Skip to content
2000
Volume 32, Issue 19
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer is characterized by the uncontrolled proliferation and spread of abnormal cells in the body, resulting in the development of tumors or clusters of irregular cells. The factors contributing to cancer are intricate, involving a combination of genetic, environmental, and lifestyle elements. Risk factors for cancer include the use of nicotine, excessive alcohol consumption, exposure to radiation or specific chemicals, and a family history of the disease. Common treatment methods for cancer encompass surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy. These treatments aim to eliminate cancer cells while minimizing harm to healthy cells. Recent research has extensively explored the potential of bioactive compounds as agents for combating cancer. However, effectively delivering such compounds to specific target sites is a complex undertaking. Consequently, there has been widespread exploration of polymer applications in the development of nanomedicine for delivering bioactive substances. Additionally, the technique of grafting native excipients onto polymers has been investigated to enhance their versatility in the delivery of these compounds to specific tumor cells. This review offers a brief yet informative summary of how grafted chitosan is employed as a delivery system for bioactive phytopharmaceuticals possessing anticancer properties. In essence, it delves into the use of grafted chitosan in facilitating the transport and targeted release of these natural compounds that have demonstrated potential in combating cancer. This innovative approach has the potential to enhance the effectiveness of anticancer treatments and minimize their adverse effects on healthy cells.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673285334240112104709
2024-02-19
2025-09-02
Loading full text...

Full text loading...

References

  1. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.06726706565
    [Google Scholar]
  2. LuoJ. SoliminiN.L. ElledgeS.J. Principles of cancer therapy: Oncogene and non-oncogene addiction.Cell2009136582383710.1016/j.cell.2009.02.02419269363
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  4. SoniG. YadavK.S. Applications of nanoparticles in treatment and diagnosis of leukemia.Mater. Sci. Eng. C20154715616410.1016/j.msec.2014.10.04325492184
    [Google Scholar]
  5. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  6. TorchilinV.P. Passive and active drug targeting: drug delivery to tumors as an example.Handb. Exp. Pharmacol.201019735310.1007/978‑3‑642‑00477‑3_1
    [Google Scholar]
  7. PanL. LiuJ. HeQ. ShiJ. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression.Adv. Mater.201426396742674810.1002/adma.20140275225159109
    [Google Scholar]
  8. SetyawatiM.I. TayC.Y. BayB.H. LeongD.T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin.ACS Nano20171155020503010.1021/acsnano.7b0174428422481
    [Google Scholar]
  9. EftekhariA. KryschiC. PamiesD. GulecS. AhmadianE. JanasD. DavaranS. KhalilovR. Natural and synthetic nanovectors for cancer therapy.Nanotheranostics20237323625710.7150/ntno.7756437064613
    [Google Scholar]
  10. LiC. WangJ. WangY. GaoH. WeiG. HuangY. YuH. GanY. WangY. MeiL. ChenH. HuH. ZhangZ. JinY. Recent progress in drug delivery.Acta Pharm. Sin. B2019961145116210.1016/j.apsb.2019.08.00331867161
    [Google Scholar]
  11. TalaminiL. ViolattoM.B. CaiQ. MonopoliM.P. KantnerK. KrpetićŽ. Perez-PottiA. CookmanJ. GarryD. SilveiraC.P. BoselliL. PelazB. SerchiT. CambierS. GutlebA.C. FeliuN. YanY. SalmonaM. ParakW.J. DawsonK.A. BiginiP. Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles.ACS Nano20171165519552910.1021/acsnano.7b0049728558193
    [Google Scholar]
  12. YuW. LiuR. ZhouY. GaoH. Size-tunable strategies for a tumor targeted drug delivery system.ACS Cent. Sci.20206210011610.1021/acscentsci.9b0113932123729
    [Google Scholar]
  13. CraggG.M. PezzutoJ.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents.Med. Princ. Pract.201625Suppl 2Suppl. 2415910.1159/00044340426679767
    [Google Scholar]
  14. RamazanliV.N. AhmadovI.S. Synthesis of silver nanoparticles by using extract of olive leaves.Adv. Biol. Earth Sci.20227238244
    [Google Scholar]
  15. BaranA. Fırat BaranM. KeskinC. HatipoğluA. YavuzÖ. İrtegün KandemirS. AdicanM.T. KhalilovR. MammadovaA. AhmadianE. RosićG. SelakovicD. EftekhariA. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AGNPS) derived from Cicer arietinum L. green leaf extract.Front. Bioeng. Biotechnol.20221085513610.3389/fbioe.2022.85513635330628
    [Google Scholar]
  16. ChavdaV.P. PatelA.B. MistryK.J. SutharS.F. WuZ.X. ChenZ.S. HouK. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: Recent progress and future challenges.Front. Oncol.20221286765510.3389/fonc.2022.86765535425710
    [Google Scholar]
  17. ParkW. HeoY.J. HanD.K. New opportunities for nanoparticles in cancer immunotherapy.Biomater. Res.20182212410.1186/s40824‑018‑0133‑y30275967
    [Google Scholar]
  18. VelpurisivaP. GadA. PielB. JadiaR. RaiP. Nanoparticle design strategies for effective cancer immunotherapy.J. Biomed.201722647710.7150/jbm.1887728503405
    [Google Scholar]
  19. ZangX. ZhaoX. HuH. QiaoM. DengY. ChenD. Nanoparticles for tumor immunotherapy.Eur. J. Pharm. Biopharm.201711524325610.1016/j.ejpb.2017.03.01328323111
    [Google Scholar]
  20. YuY. CuiJ. Present and future of cancer immunotherapy: A tumor microenvironmental perspective (Review).Oncol. Lett.20181644105411310.3892/ol.2018.921930214551
    [Google Scholar]
  21. RajendrakumarS. MohapatraA. SinghB. RevuriV. LeeY.K. KimC. ChoC.S. ParkI.K. Self-assembled, adjuvant/antigen-based nanovaccine mediates anti-tumor immune response against melanoma tumor.Polymers20181010106310.3390/polym1010106330960988
    [Google Scholar]
  22. LaiP. DaearW. LöbenbergR. PrennerE.J. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly (d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate.Colloids Surf. B Biointerfaces201411815416310.1016/j.colsurfb.2014.03.01724769392
    [Google Scholar]
  23. NazA. ArunS. NarviS.S. AlamM.S. SinghA. BhartiyaP. DuttaP.K. Cu(II)-carboxymethyl chitosan-silane schiff base complex grafted on nano silica: Structural evolution, antibacterial performance and dye degradation ability.Int. J. Biol. Macromol.201811021522610.1016/j.ijbiomac.2017.11.11229169947
    [Google Scholar]
