Reprod. Sci.202330233534910.1007/s43032‑022‑00968‑135585292
    [Google Scholar]
  52. SitiaL. SevieriM. SignatiL. BonizziA. ChesiA. MaininiF. CorsiF. MazzucchelliS. HER-2-targeted nanoparticles for breast cancer diagnosis and treatment.Cancers20221410242410.3390/cancers1410242435626028
    [Google Scholar]
  53. SeleciM. Ag SeleciD. ScheperT. StahlF. Theranostic liposome–nanoparticle hybrids for drug delivery and bioimaging.Int. J. Mol. Sci.2017187141510.3390/ijms1807141528671589
    [Google Scholar]
  54. RajanaN. MounikaA. CharyP.S. BhavanaV. UratiA. KhatriD. SinghS.B. MehraN.K. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer.J. Control. Release20223521024104710.1016/j.jconrel.2022.11.00936379278
    [Google Scholar]
  55. JiangX. LeeM.J. LuoT. TillmanL. LinW. Co-delivery of three synergistic chemotherapeutics in a core-shell nanoscale coordination polymer for the treatment of pancreatic cancer.Biomaterials202330112223510.1016/j.biomaterials.2023.12223537441902
    [Google Scholar]
  56. MohantyA. UthamanS. ParkI.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy.Molecules20202519437710.3390/molecules2519437732977707
    [Google Scholar]
  57. AliA.A. Al-OthmanA. Al-SayahM.H. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges.J. Control. Release202235147650310.1016/j.jconrel.2022.09.03336170926
    [Google Scholar]
  58. WangH. KeF. MararenkoA. WeiZ. BanerjeeP. ZhouS. Responsive polymer–fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging.Nanoscale20146137443745210.1039/C4NR01030B24881520
    [Google Scholar]
  59. KumawatM.K. ThakurM. BahadurR. KakuT. R SP. SuchittaA. SrivastavaR. Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics.Mater. Sci. Eng. C201910310977410.1016/j.msec.2019.10977431349528
    [Google Scholar]
  60. CuiG. WuJ. LinJ. LiuW. ChenP. YuM. ZhouD. YaoG. Graphene-based nanomaterials for breast cancer treatment: Promising therapeutic strategies.J. Nanobiotechnology202119121110.1186/s12951‑021‑00902‑834266419
    [Google Scholar]
  61. PoonC. HeC. LiuD. LuK. LinW. Self-assembled nanoscale coordination polymers carrying oxaliplatin and gemcitabine for synergistic combination therapy of pancreatic cancer.J. Control. Release2015201909910.1016/j.jconrel.2015.01.02625620067
    [Google Scholar]
  62. ZhuZ. NieK. MunroeP. DengK. GuoY. HanJ. Synergistic effects of hybrid (SiC+TiC) nanoparticles and dynamic precipitates in the design of a high-strength magnesium matrix nanocomposite.Mater. Chem. Phys.202125912404810.1016/j.matchemphys.2020.124048
    [Google Scholar]
  63. LiuJ. ChengH. HanL. QiangZ. ZhangX. GaoW. ZhaoK. SongY. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid–polymer hybrid nanoparticles.Drug Des. Devel. Ther.2018123199320910.2147/DDDT.S17219930288024
    [Google Scholar]
  64. WenP. KeW. DirisalaA. TohK. TanakaM. LiJ. Stealth and pseudo-stealth nanocarriers.Adv. Drug Deliv. Rev.202319811489510.1016/j.addr.2023.11489537211278
    [Google Scholar]
  65. LiJ. KataokaK. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: The next generation.J. Am. Chem. Soc.2021143253855910.1021/jacs.0c0902933370092
    [Google Scholar]
  66. WileyD.T. WebsterP. GaleA. DavisM.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor.Proc. Natl. Acad. Sci. USA2013110218662866710.1073/pnas.130715211023650374
    [Google Scholar]
  67. KominA. RussellL.M. HristovaK.A. SearsonP.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges.Adv. Drug Deliv. Rev.2017110-111526410.1016/j.addr.2016.06.00227313077
