Skip to content
2000
Volume 32, Issue 19
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Periodontal disease is a highly prevalent oral pathology in the human population, which has a significant local and systemic impact. Currently, multi-omics analyses, including lipidomics, are fundamental to obtaining an in-depth molecular understanding of the individual. Lipidomics is dedicated to the study of lipid species and their interactions in various health contexts. This specific multi-omics analysis is important for understanding the alteration of metabolism and signaling in disease, identifying biochemical markers, and potential therapeutic targets.

Objective

This study aimed to carry out a systematic review of the existing scientific literature on lipidomics in periodontal disease and thus determine which molecules have already been analyzed and their potential in this specific disease.

Methods

This study followed the recommendations of the PRISMA 2020 methodology. The inclusion criteria used were articles published in indexed journals between 2000 and 2023, written in English, and establishing an exclusive relationship about lipidomics in human periodontal disease. The articles were searched in three different databases.

Results

Considering the criteria defined, only six articles were selected and analyzed individually in detail. In four of the six studies, differences in the lipidome of individuals with periodontal disease were identified. Furthermore, phosphoethanolamine ceramide was found to have potential as a diagnostic biomarker. Finally, the therapeutic potential of a lipoxin A4 analogue was also identified.

Conclusion

These results reinforce the need for future research in this area so that the consequences of this disease on the lipidome can be identified.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323591240923051742
2024-10-08
2025-10-11
Loading full text...

Full text loading...

References

  1. AlbuquerqueC.M. CortinhasA.J. MorinhaF.J. LeitãoJ.C. ViegasC.A. BastosE.M. Association of the IL-10 polymorphisms and periodontitis: A meta-analysis.Mol. Biol. Rep.201239109319932910.1007/s11033‑012‑1738‑122763734
    [Google Scholar]
  2. TsuchidaS. NakayamaT. Metabolomics research in periodontal disease by mass spectrometry.Molecules2022279286410.3390/molecules2709286435566216
    [Google Scholar]
  3. RodriguesW.F. MiguelC.B. AgostinhoF. da SilvaG.V. Lazo-ChicaJ.E. Naressi ScapinS.M. NapimogaM.H. Trindade-da-SilvaC.A. KriegerJ.E. PereiraA.C. OliveiraC.J.F. SoaresS.C. Ueira-VieiraC. Metabolomic evaluation of chronic periodontal disease in older adults.Mediators Inflamm.202120211810.1155/2021/179620434840526
    [Google Scholar]
  4. PihlstromB.L. MichalowiczB.S. JohnsonN.W. Periodontal diseases.Lancet200536694991809182010.1016/S0140‑6736(05)67728‑816298220
    [Google Scholar]
  5. HuangY. ZhuM. LiZ. SaR. ChuQ. ZhangQ. ZhangH. TangW. ZhangM. YinH. Mass spectrometry-based metabolomic profiling identifies alterations in salivary redox status and fatty acid metabolism in response to inflammation and oxidative stress in periodontal disease.Free Radic. Biol. Med.20147022323210.1016/j.freeradbiomed.2014.02.02424607715
    [Google Scholar]
  6. GrundnerM. MunjakovićH. ToriT. SepčićK. GašperšičR. OblakČ. SemeK. GuellaG. TrentiF. SkočajM. Ceramide phosphoethanolamine as a possible marker of periodontal disease.Membranes (Basel)202212765510.3390/membranes1207065535877858
    [Google Scholar]
  7. CitterioF. RomanoF. MeoniG. IaderosaG. GrossiS. SobreroA. DegoF. CoranaM. BertaG.N. TenoriL. AimettiM. Changes in the salivary metabolic profile of generalized periodontitis patients after non-surgical periodontal therapy: A metabolomic analysis using nuclear magnetic resonance spectroscopy.J. Clin. Med.2020912397710.3390/jcm912397733302593
    [Google Scholar]
  8. GhallabN.A. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence.Arch. Oral Biol.20188711512410.1016/j.archoralbio.2017.12.02229288920
    [Google Scholar]
  9. HarveyJ.D. Periodontal microbiology.Dent. Clin. North Am.201761225326910.1016/j.cden.2016.11.00528317565
    [Google Scholar]
  10. BernabeE. MarcenesW. HernandezC.R. BaileyJ. AbreuL.G. AlipourV. AminiS. ArablooJ. ArefiZ. AroraA. AyanoreM.A. BärnighausenT.W. BijaniA. ChoD.Y. ChuD.T. CroweC.S. DemozG.T. DemsieD.G. Dibaji ForooshaniZ.S. DuM. El TantawiM. FischerF. FolayanM.O. FutranN.D. GeramoY.C.D. Haj-MirzaianA. HariyaniN. HasanzadehA. HassanipourS. HayS.I. HoleM.K. HostiucS. IlicM.D. JamesS.L. KalhorR. KemmerL. KeramatiM. KhaderY.S. KisaS. KisaA. KoyanagiA. LallooR. Le NguyenQ. LondonS.D. ManoharN.D. MassenburgB.B. MathurM.R. MelesH.G. MestrovicT. Mohammadian-HafshejaniA. MohammadpourhodkiR. MokdadA.H. MorrisonS.D. NazariJ. NguyenT.H. NguyenC.T. NixonM.R. OlagunjuT.O. PakshirK. PathakM. RabieeN. RafieiA. RamezanzadehK. Rios-BlancasM.J. RoroE.M. SabourS. SamyA.M. SawhneyM. SchwendickeF. ShaahmadiF. ShaikhM.A. SteinC. Tovani-PaloneM.R. TranB.X. UnnikrishnanB. VuG.T. VukovicA. WarouwT.S.S. ZaidiZ. ZhangZ.J. KassebaumN.J. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: A systematic analysis for the global burden of disease 2017 study.J. Dent. Res.202099436237310.1177/002203452090853332122215
    [Google Scholar]
  11. BaimaG. IaderosaG. CitterioF. GrossiS. RomanoF. BertaG.N. BuduneliN. AimettiM. Salivary metabolomics for the diagnosis of periodontal diseases: A systematic review with methodological quality assessment.Metabolomics202117112110.1007/s11306‑020‑01754‑333387070