  24. NigamN. KumarS. DuttaP.K. PeiS. GhoshT. Chitosan containing azo-based Schiff bases: thermal, antibacterial and birefringence properties for bio-optical devices.RSC Adv.2016675575558110.1039/C5RA27210F
    [Google Scholar]
  25. NasibovaA. Generation of nanoparticles in biological systems and their application prospects.Adv. Biol. Earth Sci.20238140146
    [Google Scholar]
  26. XingL. FanY.T. ZhouT.J. GongJ.H. CuiL.H. ChoK.H. ChoiY.J. JiangH.L. ChoC.S. Chemical modification of chitosan for efficient vaccine delivery.Molecules201823222910.3390/molecules2302022929370100
    [Google Scholar]
  27. NegmN.A. HefniH.H.H. Abd-ElaalA.A.A. BadrE.A. Abou KanaM.T.H. Advancement on modification of chitosan biopolymer and its potential applications.Int. J. Biol. Macromol.202015268170210.1016/j.ijbiomac.2020.02.19632084486
    [Google Scholar]
  28. Fonseca-SantosB. ChorilliM. An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems.Mater. Sci. Eng. C2017771349136210.1016/j.msec.2017.03.19828532012
    [Google Scholar]
  29. TekadeM. MaheshwariN. Youngren-OrtizS.R. PandeyV. ChourasiyaY. SoniV. DebP.K. SharmaM.C. Thiolated-Chitosan: A novel mucoadhesive polymer for better-targeted drug delivery.Biomater. Bionanotechnol.Elsevier201945949310.1016/B978‑0‑12‑814427‑5.00013‑5
    [Google Scholar]
  30. DimassiS. TabaryN. ChaiF. BlanchemainN. MartelB. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review.Carbohydr. Polym.201820238239610.1016/j.carbpol.2018.09.01130287013
    [Google Scholar]
  31. MikušováV. MikušP. Advances in chitosan-based nanoparticles for drug delivery.Int. J. Mol. Sci.20212217965210.3390/ijms2217965234502560
    [Google Scholar]
  32. CharmsazS. CollinsD. PerryA. PrencipeM. Novel strategies for cancer treatment: Highlights from the 55th IACR annual conference.Cancers2019118112510.3390/cancers1108112531394729
    [Google Scholar]
  33. ArrueboM. VilaboaN. Sáez-GutierrezB. LambeaJ. TresA. ValladaresM. González-FernándezÁ. Assessment of the evolution of cancer treatment therapies.Cancers2011333279333010.3390/cancers3033279
    [Google Scholar]
  34. DemicheliR. RetskyM.W. HrusheskyW.J.M. BaumM. GukasI.D. The effects of surgery on tumor growth: A century of investigations.Ann. Oncol.200819111821182810.1093/annonc/mdn38618550576
    [Google Scholar]
  35. HorowitzM. NeemanE. SharonE. Ben-EliyahuS. Exploiting the critical perioperative period to improve long-term cancer outcomes.Nat. Rev. Clin. Oncol.201512421322610.1038/nrclinonc.2014.22425601442
    [Google Scholar]
  36. NagayaT. NakamuraY.A. ChoykeP.L. KobayashiH. Fluorescence-guided surgery.Front. Oncol.2017731410.3389/fonc.2017.0031429312886
    [Google Scholar]
  37. MorisD. BurkhartR.A. BealE.W. PawlikT.M. Laparoscopic hepatectomy for hepatocellular carcinoma: Are oncologic outcomes truly superior to an open approach?Hepatobiliary Surg. Nutr.20176320020210.21037/hbsn.2017.03.0928653005
    [Google Scholar]
  38. YamaguchiK. TakagiY. AokiS. FutamuraM. SajiS. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection.Ann. Surg.20002321586510.1097/00000658‑200007000‑0000910862196
    [Google Scholar]
  39. ChambersA.F. GroomA.C. MacDonaldI.C. Dissemination and growth of cancer cells in metastatic sites.Nat. Rev. Cancer20022856357210.1038/nrc86512154349
    [Google Scholar]
  40. TohmeS. SimmonsR.L. TsungA. Surgery for cancer: A trigger for metastases.Cancer Res.20177771548155210.1158/0008‑5472.CAN‑16‑153628330928
    [Google Scholar]
  41. EbosJ.M.L. Prodding the beast: Assessing the impact of treatment-induced metastasis.Cancer Res.201575173427343510.1158/0008‑5472.CAN‑15‑030826229121
    [Google Scholar]
  42. CoffeyJ.C. SmithM.J.F. WangJ.H. Bouchier-HayesD. CotterT.G. RedmondH.P. Cancer surgery: Risks and opportunities.BioEssays200628443343710.1002/bies.2038116547958
    [Google Scholar]
  43. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.466130570109
    [Google Scholar]
  44. PearceA. HaasM. VineyR. PearsonS.A. HaywoodP. BrownC. WardR. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study.PLoS One20171210e018436010.1371/journal.pone.018436029016607
    [Google Scholar]
  45. DickensE. AhmedS. Principles of cancer treatment by chemotherapy.Surgery201836313413810.1016/j.mpsur.2017.12.002
    [Google Scholar]
  46. LorussoD. BriaE. CostantiniA. Di MaioM. RostiG. MancusoA. Patients’ perception of chemotherapy side effects: Expectations, doctor-patient communication and impact on quality of life - An Italian survey.Eur. J. Cancer Care2017262e1261810.1111/ecc.1261828004440
    [Google Scholar]
  47. SchneiderB.J. NaidooJ. SantomassoB.D. LacchettiC. AdkinsS. AnadkatM. AtkinsM.B. BrassilK.J. CaterinoJ.M. ChauI. DaviesM.J. ErnstoffM.S. FecherL. GhoshM. JaiyesimiI. MammenJ.S. NaingA. NastoupilL.J. PhillipsT. PorterL.D. ReichnerC.A. SeigelC. SongJ.M. SpiraA. Suarez-AlmazorM. SwamiU. ThompsonJ.A. VikasP. WangY. WeberJ.S. FunchainP. BollinK. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update.J. Clin. Oncol.202139364073412610.1200/JCO.21.0144034724392
    [Google Scholar]
  48. SantomassoB.D. NastoupilL.J. AdkinsS. LacchettiC. SchneiderB.J. AnadkatM. AtkinsM.B. BrassilK.J. CaterinoJ.M. ChauI. DaviesM.J. ErnstoffM.S. FecherL. FunchainP. JaiyesimiI. MammenJ.S. NaidooJ. NaingA. PhillipsT. PorterL.D. ReichnerC.A. SeigelC. SongJ.M. SpiraA. Suarez-AlmazorM. SwamiU. ThompsonJ.A. VikasP. WangY. WeberJ.S. BollinK. GhoshM. Management of immune-related adverse events in patients treated with chimeric antigen receptor t-cell therapy: ASCO guideline.J. Clin. Oncol.202139353978399210.1200/JCO.21.0199234724386
    [Google Scholar]
  49. LiuJ. ZhangX. ZhongJ.F. ZhangC. CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia.Immunotherapy20179131115112510.2217/imt‑2017‑007229032733
    [Google Scholar]
  50. ThomasX. PaubelleE. Tisagenlecleucel-T for the treatment of acute lymphocytic leukemia.Expert Opin. Biol. Ther.201818111095110610.1080/14712598.2018.153395130296188
    [Google Scholar]
  51. FlynnM.J. SayedA.A. SharmaR. SiddiqueA. PinatoD.J. Challenges and opportunities in the clinical development of immune checkpoint inhibitors for hepatocellular carcinoma.Hepatology20196952258227010.1002/hep.30337
    [Google Scholar]
  52. RahmanM.M. BehlT. IslamM.R. AlamM.N. IslamM.M. AlbarratiA. AlbrattyM. MerayaA.M. BungauS.G. Emerging management approach for the adverse events of immunotherapy of cancer.Molecules20222712379810.3390/molecules2712379835744922
    [Google Scholar]