    [Google Scholar]
  68. GalstyanA. MarkmanJ.L. ShatalovaE.S. ChiechiA. KormanA.J. PatilR. KlymyshynD. TourtellotteW.G. IsraelL.L. BraubachO. LjubimovV.A. MashoufL.A. RameshA. GrodzinskiZ.B. PenichetM.L. BlackK.L. HollerE. SunT. DingH. LjubimovA.V. LjubimovaJ.Y. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy.Nat. Commun.2019101385010.1038/s41467‑019‑11719‑331462642
    [Google Scholar]
  69. XiaoQ. ZoulikhaM. QiuM. TengC. LinC. LiX. SallamM.A. XuQ. HeW. The effects of protein corona on in vivo fate of nanocarriers.Adv. Drug Deliv. Rev.202218611435610.1016/j.addr.2022.11435635595022
    [Google Scholar]
  70. de Oliveira CardosoVM FerreiraLM ComparettiEJ SampaioI FerreiraNN MirandaRR ZucolottoV. Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems.Stimuli-Responsive NanocarriersAcademic Press202287117
    [Google Scholar]
  71. RazaA. RasheedT. NabeelF. HayatU. BilalM. IqbalH. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release.Molecules2019246111710.3390/molecules2406111730901827
    [Google Scholar]
  72. LiJ. DirisalaA. GeZ. WangY. YinW. KeW. TohK. XieJ. MatsumotoY. AnrakuY. OsadaK. KataokaK. Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation.Angew. Chem. Int. Ed.20175645140251403010.1002/anie.20170696428940903
    [Google Scholar]
  73. LuY. AimettiA.A. LangerR. GuZ. Bioresponsive materials.Nat. Rev. Mater.2016211607510.1038/natrevmats.2016.75
    [Google Scholar]
  74. LiJ. AnrakuY. KataokaK. Self-boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis.Angew. Chem. Int. Ed.20205932135261353010.1002/anie.20200418032383236
    [Google Scholar]
  75. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  76. KhanM.M. MadniA. FilipczakN. PanJ. RehmanM. RaiN. AttiaS.A. TorchilinV.P. Folate targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy.Nanomedicine20202810222810.1016/j.nano.2020.10222832485321
    [Google Scholar]
  77. KhanM.M. MadniA. TorchilinV. FilipczakN. PanJ. TahirN. ShahH. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin.Drug Deliv.201926176577210.1080/10717544.2019.164242031357896
    [Google Scholar]
  78. TangS. LiY. Sorafenib-loaded ligand-functionalized polymer-lipid hybrid nanoparticles for enhanced therapeutic effect against liver cancer.J. Nanosci. Nanotechnol.201919116866687110.1166/jnn.2019.1693631039838
    [Google Scholar]
  79. BortG. LuxF. DufortS. CrémillieuxY. VerryC. TillementO. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles.Theranostics20201031319133110.7150/thno.3754331938067
    [Google Scholar]
  80. HirutaY. NemotoR. KanazawaH. Design and synthesis of temperature-responsive polymer/silica hybrid nanoparticles and application to thermally controlled cellular uptake.Colloids Surf. B Biointerfaces20171532910.1016/j.colsurfb.2017.01.05228192714
    [Google Scholar]
  81. XuY. KongY. XuJ. LiX. GouJ. YinT. HeH. ZhangY. TangX. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma.Biomater. Sci.20208389791110.1039/C9BM01394F31825410
    [Google Scholar]
  82. Vivero-EscotoJ.L. RieterW.J. LauH. Huxford-PhillipsR.C. LinW. Biodegradable polysilsesquioxane nanoparticles as efficient contrast agents for magnetic resonance imaging.Small20139203523353110.1002/smll.20130019823613450
    [Google Scholar]