    [Google Scholar]
  12. AlbandarJ.M. SusinC. HughesF.J. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations.J. Clin. Periodontol.201845S20S171S18910.1111/jcpe.1294729926486
    [Google Scholar]
  13. JepsenS. CatonJ.G. AlbandarJ.M. BissadaN.F. BouchardP. CortelliniP. DemirelK. de SanctisM. ErcoliC. FanJ. GeursN.C. HughesF.J. JinL. KantarciA. LallaE. MadianosP.N. MatthewsD. McGuireM.K. MillsM.P. PreshawP.M. ReynoldsM.A. SculeanA. SusinC. WestN.X. YamazakiK. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions.J. Clin. Periodontol.201845S20S219S22910.1111/jcpe.1295129926500
    [Google Scholar]
  14. WongL.B. YapA.U. AllenP.F. Periodontal disease and quality of life: Umbrella review of systematic reviews.J. Periodontal Res.202156111710.1111/jre.1280532965050
    [Google Scholar]
  15. KcS. WangX.Z. GallagherJ.E. Diagnostic sensitivity and specificity of host-derived salivary biomarkers in periodontal disease amongst adults: Systematic review.J. Clin. Periodontol.202047328930810.1111/jcpe.1321831701554
    [Google Scholar]
  16. MariottiA. HeftiA.F. Defining periodontal health.BMC Oral Health201515S1S610.1186/1472‑6831‑15‑S1‑S626390888
    [Google Scholar]
  17. VeenstraT.D. Omics in systems biology: Current progress and future outlook.Proteomics2021213-4200023510.1002/pmic.20200023533320441
    [Google Scholar]
  18. SilvaC. RequichaJ. DiasI. BastosE. ViegasC. Genomic medicine in canine periodontal disease: A systematic review.Animals (Basel)20231315246310.3390/ani1315246337570272
    [Google Scholar]
  19. DaiX. ShenL. Advances and trends in omics technology development.Front. Med. (Lausanne)2022991186110.3389/fmed.2022.91186135860739
    [Google Scholar]
  20. WörheideM.A. KrumsiekJ. KastenmüllerG. ArnoldM. Multi-omics integration in biomedical research – A metabolomics-centric review.Anal. Chim. Acta2021114114416210.1016/j.aca.2020.10.03833248648
    [Google Scholar]
  21. NibaliL. D’AiutoF. DonosN. GriffithsG.S. ParkarM. TonettiM.S. HumphriesS.E. BrettP.M. Association between periodontitis and common variants in the promoter of the interleukin-6 gene.Cytokine2009451505410.1016/j.cyto.2008.10.01619084430
    [Google Scholar]
  22. NibaliL. TonettiM.S. ReadyD. ParkarM. BrettP.M. DonosN. D’AiutoF. Interleukin-6 polymorphisms are associated with pathogenic bacteria in subjects with periodontitis.J. Periodontol.200879467768310.1902/jop.2008.07045318380561
    [Google Scholar]
  23. FriedmanS.A. MandelI.D. HerreraM.S. Lysozyme and lactoferrin quantitation in the crevicular fluid.J. Periodontol.198354634735010.1902/jop.1983.54.6.3476348246
    [Google Scholar]
  24. CutlerC.W. StanfordT.W. AbrahamC. CederbergR.A. BoardmanT.J. RossC. Clinical benefits of oral irrigation for periodontitis are related to reduction of pro-inflammatory cytokine levels and plaque.J. Clin. Periodontol.200027213414310.1034/j.1600‑051x.2000.027002134.x10703660
    [Google Scholar]
  25. KarimbuxN.Y. SaraiyaV.M. ElangovanS. AllareddyV. KinnunenT. KornmanK.S. DuffG.W. Interleukin-1 gene polymorphisms and chronic periodontitis in adult whites: A systematic review and meta-analysis.J. Periodontol.201283111407141910.1902/jop.2012.11065522348697
    [Google Scholar]
  26. HollaL.I. VokurkaJ. HrdlickovaB. AugustinP. FassmannA. Association of toll-like receptor 9 haplotypes with chronic periodontitis in Czech population.J. Clin. Periodontol.201037215215910.1111/j.1600‑051X.2009.01523.x20041977
    [Google Scholar]
  27. SojodB. ChateauD. MuellerC.G. BabajkoS. BerdalA. LézotF. CastanedaB. RANK/RANKL/OPG signalization implication in periodontitis: New evidence from a RANK transgenic mouse model.Front. Physiol.2017833810.3389/fphys.2017.0033828596739
    [Google Scholar]
  28. AlbuquerqueC. MorinhaF. RequichaJ. MartinsT. DiasI. Guedes-PintoH. BastosE. ViegasC. Canine periodontitis: The dog as an important model for periodontal studies.Vet. J.2012191329930510.1016/j.tvjl.2011.08.01721940182
    [Google Scholar]
  29. AlbuquerqueC. MorinhaF. RequichaJ. DiasI. Guedes-PintoH. ViegasC. BastosE. A case–control study between interleukin-10 gene variants and periodontal disease in dogs.Gene20145391758110.1016/j.gene.2014.01.05724487092
    [Google Scholar]
  30. AlbuquerqueC. MorinhaF. MagalhãesJ. RequichaJ. DiasI. Guedes-PintoH. BastosE. ViegasC. Variants in the interleukin-1 alpha and beta genes, and the risk for periodontal disease in dogs.J. Genet.201594465165910.1007/s12041‑015‑0576‑z26690520
    [Google Scholar]
  31. MorinhaF. AlbuquerqueC. RequichaJ. DiasI. LeitãoJ. GutI. Guedes-PintoH. ViegasC. BastosE. Analysis of new lactotransferrin gene variants in a case–control study related to periodontal disease in dog.Mol. Biol. Rep.20123944673468110.1007/s11033‑011‑1259‑321947848
    [Google Scholar]
  32. MorinhaF. AlbuquerqueC. RequichaJ. DiasI. LeitãoJ. GutI. Guedes-PintoH. ViegasC. BastosE. Detection and characterization of interleukin-6 gene variants in Canis familiaris: Association studies with periodontal disease.Gene2011485213914510.1016/j.gene.2011.06.01821708229
    [Google Scholar]
  33. Gonçalves-AnjoN. Leite-PinheiroF. RibeiroR. RequichaJ.F. LourençoA.L. DiasI. ViegasC. BastosE. Toll-like receptor 9 gene in periodontal disease – A promising biomarker.Gene201968720721110.1016/j.gene.2018.11.06030465884
    [Google Scholar]