  53. MorsyA.A. SabriN.A. MouradA.M. MojahedE.M. ShawkiM.A. Randomized controlled open-label study of the effect of vitamin E supplementation on fertility in clomiphene citrate-resistant polycystic ovary syndrome.J. Obstet. Gynaecol. Res.202046112375238210.1111/jog.1446732885585
    [Google Scholar]
  54. NaingA. HajjarJ. GulleyJ.L. AtkinsM.B. CilibertoG. Meric-BernstamF. HwuP. Strategies for improving the management of immune-related adverse events.J. Immunother. Cancer202082e00175410.1136/jitc‑2020‑00175433310772
    [Google Scholar]
  55. LaparraA. ChampiatS. MichotJ-M. LambotteO. Management of adverse events associated with cancer immunotherapy.Rev. Prat.202171440040734161006
    [Google Scholar]
  56. JafernikK. ŁadniakA. BlicharskaE. CzarnekK. EkiertH. WiącekA.E. SzopaA. Chitosan-based nanoparticles as effective drug delivery systems-a review.Molecules2023284196310.3390/molecules2804196336838951
    [Google Scholar]
  57. Quintanilla-CarvajalM.X. Camacho-DíazB.H. Meraz-TorresL.S. Chanona-PérezJ.J. Alamilla-BeltránL. Jimenéz-AparicioA. Gutiérrez-LópezG.F. Nanoencapsulation: A new trend in food engineering processing.Food Eng. Rev.201021395010.1007/s12393‑009‑9012‑6
    [Google Scholar]
  58. SilvaH.D. CerqueiraM.A. SouzaB.W.S. RibeiroC. AvidesM.C. QuintasM.A.C. CoimbraJ.S.R. Carneiro-da-CunhaM.G. VicenteA.A. Nanoemulsions of β-carotene using a high-energy emulsification–evaporation technique.J. Food Eng.2011102213013510.1016/j.jfoodeng.2010.08.005
    [Google Scholar]
  59. RahaieeS. AssadpourE. Faridi EsfanjaniA. SilvaA.S. JafariS.M. Application of nano/microencapsulated phenolic compounds against cancer.Adv. Colloid Interface Sci.202027910215310.1016/j.cis.2020.10215332289738
    [Google Scholar]
  60. CasterJ.M. PatelA.N. ZhangT. WangA. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201791e141610.1002/wnan.141627312983
    [Google Scholar]
  61. GuL. MooneyD.J. Biomaterials and emerging anticancer therapeutics: Engineering the microenvironment.Nat. Rev. Cancer2016161566610.1038/nrc.2015.326694936
    [Google Scholar]
  62. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  63. JinM.Z. JinW.L. The updated landscape of tumor microenvironment and drug repurposing.Signal Transduct. Target. Ther.20205116610.1038/s41392‑020‑00280‑x32843638
    [Google Scholar]
  64. SheikhpourM. BaraniL. KasaeianA. Biomimetics in drug delivery systems: A critical review.J. Control. Release20172539710910.1016/j.jconrel.2017.03.02628322976
    [Google Scholar]
  65. XuanM. ShaoJ. LiJ. Cell membrane-covered nanoparticles as biomaterials.Natl. Sci. Rev.20196355156110.1093/nsr/nwz03734691904
    [Google Scholar]
  66. JinJ. BhujwallaZ.M. Biomimetic nanoparticles camouflaged in cancer cell membranes and their applications in cancer theranostics.Front. Oncol.20209156010.3389/fonc.2019.0156032039028
    [Google Scholar]
  67. XuX. WuJ. LiuY. SawP.E. TaoW. YuM. ZopeH. SiM. VictoriousA. RasmussenJ. AyyashD. FarokhzadO.C. ShiJ. Multifunctional envelope-type sirna delivery nanoparticle platform for prostate cancer therapy.ACS Nano20171132618262710.1021/acsnano.6b0719528240870
    [Google Scholar]
  68. FengX. LvF. LiuL. TangH. XingC. YangQ. WangS. Conjugated polymer nanoparticles for drug delivery and imaging.ACS Appl. Mater. Interfaces2010282429243510.1021/am100435k20695494
    [Google Scholar]
  69. ZhouX.X. JinL. QiR.Q. MaT. pH-responsive polymeric micelles self-assembled from amphiphilic copolymer modified with lipid used as doxorubicin delivery carriers.R. Soc. Open Sci.20185317165410.1098/rsos.17165429657772
    [Google Scholar]
  70. ChenJ. YangX. HuangL. LaiH. GanC. LuoX. Development of dual-drug-loaded stealth nanocarriers for targeted and synergistic anti-lung cancer efficacy.Drug Deliv.20182511932194210.1080/10717544.2018.147785630472899
    [Google Scholar]
  71. RiccardiL. GabrielliL. SunX. De BiasiF. RastrelliF. MancinF. De VivoM. Nanoparticle-based receptors mimic protein-ligand recognition.Chem2017319210910.1016/j.chempr.2017.05.01628770257
    [Google Scholar]
  72. LiuF. ZhangY. ZhouG. Grafting pH-sensitive poly[2-(diethylamino)ethyl methacrylate] modification of vesicular silica with activator regenerated by electron transfer atom transfer radical polymerisation for controlled drug release.Micro & Nano Lett.201510418719110.1049/mnl.2014.0585
    [Google Scholar]
  73. HervaultA. DunnA.E. LimM. BoyerC. MottD. MaenosonoS. ThanhN.T.K. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications.Nanoscale2016824121521216110.1039/C5NR07773G26892588
    [Google Scholar]
  74. GuazzelliL. D’AndreaF. GiorgelliF. CatelaniG. PanattoniA. LuvisiA. Synthesis of PAMAM dendrimers loaded with mycophenolic acid to be studied as new potential immunosuppressants.J. Chem.201520151610.1155/2015/263072
    [Google Scholar]
  75. DwivediC. ChaudharyA. SrinivasanS. NandiC.K. Polymer stabilized bimetallic alloy nanoparticles: synthesis and catalytic application.Colloid Interface Sci. Commun.201824626710.1016/j.colcom.2018.04.001
    [Google Scholar]
  76. PoornimaD.V. PratapG.K. VadlapudiK. VishalaE. Green Nanoparticles in Drug Delivery of Cancer Therapy, Biomedical Applications.Springer Nature Singapore, SingaporeEncycl. Green Mater20221910.1007/978‑981‑16‑4921‑9_150‑1
    [Google Scholar]
  77. NoahN.M. NdangiliP.M. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery.Sensors Int.2022310016610.1016/j.sintl.2022.100166
    [Google Scholar]
  78. SachdevaB. SachdevaP. NegiA. GhoshS. HanS. DewanjeeS. JhaS.K. BhaskarR. SinhaJ.K. Paiva-SantosA.C. JhaN.K. KesariK.K. Chitosan nanoparticles-based cancer drug delivery: Application and challenges.Mar. Drugs202321421110.3390/md2104021137103352
    [Google Scholar]
  79. ElshamiF.I. ShereefH.A. El-MehassebI.M. ShabanS.Y. van EldikR. Hydroxychloroquine-loaded chitosan nanoparticles induce anticancer activity in A549 lung cancer cells: Design, BSA binding, molecular docking, mechanistic, and biological evaluation.Int. J. Mol. Sci.202324181410310.3390/ijms24181410337762406
    [Google Scholar]
  80. AhmadN. KhanM.R. PalanisamyS. MohandossS. Anticancer drug-loaded chitosan nanoparticles for in vitro release, promoting antibacterial and anticancer activities.Polymers20231519392510.3390/polym1519392537835972
    [Google Scholar]
  81. EssaD. KondiahP.P.D. KumarP. ChoonaraY.E. Design of chitosan-coated, quercetin-loaded PLGA nanoparticles for enhanced PSMA-Specific activity on lncap prostate cancer cells.Biomedicines2023114120110.3390/biomedicines1104120137189819
    [Google Scholar]
  82. DingJ. GuoY. Recent advances in chitosan and its derivatives in cancer treatment.Front. Pharmacol.20221388874010.3389/fphar.2022.88874035694245