  83. DongQ. YangH. WanC. ZhengD. ZhouZ. XieS. XuL. DuJ. LiF. Her2-functionalized gold- nanoshelled magnetic hybrid nanoparticles: A theranostic agent for dual-modal imaging and photothermal therapy of breast cancer.Nanoscale Res. Lett.201914123510.1186/s11671‑019‑3053‑431448377
    [Google Scholar]
  84. CristofoliniT. DalminaM. SierraJ.A. SilvaA.H. PasaA.A. PittellaF. Creczynski-PasaT.B. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells.Mater. Sci. Eng. C202010911055510.1016/j.msec.2019.11055532228895
    [Google Scholar]
  85. WangH. ShenJ. CaoG. GaiZ. HongK. DebataP.R. BanerjeeP. ZhouS. Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: Antibacterial activity, cell imaging and combined photothermo/chemo-therapy.J. Mater. Chem. B Mater. Biol. Med.20131456225623410.1039/c3tb21055c32261695
    [Google Scholar]
  86. MaP. XiaoH. YuC. LiuJ. ChengZ. SongH. ZhangX. LiC. WangJ. GuZ. LinJ. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species.Nano Lett.201717292893710.1021/acs.nanolett.6b0426928139118
    [Google Scholar]
  87. HuY. LvT. MaY. XuJ. ZhangY. HouY. HuangZ. DingY. Nanoscale coordination polymers for synergistic NO and chemodynamic therapy of liver cancer.Nano Lett.20191942731273810.1021/acs.nanolett.9b0109330919635
    [Google Scholar]
  88. ZhongY. WangC. ChengR. ChengL. MengF. LiuZ. ZhongZ. cRGD-directed, NIR-responsive and robust AuNR/PEG–PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo.J. Control. Release2014195637110.1016/j.jconrel.2014.07.05425108151
    [Google Scholar]
  89. ZhangN. ChenH. LiuA.Y. ShenJ.J. ShahV. ZhangC. HongJ. DingY. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy.Biomaterials20167428029110.1016/j.biomaterials.2015.10.00426461120
    [Google Scholar]
  90. Ferreira SoaresD.C. DominguesS.C. VianaD.B. TebaldiM.L. Polymer-hybrid nanoparticles: Current advances in biomedical applications.Biomed. Pharmacother.202013111069510.1016/j.biopha.2020.11069532920512
    [Google Scholar]
  91. PersanoF. GigliG. LeporattiS. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions.Nano Express20212101200610.1088/2632‑959X/abeb4b
    [Google Scholar]
  92. JadonR.S. SharmaM. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics.J. Drug Deliv. Sci. Technol.20195147548410.1016/j.jddst.2019.03.039
    [Google Scholar]
  93. FuY. KaoW.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems.Expert Opin. Drug Deliv.20107442944410.1517/1742524100360225920331353
    [Google Scholar]
  94. LiJ. KeW. WangL. HuangM. YinW. ZhangP. ChenQ. GeZ. Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy.J. Control. Release2016225647410.1016/j.jconrel.2016.01.02926806789
    [Google Scholar]
  95. LiJ. LiY. WangY. KeW. ChenW. WangW. GeZ. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy.Nano Lett.201717116983699010.1021/acs.nanolett.7b0353128977746
    [Google Scholar]
  96. ĐorđevićS. GonzalezM.M. Conejos-SánchezI. CarreiraB. PozziS. AcúrcioR.C. Satchi-FainaroR. FlorindoH.F. VicentM.J. Current hurdles to the translation of nanomedicines from bench to the clinic.Drug Deliv. Transl. Res.202212350052510.1007/s13346‑021‑01024‑234302274
    [Google Scholar]
  97. ShettyA. ChandraS. Inorganic hybrid nanoparticles in cancer theranostics: Understanding their combinations for better clinical translation.Mater. Today Chem.20201810038110.1016/j.mtchem.2020.100381
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309011240606095639
Loading
/content/journals/cmc/10.2174/0109298673309011240606095639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test