  34. WishartD.S. Emerging applications of metabolomics in drug discovery and precision medicine.Nat. Rev. Drug Discov.201615747348410.1038/nrd.2016.3226965202
    [Google Scholar]
  35. JurowskiK. KochanK. WalczakJ. BarańskaM. PiekoszewskiW. BuszewskiB. Analytical techniques in lipidomics: State of the art.Crit. Rev. Anal. Chem.201747541843710.1080/10408347.2017.131061328340309
    [Google Scholar]
  36. KostidisS. Sánchez-LópezE. GieraM. Lipidomics analysis in drug discovery and development.Curr. Opin. Chem. Biol.20237210225610.1016/j.cbpa.2022.10225636586190
    [Google Scholar]
  37. GieraM. YanesO. SiuzdakG. Metabolite discovery: Biochemistry’s scientific driver.Cell Metab.2022341213410.1016/j.cmet.2021.11.00534986335
    [Google Scholar]
  38. ZülligT. KöfelerH.C. High resolution mass spectrometry in lipidomics.Mass Spectrom. Rev.202140316217610.1002/mas.2162732233039
    [Google Scholar]
  39. TsugawaH. IkedaK. TakahashiM. SatohA. MoriY. UchinoH. OkahashiN. YamadaY. TadaI. BoniniP. HigashiY. OkazakiY. ZhouZ. ZhuZ.J. KoelmelJ. CajkaT. FiehnO. SaitoK. AritaM. AritaM. A lipidome atlas in MS-DIAL 4.Nat. Biotechnol.202038101159116310.1038/s41587‑020‑0531‑232541957
    [Google Scholar]
  40. XueJ. GuijasC. BentonH.P. WarthB. SiuzdakG. METLIN MS2 molecular standards database: A broad chemical and biological resource.Nat. Methods2020171095395410.1038/s41592‑020‑0942‑532839599
    [Google Scholar]
  41. HartlerJ. TrieblA. ZieglA. TrötzmüllerM. RechbergerG.N. ZeleznikO.A. ZierlerK.A. TortaF. Cazenave-GassiotA. WenkM.R. FaulandA. WheelockC.E. ArmandoA.M. QuehenbergerO. ZhangQ. WakelamM.J.O. HaemmerleG. SpenerF. KöfelerH.C. ThallingerG.G. Deciphering lipid structures based on platform-independent decision rules.Nat. Methods201714121171117410.1038/nmeth.447029058722
    [Google Scholar]
  42. ZhouM. LiC. HanX. YuB. YanX. ZhangY. YangX. Lipidomic analysis reveals altered lipid profiles of gingival tissues with periodontitis.J. Clin. Periodontol.202249111192120210.1111/jcpe.1371035924763
    [Google Scholar]
  43. SlomianyB.L. MurtyV.L.N. MandelI.D. SenguptaS. SlomianyA. Effect of lipids on the lactic acid retardation capacity of tooth enamel and cementum pellicles formed in vitro from saliva of caries-resistant and caries- susceptible human adults.Arch. Oral Biol.199035317518010.1016/0003‑9969(90)90052‑C2350263
    [Google Scholar]
  44. BuckD.L. GriffithD.A. MillsM.J. Histologic evidence for lipids during human tooth movement.Am. J. Orthod.197364661962410.1016/0002‑9416(73)90292‑34135243
    [Google Scholar]
  45. KokkinosP.P. ShayeR. AlamB.S. AlamS.Q. Dietary lipids, prostaglandin E2 levels, and tooth movement in alveolar bone of rats.Calcif. Tissue Int.199353533333710.1007/BF013518398287321
    [Google Scholar]
  46. MurphyS.A. NicolaouA. Lipidomics applications in health, disease and nutrition research.Mol. Nutr. Food Res.20135781336134610.1002/mnfr.20120086323729171
    [Google Scholar]
  47. PageM.J. MoherD. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. McKenzieJ.E. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews.BMJ2021372n16010.1136/bmj.n16033781993
    [Google Scholar]
  48. LumbrerasB. PortaM. MárquezS. PollánM. ParkerL.A. Hernández-AguadoI. QUADOMICS: An adaptation of the Quality Assessment of Diagnostic Accuracy Assessment (QUADAS) for the evaluation of the methodological quality of studies on the diagnostic accuracy of ‘-omics’-based technologies.Clin. Biochem.20084116-171316132510.1016/j.clinbiochem.2008.06.01818652812
    [Google Scholar]
  49. DesaireH. GoE.P. HuaD. Advances, obstacles, and opportunities for machine learning in proteomics.Cell Rep. Phys. Sci.202231010106910.1016/j.xcrp.2022.10106936381226
    [Google Scholar]
  50. EkroosK. LavrynenkoO. TitzB. PaterC. HoengJ. IvanovN.V. Lipid-based biomarkers for CVD, COPD, and aging - a translational perspective.Prog. Lipid Res.20207810103010.1016/j.plipres.2020.10103032339553
    [Google Scholar]
  51. MorozumiS. UedaM. OkahashiN. AritaM. Structures and functions of the gut microbial lipidome.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20221867315911010.1016/j.bbalip.2021.15911034995792
    [Google Scholar]
  52. JinJ. LuZ. LiY. RuJ.H. Lopes-VirellaM.F. HuangY. LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages.J. Leukoc. Biol.2018104484385310.1002/JLB.3A0517‑188RRR29882996
    [Google Scholar]
  53. BonitaR. BeagleholeR. KjellströmT. Basic epidemiology.World Health Organization20062nd ed
    [Google Scholar]
  54. HasturkH. SchulteF. MartinsM. SherzaiH. FlorosC. CuginiM. ChiuC.J. HardtM. Van DykeT. Safety and preliminary efficacy of a novel host-modulatory therapy for reducing gingival inflammation.Front. Immunol.20211270416310.3389/fimmu.2021.70416334589083
    [Google Scholar]
  55. LeeC.T. LiR. ZhuL. TribbleG.D. ZhengW.J. FergusonB. MaddipatiK.R. AngelovN. Van DykeT.E. subgingival microbiome and specialized pro-resolving lipid mediator pathway profiles are correlated in periodontal inflammation.Front. Immunol.20211269121610.3389/fimmu.2021.69121634177951
    [Google Scholar]
  56. JepsenS. CatonJ.G. AlbandarJ.M. BissadaN.F. BouchardP. CortelliniP. DemirelK. de SanctisM. ErcoliC. FanJ. GeursN.C. HughesF.J. JinL. KantarciA. LallaE. MadianosP.N. MatthewsD. McGuireM.K. MillsM.P. PreshawP.M. ReynoldsM.A. SculeanA. SusinC. WestN.X. YamazakiK. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions.J. Periodontol.201889S1S237S24810.1002/JPER.17‑073329926943