    [Google Scholar]
  83. LiuY. XuC.F. IqbalS. YangX.Z. WangJ. Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer.Adv. Drug Deliv. Rev.20171159811410.1016/j.addr.2017.03.00428396204
    [Google Scholar]
  84. SongN. ScholtemeijerM. ShahK. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential.Trends Pharmacol. Sci.202041965366410.1016/j.tips.2020.06.00932709406
    [Google Scholar]
  85. TorchilinV. Tumor delivery of macromolecular drugs based on the EPR effect.Adv. Drug Deliv. Rev.201163313113510.1016/j.addr.2010.03.01120304019
    [Google Scholar]
  86. PrabaharanM. Chitosan-based nanoparticles for tumor-targeted drug delivery.Int. J. Biol. Macromol.2015721313132210.1016/j.ijbiomac.2014.10.05225450550
    [Google Scholar]
  87. JayakumarR. PrabaharanM. NairS.V. TamuraH. Novel chitin and chitosan nanofibers in biomedical applications.Biotechnol. Adv.201028114215010.1016/j.biotechadv.2009.11.00119913083
    [Google Scholar]
  88. MitraS. GaurU. GhoshP.C. MaitraA.N. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier.J. Control. Release2001741-331732310.1016/S0168‑3659(01)00342‑X11489513
    [Google Scholar]
  89. VaghaniS.S. PatelM.M. SatishC.S. PatelK.M. JivaniN.P. Synthesis and characterization of carboxymethyl chitosan hydrogel: Application as pH-sensitive delivery for nateglinide.Curr. Drug Deliv.20129662863610.2174/15672011280352983722452405
    [Google Scholar]
  90. AnirudhanT.S. Sekhar VC. NairS.S. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug.J. Drug Deliv. Sci. Technol.20195156958210.1016/j.jddst.2019.03.036
    [Google Scholar]
  91. SunX. LiuC. OmerA.M. YangL.Y. OuyangX. Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil.Int. J. Biol. Macromol.201913248749410.1016/j.ijbiomac.2019.03.22530940590
    [Google Scholar]
  92. KhanS. AnwarN. Highly porous ph-responsive carboxymethyl chitosan- Grafted -Poly (Acrylic Acid) based smart hydrogels for 5-fluorouracil controlled delivery and colon targeting.Int. J. Polym. Sci.2019201911510.1155/2019/6579239
    [Google Scholar]
  93. JahrenS.L. ButlerM.F. AdamsS. CameronR.E. Swelling and viscoelastic characterisation of ph-responsive chitosan hydrogels for targeted drug delivery.Macromol. Chem. Phys.2010211664465010.1002/macp.200900560
    [Google Scholar]
  94. ChuX. HuangW. WangY. MengL. ChenL. JinM. ChenL. GaoC. GeC. GaoZ. GaoC. Improving antitumor outcomes for palliative intratumoral injection therapy through lecithin–chitosan nanoparticles loading paclitaxel–cholesterol complex.Int. J. Nanomedicine20191468970510.2147/IJN.S18866730774330
    [Google Scholar]
  95. García-CouceJ. Bada-RiveroN. López HernándezO.D. NogueiraA. CaraccioloP.C. AbrahamG.A. Ramón HernándezJ.A. PenicheC. Dexamethasone-loaded chitosan beads coated with a ph-dependent interpolymer complex for colon-specific drug delivery.Int. J. Polym. Sci.201920191910.1155/2019/4204375
    [Google Scholar]
  96. ZhangE. XingR. LiuS. LiK. QinY. YuH. LiP. Vascular targeted chitosan-derived nanoparticles as docetaxel carriers for gastric cancer therapy.Int. J. Biol. Macromol.201912666267210.1016/j.ijbiomac.2018.12.26230599159
    [Google Scholar]
  97. ZhouZ. ZhengC. LiuY. LuoW. DengH. ShenJ. Chitosan biguanide induced mitochondrial inhibition to amplify the efficacy of oxygen-sensitive tumor therapies.Carbohydr. Polym.202229511987810.1016/j.carbpol.2022.11987835989018
    [Google Scholar]
  98. OzpolatB. SoodA.K. Lopez-BeresteinG. Liposomal siRNA nanocarriers for cancer therapy.Adv. Drug Deliv. Rev.20146611011610.1016/j.addr.2013.12.00824384374
    [Google Scholar]
  99. RamaA.R. Jimenez-LopezJ. CabezaL. Jimenez-LunaC. LeivaM.C. PerazzoliG. HernandezR. ZafraI. OrtizR. MelguizoC. PradosJ. Last advances in nanocarriers-based drug delivery systems for colorectal cancer.Curr. Drug Deliv.201613683083810.2174/156720181366615120323285226634791
    [Google Scholar]
  100. YanL. CraytonS.H. ThawaniJ.P. AmirshaghaghiA. TsourkasA. ChengZ. A pH-responsive drug-delivery platform based on glycol chitosan–coated liposomes.Small201511374870487410.1002/smll.20150141226183232
    [Google Scholar]
  101. Homayouni TabriziM. SoltaniM. Es-haghiA. Preparation and characterization of the farnesiferol C-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its in vitro anti-cancer and anti-angiogenic activities.J. Mol. Liq.202338212190810.1016/j.molliq.2023.121908
    [Google Scholar]
  102. SadeghzadehF. MotavalizadehkakhkyA. MehrzadJ. ZhianiR. TabriziM.H. Targeted delivery of solid lipid nanoparticles decorated with chitosan-folic containing gummosin to MCf7 cells and investigating their -anticancer effects in vivo and in vitro conditions.J. Polym. Environ.20233141308132210.1007/s10924‑022‑02676‑y
    [Google Scholar]
  103. NeelakandanM. ManoharanS. MuralinaiduR. TharaJ.M. Tumor preventive and antioxidant efficacy of chlorogenic acid–loaded chitosan nanoparticles in experimental skin carcinogenesis.Naunyn Schmiedebergs Arch. Pharmacol.2023396353354610.1007/s00210‑022‑02330‑336418466
    [Google Scholar]
  104. FarhadiA. Homayouni TabriziM. SadeghiS. ValaD. KhosraviT. Targeted delivery and anticancer effects of chrysin-loaded chitosan-folic acid coated solid lipid nanoparticles in pancreatic malignant cells.J. Biomater. Sci. Polym. Ed.202334331533310.1080/09205063.2022.212158936063019
    [Google Scholar]
  105. EljackS. DavidS. ChourpaI. FaggadA. Allard-VannierE. Formulation of lipid-based nanoparticles for simultaneous delivery of lapatinib and anti-survivin siRNA for HER2+ breast cancer treatment.Pharmaceuticals20221512145210.3390/ph1512145236558904
    [Google Scholar]
  106. Senthil KumarC. ThangamR. MaryS.A. KannanP.R. ArunG. MadhanB. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells.Carbohydr. Polym.202023111568210.1016/j.carbpol.2019.11568231888816
    [Google Scholar]
  107. ThakkarA. ChenreddyS. WangJ. PrabhuS. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles.Cell Biosci.2015514610.1186/s13578‑015‑0041‑y26301084
    [Google Scholar]
  108. WangJ. WangY. MengX. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer.Nanoscale Res. Lett.201611152410.1186/s11671‑016‑1698‑927888498
    [Google Scholar]
  109. CamposJ. Varas-GodoyM. HaidarZ.S. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells.Nanomedicine201712547349010.2217/nnm‑2016‑037128181464
    [Google Scholar]
  110. ZhaoC.L. ZhangY.C. YuZ. Inhalable chitosan coated solid lipid nanoparticles for interventional delivery to lung cancer.Lat. Am. J. Pharm.2017361218
    [Google Scholar]
  111. KamelK.M. KhalilI.A. RatebM.E. ElgendyH. ElhawaryS. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: Extract standardization, nanoparticle optimization, and cytotoxicity evaluation.J. Agric. Food Chem.201765367966798110.1021/acs.jafc.7b0309328813148
    [Google Scholar]
  112. AlipanahH. FarjamM. ZarenezhadE. RoozitalabG. OsanlooM. Chitosan nanoparticles containing limonene and limonene-rich essential oils: potential phytotherapy agents for the treatment of melanoma and breast cancers.BMC Comp. Med. Ther.202121118610.1186/s12906‑021‑03362‑734215240
    [Google Scholar]
  113. IsabellaS. Protective effect of 3, 3′-Diindolylmethane encapsulated chitosan nanoparticles prop up with lipid metabolism and biotransformation enzymes against possible mammary cancer.J. Appl. Pharm. Sci.20177319420110.7324/JAPS.2017.70331
    [Google Scholar]
  114. GhoshB. BiswasS. Polymeric micelles in cancer therapy: State of the art.J. Control. Release202133212714710.1016/j.jconrel.2021.02.01633609621
    [Google Scholar]
  115. Le GarrecD. RangerM. LerouxJ.C. Micelles in anticancer drug delivery.Am. J. Drug Deliv.200421154210.2165/00137696‑200402010‑00002
    [Google Scholar]
  116. UchegbuI.F. CarlosM. McKayC. HouX. SchätzleinA.G. Chitosan amphiphiles provide new drug delivery opportunities.Polym. Int.20146371145115310.1002/pi.4721
    [Google Scholar]
  117. RaviH. KurreyN. ManabeY. SugawaraT. BaskaranV. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells).Mater. Sci. Eng. C20189178579510.1016/j.msec.2018.06.01830033314
    [Google Scholar]
  118. CaoZ. LiuR. LiY. LuoX. HuaZ. WangX. XueZ. ZhangZ. LuC. LuA. LiuY. MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer.Breast Cancer Res.2023251310.1186/s13058‑022‑01599‑936635685
    [Google Scholar]
  119. SongP. LuZ. JiangT. HanW. ChenX. ZhaoX. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1.Int. J. Biol. Macromol.2022222Pt A1078109110.1016/j.ijbiomac.2022.09.24536183754
    [Google Scholar]
  120. LeeJ. KimK. KwonI.C. LeeK.Y. Intracellular glucose-depriving polymer micelles for antiglycolytic cancer treatment.Adv. Mater.20233510220734210.1002/adma.20220734236524460
    [Google Scholar]
  121. SangL. LiJ. ZhangF. JiaJ. ZhangJ. DingP. SunT. WangD. Glycyrrhetinic acid modified chlorambucil prodrug for hepatocellular carcinoma treatment based on DNA replication and tumor microenvironment.Colloids Surf. B Biointerfaces202222011286410.1016/j.colsurfb.2022.11286436272286
    [Google Scholar]
  122. AlmeidaA. CastroF. ResendeC. LúcioM. SchwartzS.Jr SarmentoB. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer.J. Control. Release202234973174310.1016/j.jconrel.2022.07.02935905784
    [Google Scholar]
  123. SajomsangW. GonilP. SaesooS. RuktanonchaiU.R. SrinuanchaiW. PuttipipatkhachornS. Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery.Int. J. Pharm.20144771-226127210.1016/j.ijpharm.2014.10.04225455774
    [Google Scholar]
  124. NoorafshanA. Ashkani-EsfahaniS. A review of therapeutic effects of curcumin.Curr. Pharm. Des.201319112032204623116311
    [Google Scholar]
  125. SripetthongS. EzeF.N. SajomsangW. OvatlarnpornC. Development of pH-Responsive N-benzyl-N-O-succinyl chitosan micelles loaded with a curcumin analog (cyqualone) for treatment of colon cancer.Molecules2023286269310.3390/molecules2806269336985665
    [Google Scholar]
  126. SalujaV. MankooA. SaraogiG.K. TambuwalaM.M. MishraV. Smart dendrimers: Synergizing the targeting of anticancer bioactives.J. Drug Deliv. Sci. Technol.201952152610.1016/j.jddst.2019.04.014
    [Google Scholar]
  127. ShenJ.M. LiX.X. FanL.L. ZhouX. HanJ.M. JiaM.K. WuL.F. ZhangX.X. ChenJ. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma.Int. J. Nanomedicine2017121183120010.2147/IJN.S12688728243083
    [Google Scholar]
  128. SalujaV. MishraY. MishraV. GiriN. NayakP. Dendrimers based cancer nanotheranostics: An overview.Int. J. Pharm.202160012048510.1016/j.ijpharm.2021.12048533744447
    [Google Scholar]
  129. SwansonS.D. Kukowska-LatalloJ.F. PatriA.K. ChenC. GeS. CaoZ. KotlyarA. EastA.T. BakerJ.R. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement.Int. J. Nanomedicine20083220121018686779
    [Google Scholar]
  130. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  131. SharmaA.K. GuptaL. SahuH. QayumA. SinghS.K. NakhateK.T. AjazuddinU. GuptaU. Chitosan Engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide.Pharm. Res.2018351910.1007/s11095‑017‑2324‑y29294212
    [Google Scholar]
  132. ShenY. ShenG. ZhangY. Voltammetric immunoassay for α-fetoprotein by using a gold nanoparticle/dendrimer conjugate and a ferrocene derived ionic liquid.Mikrochim. Acta2018185734610.1007/s00604‑018‑2886‑329961150
    [Google Scholar]
  133. KavosiB. SalimiA. HallajR. MoradiF. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy.Biosens. Bioelectron.20157491592310.1016/j.bios.2015.07.06426257183
    [Google Scholar]
  134. ZhouZ. LiuY. JiangX. ZhengC. LuoW. XiangX. QiX. ShenJ. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy.Int. J. Biol. Macromol.202322479780910.1016/j.ijbiomac.2022.10.16736283555
    [Google Scholar]
  135. XuJ.J. ZhangW.C. GuoY.W. ChenX.Y. ZhangY.N. Metal nanoparticles as a promising technology in targeted cancer treatment.Drug Deliv.202229166467810.1080/10717544.2022.203980435209786
    [Google Scholar]
  136. BidkarA.P. SanpuiP. GhoshS.S. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles.Nanomedicine201712212641265110.2217/nnm‑2017‑018929043926
    [Google Scholar]
  137. GaoL. YuJ. LiuY. ZhouJ. SunL. WangJ. ZhuJ. PengH. LuW. YuL. YanZ. WangY. Tumor-penetrating peptide conjugated and doxorubicin loaded T 1 -T 2 dual mode MRI contrast agents nanoparticles for tumor theranostics.Theranostics2018819210810.7150/thno.2107429290795
    [Google Scholar]
  138. JeonM. LinG. StephenZ.R. KatoF.L. ZhangM. Paclitaxel-loaded iron oxide nanoparticles for targeted breast cancer therapy.Adv. Ther.2019212190008110.1002/adtp.201900081
    [Google Scholar]
  139. DhanavelS. NivethaaE A K. NarayananV. StephenA. In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells.Mater. Sci. Eng. C2017751399141010.1016/j.msec.2017.03.05828415431
    [Google Scholar]
  140. ChenW.H. XuX.D. JiaH.Z. LeiQ. LuoG.F. ChengS.X. ZhuoR.X. ZhangX.Z. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo.Biomaterials201334348798880710.1016/j.biomaterials.2013.07.08423932289
    [Google Scholar]