    [Google Scholar]
  57. OvermyerK.A. RhoadsT.W. MerrillA.E. YeZ. WestphallM.S. AcharyaA. ShuklaS.K. CoonJ.J. Proteomics, lipidomics, metabolomics, and 16s DNA sequencing of dental plaque from patients with diabetes and periodontal disease.Mol. Cell. Proteomics20212010012610.1016/j.mcpro.2021.10012634332123
    [Google Scholar]
  58. MachteiE.E. NorderydJ. KochG. DunfordR. GrossiS. GencoR.J. The rate of periodontal attachment loss in subjects with established periodontitis.J. Periodontol.199364871371810.1902/jop.1993.64.8.7138410609
    [Google Scholar]
  59. SocranskyS.S. SmithC. MartinL. PasterB.J. DewhirstF.E. LevinA.E. “Checkerboard” DNA-DNA hybridization.Biotechniques19941747887927833043
    [Google Scholar]
  60. MarcenesW. KassebaumN.J. BernabéE. FlaxmanA. NaghaviM. LopezA. MurrayC.J.L. Global burden of oral conditions in 1990-2010: a systematic analysis.J. Dent. Res.201392759259710.1177/002203451349016823720570
    [Google Scholar]
  61. JamesA. JanakiramC. MeghanaR.V. KumarV.S. SagarkarA.R. yY.B. Impact of oral conditions on oral health-related quality of life among Indians- a systematic review and meta-analysis.Health Qual. Life Out.202321110210.1186/s12955‑023‑02170‑637653527
    [Google Scholar]
  62. VivekB. RameshK.S.V. GautamiP.S. SruthimaG.N.V.S. DwarakanathC. AnudeepM. Effect of periodontal treatment on oral health-related quality of life – a randomised controlled trial.J. Taibah Univ. Med. Sci.202116685686310.1016/j.jtumed.2021.07.00234899130
    [Google Scholar]
  63. BlockC. KönigH.H. HajekA. Oral health and quality of life: findings from the survey of health, ageing and retirement in Europe.BMC Oral Health202222160610.1186/s12903‑022‑02599‑z36517821
    [Google Scholar]
  64. NazirM.A. Prevalence of periodontal disease, its association with systemic diseases and prevention.Int. J. Health Sci. (Qassim)2017112728028539867
    [Google Scholar]
  65. WolfT.G. CagettiM.G. FisherJ.M. SeebergerG.K. CampusG. Non-communicable diseases and oral health: An overview.Front. Oral. Health2021272546010.3389/froh.2021.72546035048049
    [Google Scholar]
  66. PăunicăI. GiurgiuM. DumitriuA.S. PăunicăS. Pantea StoianA.M. MartuM.A. SerafinceanuC. the bidirectional relationship between periodontal disease and diabetes mellitus — A review.Diagnostics (Basel)202313468110.3390/diagnostics1304068136832168
    [Google Scholar]
  67. CostaR. Ríos-CarrascoB. MonteiroL. López-JaranaP. CarneiroF. RelvasM. Association between type 1 diabetes mellitus and periodontal diseases.J. Clin. Med.2023123114710.3390/jcm1203114736769794
    [Google Scholar]
  68. LiY. YuanX. ZhengQ. MoF. ZhuS. ShenT. YangW. ChenQ. The association of periodontal disease and oral health with hypertension, NHANES 2009–2018.BMC Public Health2023231112210.1186/s12889‑023‑16012‑z37308938
    [Google Scholar]
  69. BudreviciuteA. DamiatiS. SabirD.K. OnderK. Schuller-GoetzburgP. PlakysG. KatileviciuteA. KhojaS. KodziusR. Management and prevention strategies for non-communicable diseases (ncds) and their risk factors.Front. Public Health2020857411110.3389/fpubh.2020.57411133324597
    [Google Scholar]
  70. ChobeM. ChobeS. DayamaS. SinghA. MetriK. BasaJ.R. RaghuramN. Prevalence of non-communicable diseases and its associated factors among urban elderly of six Indian states.Cureus20221410e3012310.7759/cureus.3012336381942
    [Google Scholar]
  71. WuB.W. SkidmoreP.M. OrtaO.R. FaulknerJ. LambrickD. SignalL. WilliamsM.A. StonerL. Genotype vs. phenotype and the rise of non-communicable diseases: The importance of lifestyle behaviors during childhood.Cureus201681e45810.7759/cureus.45826918226
    [Google Scholar]
  72. SwarnakarR. YadavS.L. Communicable to non-communicable disease pandemic in the making: An urgent call for post-COVID-19 preparedness.Cureus2022147e2745310.7759/cureus.2745336051716
    [Google Scholar]
  73. TabatabaiefarM.A. SajjadiR.S. NarreiS. Epigenetics and common non communicable disease.Adv. Exp. Med. Biol.2019112172010.1007/978‑3‑030‑10616‑4_231392648
    [Google Scholar]
  74. JamaluddineZ. SibaiA.M. OthmanS. YazbekS. Mapping genetic research in non-communicable disease publications in selected Arab countries: first step towards a guided research agenda.Health Res. Policy Syst.20161418110.1186/s12961‑016‑0153‑927832776
    [Google Scholar]
  75. BronsonS.C. SeshiahV. Transgenerational transmission of non-communicable diseases: How to break the vicious cycle?Cureus20211310e1875410.7759/cureus.1875434796053
    [Google Scholar]
  76. DhimalM. NeupaneT. Lamichhane DhimalM. Understanding linkages between environmental risk factors and noncommunicable diseases — a review.FASEB Bioadv.20213528729410.1096/fba.2020‑0011933977230
    [Google Scholar]
  77. LiY. FanX. WeiL. YangK. JiaoM. The impact of high-risk lifestyle factors on all-cause mortality in the US non-communicable disease population.BMC Public Health202323142210.1186/s12889‑023‑15319‑136864408
    [Google Scholar]
  78. KelishadiR. Life-cycle approach for prevention of non communicable disease.Adv. Exp. Med. Biol.201911211610.1007/978‑3‑030‑10616‑4_131392647
    [Google Scholar]
  79. VaroniE.M. RimondiniL. Oral microbiome, oral health and systemic health: A multidirectional link.Biomedicines202210118610.3390/biomedicines1001018635052865
    [Google Scholar]
  80. TonettiM.S. JepsenS. JinL. Otomo-CorgelJ. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action.J. Clin. Periodontol.201744545646210.1111/jcpe.1273228419559