  141. AsgharM.A. YousufR.I. ShoaibM.H. AsgharM.A. MumtazN. A review on toxicity and challenges in transferability of surface-functionalized metallic nanoparticles from animal models to humans.BIO Integration202122718010.15212/bioi‑2020‑0047
    [Google Scholar]
  142. MohamedA.S. Bin DajemS. Al-KahtaniM. AliS.B. IbrahimE. MorsyK. FahmyS.R. Silver/chitosan nanocomposites induce physiological and histological changes in freshwater bivalve.J. Trace Elem. Med. Biol.20216512671910.1016/j.jtemb.2021.12671933517023
    [Google Scholar]
  143. ZarharanH. BagherianM. Shah RokhiA. Ramezani BajgiranR. YousefiE. HeravianP. Niazi KhazrabigM. Es-haghiA. Taghavizadeh YazdiM.E. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure.Arab. J. Chem.202316710480610.1016/j.arabjc.2023.104806
    [Google Scholar]
  144. FaidA.H. ShoumanS.A. ThabetN.A. BadrY.A. SliemM.A. Laser enhanced combinatorial chemo-photothermal therapy of green synthesis gold nanoparticles loaded with 6mercaptopurine on breast cancer model.J. Pharm. Innov.202318114414810.1007/s12247‑022‑09626‑0
    [Google Scholar]
  145. FaidA.H. ShoumanS.A. BadrY.A. SharakyM. MostafaE.M. SliemM.A. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer.BMC Chem.20221619410.1186/s13065‑022‑00892‑036371236
    [Google Scholar]
  146. BaghaniL. Noroozi HerisN. KhonsariF. DinarvandS. DinarvandM. AtyabiF. Trimethyl-chitosan coated gold nanoparticles enhance delivery, cellular uptake and gene silencing effect of EGFR-siRNA in breast cancer cells.Front. Mol. Biosci.2022987154110.3389/fmolb.2022.87154135517864
    [Google Scholar]
  147. GaoQ. ZhangJ. GaoJ. ZhangZ. ZhuH. WangD. Gold nanoparticles in cancer theranostics.Front. Bioeng. Biotechnol.2021964790510.3389/fbioe.2021.64790533928072
    [Google Scholar]
  148. SafwatM.A. KandilB.A. ElblbesyM.A. SolimanG.M. ElerakyN.E. Epigallocatechin-3-gallate-loaded gold nanoparticles: Preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice.Pharmaceuticals202013925410.3390/ph1309025432961982
    [Google Scholar]
  149. LiK. TengC. MinQ. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy.Front Chem.2020857329710.3389/fchem.2020.57329733195062
    [Google Scholar]
  150. CunhaL. CoelhoS.C. PereiraM.C. CoelhoM.A.N. Nanocarriers based on gold nanoparticles for epigallocatechin gallate delivery in cancer cells.Pharmaceutics202214349110.3390/pharmaceutics1403049135335868
    [Google Scholar]
  151. SondiI. Salopek-SondiB. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci.2004275117718210.1016/j.jcis.2004.02.01215158396
    [Google Scholar]
  152. JainN. JainP. RajputD. PatilU.K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity.Micro Nano Sys. Lett.202191510.1186/s40486‑021‑00131‑6
    [Google Scholar]
  153. Kleine-BrueggeneyH. ZorziG.K. FeckerT. El GueddariN.E. MoerschbacherB.M. GoycooleaF.M. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation.Colloids Surf. B Biointerfaces20151359910810.1016/j.colsurfb.2015.07.01626241921
    [Google Scholar]
  154. HannaD.H. El-MazalyM.H. MohamedR.R. Synthesis of biodegradable antimicrobial pH-sensitive silver nanocomposites reliant on chitosan and carrageenan derivatives for 5-fluorouracil drug delivery toward HCT116 cancer cells.Int. J. Biol. Macromol.202323112336410.1016/j.ijbiomac.2023.12336436693607
    [Google Scholar]
  155. RanaK. Kumar PandeyS. ChauhanS. PreetS. Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer.Int. J. Pharm.202262012174410.1016/j.ijpharm.2022.12174435427747
    [Google Scholar]
  156. PrasadK.N. Multiple dietary antioxidants enhance the efficacy of standard and experimental cancer therapies and decrease their toxicity.Integr. Cancer Ther.20043431032210.1177/153473540427093615523102
    [Google Scholar]
  157. Seixas-SilvaJ.A.Jr RichardsT. KhuriF.R. WieandH.S. KimE. MurphyB. FranciscoM. HongW.K. ShinD.M. Phase 2 bioadjuvant study of interferon alfa-2a, isotretinoin, and vitamin E in locally advanced squamous cell carcinoma of the head and neck: long-term follow-up.Arch. Otolaryngol. Head Neck Surg.2005131430430710.1001/archotol.131.4.30415837897
    [Google Scholar]
  158. ChenQ. EspeyM.G. KrishnaM.C. MitchellJ.B. CorpeC.P. BuettnerG.R. ShacterE. LevineM. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues.Proc. Natl. Acad. Sci.200510238136041360910.1073/pnas.050639010216157892
    [Google Scholar]
  159. NayakD. MinzA.P. AsheS. RautaP.R. KumariM. ChopraP. NayakB. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines.J. Colloid Interface Sci.201647014215210.1016/j.jcis.2016.02.04326939078
    [Google Scholar]
  160. de FreitasC.F. KimuraE. RubiraA.F. MunizE.C. Curcumin and silver nanoparticles carried out from polysaccharide-based hydrogels improved the photodynamic properties of curcumin through metal-enhanced singlet oxygen effect.Mater. Sci. Eng. C202011211085310.1016/j.msec.2020.11085332409030
    [Google Scholar]
  161. KurtA.H. OlutasE.B. AvciogluF. KarakuşH. SungurM.A. Kara OztabagC. YıldırımM. Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities.Beilstein J. Nanotechnol.20231436237610.3762/bjnano.14.3136998241
    [Google Scholar]
  162. KanniahP. ChelliahP. ThangapandiJ.R. GnanadhasG. MahendranV. RobertM. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite.Int. J. Biol. Macromol.2021189183310.1016/j.ijbiomac.2021.08.05634389391
    [Google Scholar]
  163. HerbeiE.E. AlexandruP. BusilaM. Cyclic voltammetry of screen-printed carbon electrode coated with Ag-ZnO nanoparticles in chitosan matrix.Materials2023168326610.3390/ma1608326637110102
    [Google Scholar]
  164. MochidaY. CabralH. KataokaK. Polymeric micelles for targeted tumor therapy of platinum anticancer drugs.Expert Opin. Drug Deliv.201714121423143810.1080/17425247.2017.130733828290714
    [Google Scholar]
  165. JeyarajM. GurunathanS. QasimM. KangM.H. KimJ.H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles.Nanomaterials2019912171910.3390/nano912171931810256
    [Google Scholar]
  166. KankalaR.K. LiuC.G. YangD.Y. WangS.B. ChenA.Z. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance.Chem. Eng. J.202038312313810.1016/j.cej.2019.123138
    [Google Scholar]
  167. GuT. ChenT. ChengL. LiX. HanG. LiuZ. Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy.Nano Res.20201382209221510.1007/s12274‑020‑2838‑1
    [Google Scholar]
  168. FazlaliF. HashemiP. KhoshfetratS.M. HalabianR. BaradaranB. Johari-AharM. KaramiP. HajianA. BagheriH. Electrochemiluminescent biosensor for ultrasensitive detection of lymphoma at the early stage using CD20 markers as B cell-specific antigens.Bioelectrochemistry202113810773010.1016/j.bioelechem.2020.10773033418212
    [Google Scholar]