    [Google Scholar]
  81. TóthováL. CelecováV. CelecP. Salivary markers of oxidative stress and their relation to periodontal and dental status in children.Dis. Markers201334191510.1155/2013/59176523151614
    [Google Scholar]
  82. WolframR.M. BudinskyA.C. EderA. PresenhuberC. NellA. SperrW. SinzingerH. Salivary isoprostanes indicate increased oxidation injury in periodontitis with additional tobacco abuse.Biofactors2006281213110.1002/biof.552028010317264390
    [Google Scholar]
  83. MasiS. SalpeaK.D. LiK. ParkarM. NibaliL. DonosN. PatelK. TaddeiS. DeanfieldJ.E. D’AiutoF. HumphriesS.E. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis.Free Radic. Biol. Med.201150673073510.1016/j.freeradbiomed.2010.12.03121195167
    [Google Scholar]
  84. AlpagotT. WolffL.F. SmithQ.T. TranS.D. Risk indicators for periodontal disease in a racially diverse urban population.J. Clin. Periodontol.1996231198298810.1111/j.1600‑051X.1996.tb00524.x8951624
    [Google Scholar]
  85. Van DykeT.E. SerhanC.N. Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases.J. Dent. Res.2003822829010.1177/15440591030820020212562878
    [Google Scholar]
  86. Van DykeT.E. Pro-resolving mediators in the regulation of periodontal disease.Mol. Aspects Med.201758213610.1016/j.mam.2017.04.00628483532
    [Google Scholar]
  87. OffenbaceerS. OdleB.M. van DykeT.E. The use of crevicular fluid prostaglandin E2 levels as a predictor of periodontal attachment loss.J. Periodontal Res.198621210111210.1111/j.1600‑0765.1986.tb01443.x2937899
    [Google Scholar]
  88. OffenbacherS. OdleB.M. GrayR.C. Van DykeE. Crevicular fluid prostaglandin E levels as a measure of the periodontal disease status of adult and juvenile periodontitis patients.J. Periodontal Res.19841911310.1111/j.1600‑0765.1984.tb01190.x6232362
    [Google Scholar]
  89. SerhanC.N. YacoubianS. YangR. Anti-inflammatory and proresolving lipid mediators.Annu. Rev. Pathol.20083127931210.1146/annurev.pathmechdis.3.121806.15140918233953
    [Google Scholar]
  90. YamadaT. TaniY. NakanishiH. TaguchiR. AritaM. AraiH. Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice.FASEB J.201125256156810.1096/fj.10‑17002720959515
    [Google Scholar]
  91. FredmanG. OhS.F. AyilavarapuS. HasturkH. SerhanC.N. Van DykeT.E. Impaired phagocytosis in localized aggressive periodontitis: Rescue by Resolvin E1.PLoS One201169e2442210.1371/journal.pone.002442221935407
    [Google Scholar]
  92. SerhanC.N. Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways.Annu. Rev. Immunol.200725110113710.1146/annurev.immunol.25.022106.14164717090225
    [Google Scholar]
  93. KorteD.L. KinneyJ. Personalized medicine: an update of salivary biomarkers for periodontal diseases.Periodontol. 20002016701263710.1111/prd.1210326662480
    [Google Scholar]
  94. BuduneliN. KinaneD.F. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis.J. Clin. Periodontol.201138s118510510.1111/j.1600‑051X.2010.01670.x21323706
    [Google Scholar]
  95. ProctorG.B. The physiology of salivary secretion.Periodontol. 20002016701112510.1111/prd.1211626662479
    [Google Scholar]
  96. ZhangY. SunJ. LinC.C. AbemayorE. WangM.B. WongD.T.W. The emerging landscape of salivary diagnostics.Periodontol. 20002016701385210.1111/prd.1209926662481
    [Google Scholar]
  97. JaedickeK.M. PreshawP.M. TaylorJ.J. Salivary cytokines as biomarkers of periodontal diseases.Periodontol. 2000201670116418310.1111/prd.1211726662489
    [Google Scholar]
  98. KinneyJ.S. MorelliT. BraunT. RamseierC.A. HerrA.E. SugaiJ.V. ShelburneC.E. RayburnL.A. SinghA.K. GiannobileW.V. Saliva/pathogen biomarker signatures and periodontal disease progression.J. Dent. Res.201190675275810.1177/002203451139990821406610
    [Google Scholar]
  99. MäntyläP. StenmanM. KinaneD.F. TikanojaS. LuotoH. SaloT. SorsaT. Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis.J. Periodontal Res.200338443643910.1034/j.1600‑0765.2003.00677.x12828663
    [Google Scholar]
  100. ZhangL. LiX. YanH. HuangL. Salivary matrix metalloproteinase (MMP)-8 as a biomarker for periodontitis.Medicine (Baltimore)2018973e964210.1097/MD.000000000000964229504999
    [Google Scholar]
  101. KushlinskiiN.E. SolovykhE.A. KaraoglanovaT.B. BayarU. GershteinE.S. TroshinA.A. KostylevaO.I. GrininV.M. MaksimovskayaL.N. YanushevitchO.O. Content of matrix metalloproteinase-8 and matrix metalloproteinase-9 in oral fluid of patients with chronic generalized periodontitis.Bull. Exp. Biol. Med.2011152224024410.1007/s10517‑011‑1498‑222808470
    [Google Scholar]
  102. RangbullaV. NirolaA. GuptaM. BatraP. GuptaM. Salivary IgA, interleukin-1β and MMP-8 as salivary biomarkers in chronic periodontitis patients.Chin. J. Dent. Res.2017201435128232966
    [Google Scholar]
  103. GursoyU.K. KönönenE. Pradhan-PalikheP. TervahartialaT. PussinenP.J. Suominen-TaipaleL. SorsaT. Salivary MMP-8, TIMP-1, and ICTP as markers of advanced periodontitis.J. Clin. Periodontol.201037648749310.1111/j.1600‑051X.2010.01563.x20507371
    [Google Scholar]
  104. NoackB. KippingT. TervahartialaT. SorsaT. HoffmannT. LorenzK. Association between serum and oral matrix metalloproteinase-8 levels and periodontal health status.J. Periodontal Res.201752582483110.1111/jre.1245028345244
    [Google Scholar]
  105. KinaneD.F. StathopoulouP.G. PapapanouP.N. Periodontal diseases.Nat. Rev. Dis. Primers2017311703810.1038/nrdp.2017.3828805207
    [Google Scholar]
  106. FuY.W. LiX.X. XuH.Z. GongY.Q. YangY. Effects of periodontal therapy on serum lipid profile and proinflammatory cytokines in patients with hyperlipidemia: a randomized controlled trial.Clin. Oral Investig.20162061263126910.1007/s00784‑015‑1621‑226434651
    [Google Scholar]
  107. López-LaraI.M. GeigerO. Bacterial lipid diversity.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20171862111287129910.1016/j.bbalip.2016.10.00727760387
    [Google Scholar]
  108. ZengC. WenB. HouG. LeiL. MeiZ. JiaX. ChenX. ZhuW. LiJ. KuangY. ZengW. SuJ. LiuS. PengC. ChenX. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis.Gigascience201761011110.1093/gigascience/gix08729046044
    [Google Scholar]
  109. WenkM.R. The emerging field of lipidomics.Nat. Rev. Drug Discov.20054759461010.1038/nrd177616052242
    [Google Scholar]
  110. PeiselerM. SchwabeR. HampeJ. KubesP. HeikenwälderM. TackeF. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease – novel insights into cellular communication circuits.J. Hepatol.20227741136116010.1016/j.jhep.2022.06.01235750137
    [Google Scholar]
  111. AhluwaliaK. EbrightB. ChowK. DaveP. MeadA. PobleteR. LouieS.G. AsanteI. Lipidomics in understanding pathophysiology and pharmacologic effects in inflammatory diseases: considerations for drug development.Metabolites202212433310.3390/metabo1204033335448520
    [Google Scholar]
  112. BroadfieldL.A. PaneA.A. TalebiA. SwinnenJ.V. FendtS.M. Lipid metabolism in cancer: New perspectives and emerging mechanisms.Dev. Cell202156101363139310.1016/j.devcel.2021.04.01333945792
    [Google Scholar]
  113. YuanS. ChuH. ChanJ.F.W. YeZ.W. WenL. YanB. LaiP.M. TeeK.M. HuangJ. ChenD. LiC. ZhaoX. YangD. ChiuM.C. YipC. PoonV.K.M. ChanC.C.S. SzeK.H. ZhouJ. ChanI.H.Y. KokK.H. ToK.K.W. KaoR.Y.T. LauJ.Y.N. JinD.Y. PerlmanS. YuenK.Y. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target.Nat. Commun.201910112010.1038/s41467‑018‑08015‑x30631056
    [Google Scholar]
  114. HanX. YangK. GrossR.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses.Mass Spectrom. Rev.201231113417810.1002/mas.2034221755525
    [Google Scholar]
  115. BrownH.A. MurphyR.C. Working towards an exegesis for lipids in biology.Nat. Chem. Biol.20095960260610.1038/nchembio0909‑60219690530
    [Google Scholar]
  116. MarshP.D. DevineD.A. How is the development of dental biofilms influenced by the host?J. Clin. Periodontol.201138s11283510.1111/j.1600‑051X.2010.01673.x21323701
    [Google Scholar]
  117. Van DykeT.E. BartoldP.M. ReynoldsE.C. the nexus between periodontal inflammation and dysbiosis.Front. Immunol.20201151110.3389/fimmu.2020.0051132296429
    [Google Scholar]
  118. ChenC. HemmeC. BelenoJ. ShiZ.J. NingD. QinY. TuQ. JorgensenM. HeZ. WuL. ZhouJ. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy.ISME J.20181251210122410.1038/s41396‑017‑0037‑129339824
    [Google Scholar]
  119. BelstrømD. GrandeM.A. Sembler-MøllerM.L. KirkbyN. CottonS.L. PasterB.J. HolmstrupP. Influence of periodontal treatment on subgingival and salivary microbiotas.J. Periodontol.201889553153910.1002/JPER.17‑037729520798
    [Google Scholar]
  120. ColasR.A. ShinoharaM. DalliJ. ChiangN. SerhanC.N. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue.Am. J. Physiol. Cell Physiol.20143071C39C5410.1152/ajpcell.00024.201424696140
    [Google Scholar]
  121. ArnardottirH. OrrS.K. DalliJ. SerhanC.N. Human milk proresolving mediators stimulate resolution of acute inflammation.Mucosal Immunol.20169375776610.1038/mi.2015.9926462421
    [Google Scholar]
  122. Zein ElabdeenH.R. MustafaM. SzklenarM. RühlR. AliR. BolstadA.I. Ratio of pro-resolving and pro-inflammatory lipid mediator precursors as potential markers for aggressive periodontitis.PLoS One201388e7083810.1371/journal.pone.007083823951021
    [Google Scholar]
  123. Tobón-ArroyaveS.I. Isaza-GuzmánD.M. Gómez-OrtegaJ. Flórez-AlzateA.A. Salivary levels of specialized pro-resolving lipid mediators as indicators of periodontal health/disease status.J. Clin. Periodontol.2019461097899010.1111/jcpe.1317331339183
    [Google Scholar]
  124. SerhanC.N. ChiangN. DalliJ. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution.Semin. Immunol.201527320021510.1016/j.smim.2015.03.00425857211
    [Google Scholar]
  125. GewirtzA.T. Collier-HyamsL.S. YoungA.N. KucharzikT. GuilfordW.J. ParkinsonJ.F. WilliamsI.R. NeishA.S. MadaraJ.L. Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis.J. Immunol.2002168105260526710.4049/jimmunol.168.10.526011994483
    [Google Scholar]
  126. TangY. ZhangM.J. HellmannJ. KosuriM. BhatnagarA. SpiteM. Proresolution therapy for the treatment of delayed healing of diabetic wounds.Diabetes201362261862710.2337/db12‑068423043160
    [Google Scholar]
  127. Osorio ParraM.M. ElangovanS. LeeC.T. Specialized pro-resolving lipid mediators in experimental periodontitis: A systematic review.Oral Dis.20192551265127610.1111/odi.1297930230662
    [Google Scholar]
  128. HasturkH. KantarciA. Goguet-SurmenianE. BlackwoodA. AndryC. SerhanC.N. Van DykeT.E. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo.J. Immunol.2007179107021702910.4049/jimmunol.179.10.702117982093
    [Google Scholar]
  129. LeeC.T. TelesR. KantarciA. ChenT. McCaffertyJ. StarrJ.R. BritoL.C.N. PasterB.J. Van DykeT.E. resolvin e1 reverses experimental periodontitis and dysbiosis.J. Immunol.201619772796280610.4049/jimmunol.160085927543615
    [Google Scholar]