  169. BaiZ. LiG. LiangJ. SuJ. ZhangY. ChenH. HuangY. SuiW. ZhaoY. Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells.Biosens. Bioelectron.20168218519410.1016/j.bios.2016.04.00427085950
    [Google Scholar]
  170. SilvaT.A. LourencaoB.C. Dias da SilvaA. Fatibello-FilhoO. An electrochemical sensing platform based on carbon black and chitosan-stabilized platinum nanoparticles.Anal. Methods20231581077108610.1039/D2AY01964G36752550
    [Google Scholar]
  171. DumasA. CouvreurP. Palladium: A future key player in the nanomedical field?Chem. Sci.2015642153215710.1039/C5SC00070J28694948
    [Google Scholar]
  172. BangdeP. PantT. GaikwadG. JainR. DandekarP. Trimethyl chitosan coated palladium nanoparticles as a photothermal agent and its in vitro evaluation in 2D and 3D model of breast cancer cells.Colloids Surf. B Biointerfaces202221111228710.1016/j.colsurfb.2021.11228734952283
    [Google Scholar]
  173. DhanavelS. PraveenaP. NarayananV. StephenA. Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells.Polym. Bull.202077115681569610.1007/s00289‑019‑03039‑9
    [Google Scholar]
  174. BharathirajaS. BuiN.Q. ManivasaganP. MoorthyM.S. MondalS. SeoH. PhuocN.T. Vy PhanT.T. KimH. LeeK.D. OhJ. Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy.Sci. Rep.20188150010.1038/s41598‑017‑18966‑829323212
    [Google Scholar]
  175. ChenJ. ZhouZ. ZhengC. LiuY. HaoR. JiX. XiQ. ShenJ. LiZ. Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy.Carbohydr. Polym.202227711886910.1016/j.carbpol.2021.11886934893274
    [Google Scholar]
  176. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S28944333628022
    [Google Scholar]
  177. DwivediP. KiranS. HanS. DwivediM. KhatikR. FanR. MangrioF.A. DuK. ZhuZ. YangC. HuangF. EjazA. HanR. SiT. XuR.X. Magnetic targeting and ultrasound activation of liposome–microbubble conjugate for enhanced delivery of anticancer therapies.ACS Appl. Mater. Interfaces20201221237372375110.1021/acsami.0c0530832374147
    [Google Scholar]
  178. AliE.M.M. ElashkarA.A. El-KassasH.Y. SalimE.I. Methotrexate loaded on magnetite iron nanoparticles coated with chitosan: Biosynthesis, characterization, and impact on human breast cancer MCF-7 cell line.Int. J. Biol. Macromol.2018120Pt A1170118010.1016/j.ijbiomac.2018.08.11830172815
    [Google Scholar]
  179. AbasaltaM. AsefnejadA. KhorasaniM.T. SaadatabadiA.R. Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer.Carbohydr. Polym.202125711763110.1016/j.carbpol.2021.11763133541657
    [Google Scholar]
  180. RadmansouriM. BahmaniE. SarikhaniE. RahmaniK. SharifianjaziF. IraniM. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release.Int. J. Biol. Macromol.201811637838410.1016/j.ijbiomac.2018.04.16129723626
    [Google Scholar]
  181. SawantV.J. BamaneS.R. ShejwalR.V. PatilS.B. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells.J. Magn. Magn. Mater.201641722222910.1016/j.jmmm.2016.05.061
    [Google Scholar]
  182. GhanbariM. DavarF. ShalanA.E. Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery.Ceram. Int.20214779409941710.1016/j.ceramint.2020.12.073
    [Google Scholar]
  183. SivakumarP. LeeM. KimY.S. ShimM.S. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles.J. Mater. Chem. B Mater. Biol. Med.20186304852487110.1039/C8TB00948A32255062
    [Google Scholar]
  184. WuH. ZhangJ. Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: A physicochemical and biological perspective.Saudi Pharm. J.201826220521010.1016/j.jsps.2017.12.01030166917
    [Google Scholar]
  185. Arab-BafraniZ. ZabihiE. JafariS.M. Khoshbin-KhoshnazarA. MousaviE. KhaliliM. BabaeiA. Enhanced radiotherapy efficacy of breast cancer multi cellular tumor spheroids through in-situ fabricated chitosan-zinc oxide bio-nanocomposites as radio-sensitizing agents.Int. J. Pharm.202160512082810.1016/j.ijpharm.2021.12082834174360
    [Google Scholar]
  186. GeorgeD. MaheswariP.U. BegumK.M.M.S. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity.Int. J. Biol. Macromol.201913278479410.1016/j.ijbiomac.2019.04.00830951778
    [Google Scholar]
  187. GeorgeD. MaheswariP.U. BegumK.M.M.S. Cysteine conjugated chitosan based green nanohybrid hydrogel embedded with zinc oxide nanoparticles towards enhanced therapeutic potential of naringenin.React. Funct. Polym.202014810448010.1016/j.reactfunctpolym.2020.104480
    [Google Scholar]
  188. MugeshS. ArunR. ArunkumarK. MuruganM. Synthesis of biogenic copper nanoparticles embedded in graphene oxide-chitosan composite and its anti-bacterial and cytotoxic activities.J. Nanosci. Nanotechnol.20191952625263210.1166/jnn.2019.1588730501759
    [Google Scholar]
  189. XuD. LiE. KarmakarB. AwwadN.S. IbrahiumH.A. OsmanH.E.H. El-kottA.F. Abdel-DaimM.M. Green preparation of copper nanoparticle-loaded chitosan/alginate bio-composite: Investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties.Arab. J. Chem.202215310363810.1016/j.arabjc.2021.103638
    [Google Scholar]
  190. KarthikeyanC. SisubalanN. SrideviM. VaraprasadK. Ghouse BashaM.H. ShucaiW. SadikuR. Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process.J. Hazard. Mater.202141112488410.1016/j.jhazmat.2020.12488433858076
    [Google Scholar]
  191. PanahiM. Rahbari-SisakhtM. FaramarziM. Conjugation of folic acid with poly (NVCL-co-PEGMA)-grafted chitosan as a new doxorubicin delivery system.Int. J. Biol. Macromol.202323612393310.1016/j.ijbiomac.2023.12393336907294
    [Google Scholar]
  192. ZhengZ. YangX. ZhangY. ZuW. WenM. LiuT. ZhouC. LiL. An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of breast cancer recurrence.Carbohydr. Polym.202330412049310.1016/j.carbpol.2022.12049336641175
    [Google Scholar]
  193. PiroonpanT. RimdusitP. TaechutrakulS. PasanphanW. pH-Responsive water-soluble chitosan amphiphilic core–shell nanoparticles: radiation-assisted green synthesis and drug-controlled release studies.Pharmaceutics202315384710.3390/pharmaceutics1503084736986708
    [Google Scholar]
  194. ShakeranZ. VarshosazJ. KeyhanfarM. Mohammad-BeigiH. RahimiK. SutherlandD.S. Co-delivery of STAT3 siRNA and methotrexate in breast cancer cells.Artif. Cells Nanomed. Biotechnol.2022501293910.1080/21691401.2022.203074635132929
    [Google Scholar]
  195. FonsecaD.R. MouraA. LeiroV. Silva-CarvalhoR. EstevinhoB.N. SeabraC.L. HenriquesP.C. LucenaM. TeixeiraC. GomesP. ParreiraP. MartinsM.C.L. Grafting MSI-78A onto chitosan microspheres enhances its antimicrobial activity.Acta Biomater.202213718619810.1016/j.actbio.2021.09.06334634508
    [Google Scholar]