  130. FergusonB. BokkaN.R. MaddipatiK.R. AyilavarapuS. WeltmanR. ZhuL. ChenW. ZhengW.J. AngelovN. Van DykeT.E. LeeC.T. Distinct profiles of specialized pro-resolving lipid mediators and corresponding receptor gene expression in periodontal inflammation.Front. Immunol.202011130710.3389/fimmu.2020.0130732670289
    [Google Scholar]
  131. ScherJ.U. UbedaC. EquindaM. KhaninR. BuischiY. VialeA. LipumaL. AtturM. PillingerM.H. WeissmannG. LittmanD.R. PamerE.G. BretzW.A. AbramsonS.B. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis.Arthritis Rheum.201264103083309410.1002/art.3453922576262
    [Google Scholar]
  132. SocranskyS.S. HaffajeeA.D. Periodontal microbial ecology.Periodontol. 2000200538113518710.1111/j.1600‑0757.2005.00107.x15853940
    [Google Scholar]
  133. YangF. ZengX. NingK. LiuK.L. LoC.C. WangW. ChenJ. WangD. HuangR. ChangX. ChainP.S. XieG. LingJ. XuJ. Saliva microbiomes distinguish caries-active from healthy human populations.ISME J.20126111010.1038/ismej.2011.7121716312
    [Google Scholar]
  134. DiasC. BorgesA. OliveiraD. Martinez-MurciaA. SaavedraM.J. SimõesM. Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals.PeerJ20186e497410.7717/peerj.497429910986
    [Google Scholar]
  135. PreshawP.M. AlbaA.L. HerreraD. JepsenS. KonstantinidisA. MakrilakisK. TaylorR. Periodontitis and diabetes: A two-way relationship.Diabetologia2012551213110.1007/s00125‑011‑2342‑y22057194
    [Google Scholar]
  136. SocranskyS.S. HaffajeeA.D. CuginiM.A. SmithC. KentR.L.Jr. Microbial complexes in subgingival plaque.J. Clin. Periodontol.199825213414410.1111/j.1600‑051X.1998.tb02419.x9495612
    [Google Scholar]
  137. AemaimananP. AmimananP. TaweechaisupapongS. Quantification of key periodontal pathogens in insulin-dependent type 2 diabetic and non-diabetic patients with generalized chronic periodontitis.Anaerobe201322646810.1016/j.anaerobe.2013.06.01023827459
    [Google Scholar]
  138. DemmerR.T. HoltfreterB. DesvarieuxM. JacobsD.R.Jr KernerW. NauckM. VölzkeH. KocherT. The influence of type 1 and type 2 diabetes on periodontal disease progression: Prospective results from the Study of Health in Pomerania (SHIP).Diabetes Care201235102036204210.2337/dc11‑245322855731
    [Google Scholar]
  139. AasJ.A. PasterB.J. StokesL.N. OlsenI. DewhirstF.E. Defining the normal bacterial flora of the oral cavity.J. Clin. Microbiol.200543115721573210.1128/JCM.43.11.5721‑5732.200516272510
    [Google Scholar]
  140. PouliotM. ClishC.B. PetasisN.A. Van DykeT.E. SerhanC.N. Lipoxin A(4) analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: A role for cyclooxygenase-2 and lipoxins in periodontal disease.Biochemistry200039164761476810.1021/bi992551b10769133
    [Google Scholar]
  141. SmithM.A. BraswellL.D. CollinsJ.G. BoydD.L. JeffcoatM.K. ReddyM. LiK.L. WilenskyS. VogelR. AlfanoM. Changes in inflammatory mediators in experimental periodontitis in the rhesus monkey.Infect. Immun.19936141453145910.1128/iai.61.4.1453‑1459.19938384162
    [Google Scholar]
  142. GronertK. KantarciA. LevyB.D. ClishC.B. OdparlikS. HasturkH. BadweyJ.A. ColganS.P. Van DykeT.E. SerhanC.N. A molecular defect in intracellular lipid signaling in human neutrophils in localized aggressive periodontal tissue damage.J. Immunol.200417231856186110.4049/jimmunol.172.3.185614734770
    [Google Scholar]
  143. TraianedesK. DallasM.R. GarrettI.R. MundyG.R. BonewaldL.F. 5-Lipoxygenase metabolites inhibit bone formation in vitro.Endocrinology199813973178318410.1210/endo.139.7.61159645691
    [Google Scholar]
  144. SerhanC.N. ChiangN. Lipid-derived mediators in endogenous anti-inflammation and resolution: lipoxins and aspirin-triggered 15-epi-lipoxins.ScientificWorldJournal2002216920410.1100/tsw.2002.8112806051
    [Google Scholar]
  145. Van DykeT.E. HasturkH. KantarciA. FreireM.O. NguyenD. DalliJ. SerhanC.N. Proresolving nanomedicines activate bone regeneration in periodontitis.J. Dent. Res.201594114815610.1177/002203451455733125389003
    [Google Scholar]
  146. HasturkH. KantarciA. OhiraT. AritaM. EbrahimiN. ChiangN. PetasisN.A. LevyB.D. SerhanC.N. Van DykeT.E. RvE1 protects from local inflammation and osteoclastmediated bone destruction in periodontitis.FASEB J.200620240140310.1096/fj.05‑4724fje16373400
    [Google Scholar]
  147. HoriT. ArakawaI. SugitaM. Distribution of ceramide 2-aminoethylphosphonate and ceramide aminoethylphosphate (sphingoethanolamine) in some aquatic animals.J. Biochem.1967621677010.1093/oxfordjournals.jbchem.a1286376073176
    [Google Scholar]
  148. BroadT.E. DawsonR.M.C. Formation of ceramide phosphorylethanolamine from phosphatidylethanolamine in the rumen protozoon Entodinium caudatum ( Short Communication ).Biochem. J.1973134265966210.1042/bj134065916742830
    [Google Scholar]
  149. KaneshiroE.S. JayasimhuluK. SulD. ErwinJ.A. Identification and initial characterizations of free, glycosylated, and phosphorylated ceramides of Paramecium.J. Lipid Res.199738122399241010.1016/S0022‑2275(20)30025‑09458264
    [Google Scholar]
  150. MoreauR.A. YoungD.H. DanisP.O. PowellM.J. QuinnC.J. BeshahK. SlaweckiR.A. DilliplaneR.L. Identification of ceramide-phosphorylethanolamine in Oomycete plant pathogens: Pythium ultimum, phytophthora infestans, and Phytophthora capsici.Lipids199833330731710.1007/s11745‑998‑0210‑19560806
    [Google Scholar]
  151. AbeytungaD.T.U. GlickJ.J. GibsonN.J. OlandL.A. SomogyiA. WysockiV.H. PoltR. Presence of unsaturated sphingomyelins and changes in their composition during the life cycle of the moth Manduca sexta.J. Lipid Res.20044571221123110.1194/jlr.M300392‑JLR20015102888
    [Google Scholar]
  152. MurakamiC. SakaneF. Sphingomyelin synthase-related protein generates diacylglycerol via the hydrolysis of glycerophospholipids in the absence of ceramide.J. Biol. Chem.202129610045410.1016/j.jbc.2021.10045433621517
    [Google Scholar]
  153. BickertA. GinkelC. KolM. vom DorpK. JastrowH. DegenJ. JacobsR.L. VanceD.E. WinterhagerE. JiangX.C. DörmannP. SomerharjuP. HolthuisJ.C.M. WilleckeK. Functional characterization of enzymes catalyzing ceramide phosphoethanolamine biosynthesis in mice.J. Lipid Res.201556482183510.1194/jlr.M05526925667419
    [Google Scholar]
  154. CroneH.D. BridgesR.G. The phospholipids of the housefly, Musca domestica.Biochem. J.1963891112110.1042/bj089001114097353
    [Google Scholar]
  155. MasoodM.A. YuanC. AcharyaJ.K. VeenstraT.D. BlonderJ. Quantitation of ceramide phosphorylethanolamines containing saturated and unsaturated sphingoid base cores.Anal. Biochem.2010400225926910.1016/j.ab.2010.01.03320122889
    [Google Scholar]
  156. KrautR. Roles of sphingolipids in Drosophila development and disease.J. Neurochem.2011116576477810.1111/j.1471‑4159.2010.07022.x21214556
    [Google Scholar]
  157. NicholsF.C. RojanasomsithK. Porphyromonas gingivalis lipids and diseased dental tissues.Oral Microbiol. Immunol.2006212849210.1111/j.1399‑302X.2006.00264.x16476017
    [Google Scholar]
  158. NicholsF.C. YaoX. BajramiB. DownesJ. FinegoldS.M. KneeE. GallagherJ.J. HousleyW.J. ClarkR.B. Phosphorylated dihydroceramides from common human bacteria are recovered in human tissues.PLoS One201162e1677110.1371/journal.pone.001677121347306
    [Google Scholar]
  159. KatoM. MutoY. Tanaka-BandohK. WatanabeK. UenoK. Sphingolipid composition in Bacteroides species.Anaerobe19951213513910.1006/anae.1995.100916887518
    [Google Scholar]
  160. PanevskaA. SkočajM. ModicŠ. RazingerJ. SepčićK. Aegerolysins from the fungal genus Pleurotus – Bioinsecticidal proteins with multiple potential applications.J. Invertebr. Pathol.202118610747410.1016/j.jip.2020.10747432971130
    [Google Scholar]
  161. GrundnerM. PanevskaA. SepčićK. SkočajM. What can mushroom proteins teach us about lipid rafts?Membranes (Basel)202111426410.3390/membranes1104026433917311
    [Google Scholar]
  162. ButalaM. NovakM. KraševecN. SkočajM. VeraničP. MačekP. SepčićK. Aegerolysins: Lipid-binding proteins with versatile functions.Semin. Cell Dev. Biol.20177214215110.1016/j.semcdb.2017.05.00228506897
    [Google Scholar]
  163. BhatH.B. IshitsukaR. InabaT. MurateM. AbeM. MakinoA. Kohyama-KoganeyaA. NagaoK. KurahashiA. KishimotoT. TaharaM. YamanoA. NagamuneK. HirabayashiY. JuniN. UmedaM. FujimoriF. NishiboriK. Yamaji-HasegawaA. GreimelP. KobayashiT. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates.FASEB J.20152993920393410.1096/fj.15‑27211226060215
    [Google Scholar]
  164. KishimotoT. IshitsukaR. KobayashiT. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20161861881282910.1016/j.bbalip.2016.03.01326993577
    [Google Scholar]
  165. ChiurchiùV. LeutiA. MaccarroneM. Bioactive lipids and chronic inflammation: Managing the fire within.Front. Immunol.201893810.3389/fimmu.2018.0003829434586
    [Google Scholar]
  166. LeutiA. FazioD. FavaM. PiccoliA. OddiS. MaccarroneM. Bioactive lipids, inflammation and chronic diseases.Adv. Drug Deliv. Rev.202015913316910.1016/j.addr.2020.06.02832628989
    [Google Scholar]
  167. ShapiroM.D. FazioS. From lipids to inflammation.Circ. Res.2016118473274910.1161/CIRCRESAHA.115.30647126892970
    [Google Scholar]
  168. EbersoleJ.L. NagarajanR. KirakoduS. GonzalezO.A. Oral microbiome and gingival gene expression of inflammatory biomolecules with aging and periodontitis.Front. Oral Health2021272511510.3389/froh.2021.72511535048048
    [Google Scholar]
  169. KimY.G. KimM. KangJ.H. KimH.J. ParkJ.W. LeeJ.M. SuhJ.Y. KimJ.Y. LeeJ.H. LeeY. Transcriptome sequencing of gingival biopsies from chronic periodontitis patients reveals novel gene expression and splicing patterns.Hum. Genomics20161012810.1186/s40246‑016‑0084‑027531006
    [Google Scholar]
  170. LordC.C. BettersJ.L. IvanovaP.T. MilneS.B. MyersD.S. MadenspacherJ. ThomasG. ChungS. LiuM. DavisM.A. LeeR.G. CrookeR.M. GrahamM.J. ParksJ.S. BrasaemleD.L. FesslerM.B. BrownH.A. BrownJ.M. CGI-58/ABHD5-derived signaling lipids regulate systemic inflammation and insulin action.Diabetes201261235536310.2337/db11‑099422228714
    [Google Scholar]
  171. ChenD. WeiY. LiX. EpsteinS. WolosinJ.M. AsbellP. sPLA2-IIa is an inflammatory mediator when the ocular surface is compromised.Exp. Eye Res.200988588088810.1016/j.exer.2008.11.03519116146
    [Google Scholar]
  172. TriggianiM. GranataF. FrattiniA. MaroneG. Activation of human inflammatory cells by secreted phospholipases A2.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20061761111289130010.1016/j.bbalip.2006.07.00316952481
    [Google Scholar]
  173. FiehnO. Metabolomics - The link between genotypes and phenotypes.Plant Mol. Biol.2002481/215517110.1023/A:101371390583311860207
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323591240923051742
Loading
/content/journals/cmc/10.2174/0109298673323591240923051742
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): Gingivitis; lipidomics; lipids; multi-omics analyses; periodontal disease; periodontitis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test