  196. DahriM. AkbarialiabadH. JahromiA.M. MalekiR. Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid.BMC Pharmacol. Toxicol.20212214110.1186/s40360‑021‑00508‑834261533
    [Google Scholar]
  197. KamalI. KhedrA.I.M. AlfaifiM.Y. ElbehairiS.E.I. ElshaarawyR.F.M. SaadA.S. Chemotherapeutic and chemopreventive potentials of ρ-coumaric acid – Squid chitosan nanogel loaded with Syzygium aromaticum essential oil.Int. J. Biol. Macromol.202118852353310.1016/j.ijbiomac.2021.08.03834389386
    [Google Scholar]
  198. MiaoY. ChenM. ZhouX. GuoL. ZhuJ. WangR. ZhangX. GanY. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel.Acta Pharmacol. Sin.202142101714172210.1038/s41401‑020‑00594‑033469196
    [Google Scholar]
  199. MotieiM. AboutalebiF. ForouzanfarM. DormianiK. Nasr-EsfahaniM.H. Mirahmadi-ZareS.Z. Smart co-delivery of miR-34a and cytotoxic peptides (LTX-315 and melittin) by chitosan based polyelectrolyte nanocarriers for specific cancer cell death induction.Mater. Sci. Eng. C202112811225810.1016/j.msec.2021.11225834474818
    [Google Scholar]
  200. DuQ. LvF. HuangJ. TangX. ZhaoZ. ChenJ. A multiple environment-sensitive prodrug nanomicelle strategy based on chitosan graftomer for enhanced tumor therapy of gambogic acid.Carbohydr. Polym.202126711822910.1016/j.carbpol.2021.11822934119182
    [Google Scholar]
  201. MiY. ZhangJ. ZhangL. LiQ. ChengY. GuoZ. Synthesis, characterization, and evaluation of nanoparticles loading adriamycin based on 2-hydroxypropyltrimethyl ammonium chloride chitosan grafting folic acid.Polymers20211314222910.3390/polym1314222934300987
    [Google Scholar]
  202. NisarS. PanditA.H. NadeemM. PanditA.H. RizviM.M.A. RattanS. γ-Radiation induced L-glutamic acid grafted highly porous, pH-responsive chitosan hydrogel beads: A smart and biocompatible vehicle for controlled anti-cancer drug delivery.Int. J. Biol. Macromol.2021182375010.1016/j.ijbiomac.2021.03.13433775765
    [Google Scholar]
  203. AminiZ. RudsaryS.S. ShahraeiniS.S. DizajiB.F. GoleijP. BakhtiariA. IraniM. SharifianjaziF. Magnetic bioactive glasses/Cisplatin loaded-chitosan (CS)-grafted- poly (ε-caprolactone) nanofibers against bone cancer treatment.Carbohydr. Polym.202125811768010.1016/j.carbpol.2021.11768033593554
    [Google Scholar]
  204. ZhanX. TengW. SunK. HeJ. YangJ. TianJ. HuangX. ZhouL. ZhouC. CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma.Mater. Sci. Eng. C202112311201410.1016/j.msec.2021.11201433812633
    [Google Scholar]
  205. GuoX. ZhangJ. CaiQ. FanS. XuQ. ZangJ. YangH. YuW. LiZ. ZhangZ. Acetic acid transporter-mediated, oral, multifunctional polymer liposomes for oral delivery of docetaxel.Colloids Surf. B Biointerfaces202119811149910.1016/j.colsurfb.2020.11149933317899
    [Google Scholar]
  206. HowailiF. ÖzliseliE. KüçüktürkmenB. RazaviS.M. SadeghizadehM. RosenholmJ.M. Stimuli-responsive, plasmonic nanogel for dual delivery of curcumin and photothermal therapy for cancer treatment.Front Chem.2021860294110.3389/fchem.2020.60294133585400
    [Google Scholar]
  207. BaktashM.S. ZarrabiA. AvazverdiE. ReisN.M. Development and optimization of a new hybrid chitosan-grafted graphene oxide/magnetic nanoparticle system for theranostic applications.J. Mol. Liq.202132211451510.1016/j.molliq.2020.114515
    [Google Scholar]
  208. SunR. FangL. LvX. FangJ. WangY. ChenD. WangL. ChenJ. QiY. TangZ. ZhangJ. TianY. In vitro and in vivo evaluation of self-assembled chitosan nanoparticles selectively overcoming hepatocellular carcinoma via asialoglycoprotein receptor.Drug Deliv.20212812071208410.1080/10717544.2021.198307734595970
    [Google Scholar]
  209. PanJ. RostamizadehK. FilipczakN. TorchilinV. Polymeric co-delivery systems in cancer treatment: An overview on component drugs’ dosage ratio effect.Molecules2019246103510.3390/molecules2406103530875934
    [Google Scholar]
  210. LeeC.H. LiuK.S. ChengC.W. ChanE.C. HungK.C. HsiehM.J. ChangS.H. FuX. JuangJ.H. HsiehI.C. WenM.S. LiuS.J. Codelivery of sustainable antimicrobial agents and platelet-derived growth factor via biodegradable nanofibers for repair of diabetic infectious wounds.ACS Infect. Dis.20206102688269710.1021/acsinfecdis.0c0032132902952
    [Google Scholar]
  211. FentonO.S. OlafsonK.N. PillaiP.S. MitchellM.J. LangerR. Advances in biomaterials for drug delivery.Adv. Mater.20183029170532810.1002/adma.20170532829736981
    [Google Scholar]
  212. Rangasamy JayakumarR.A.A.M. PrabaharanM. Chitosan for biomaterials II,Springer Berlin HeidelbergBerlin, Heidelberg,201124310.1007/978‑3‑642‑24061‑4
    [Google Scholar]
  213. ShafabakhshR. YousefiB. AsemiZ. NikfarB. MansourniaM.A. HallajzadehJ. Chitosan: A compound for drug delivery system in gastric cancer-a review.Carbohydr. Polym.202024211640310.1016/j.carbpol.2020.11640332564837
    [Google Scholar]
  214. NagpalK. SinghS.K. MishraD.N. Chitosan nanoparticles: A promising system in novel drug delivery.Chem. Pharm. Bull.201058111423143010.1248/cpb.58.142321048331
    [Google Scholar]
  215. e A KN. SB. MartinC.A. JR.R. AS. vN. B SL. Frank-KamenetskayaO.V. RadhakrishnanS. SN.K. A competent bidrug loaded water soluble chitosan derivative for the effective inhibition of breast cancer.Sci. Rep.2020101399110.1038/s41598‑020‑60888‑5
    [Google Scholar]
  216. SongW. SuX. GregoryD. LiW. CaiZ. ZhaoX. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells.Nanomaterials201881190710.3390/nano811090730400634
    [Google Scholar]
  217. ShapiroB. KulkarniS. NacevA. MuroS. StepanovP.Y. WeinbergI.N. Open challenges in magnetic drug targeting.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157344645710.1002/wnan.131125377422
    [Google Scholar]
  218. SaranyaN. MoorthiA. SaravananS. DeviM.P. SelvamuruganN. Chitosan and its derivatives for gene delivery.Int. J. Biol. Macromol.201148223423810.1016/j.ijbiomac.2010.11.01321134396
    [Google Scholar]
  219. CaoY. TanY.F. WongY.S. LiewM.W.J. VenkatramanS. Recent advances in chitosan-based carriers for gene delivery.Mar. Drugs201917638110.3390/md1706038131242678
    [Google Scholar]
  220. QuiñonesJ.P. PenicheH. PenicheC. Chitosan based self-assembled nanoparticles in drug delivery.Polymers201810323510.3390/polym1003023530966270
    [Google Scholar]
  221. LimaG.N. MaganhinC.C. SimõesR.S. BaracatM.C.P. da Silva SassoG.R. FuchsL.F.P. de Jesus SimõesM. BaracatE.C. JúniorJ.M.S. Steroidogenesis-related gene expression in the rat ovary exposed to melatonin supplementation.Clinics201570214415110.6061/clinics/2015(02)1225789524
    [Google Scholar]
  222. DengX. CaoM. ZhangJ. HuK. YinZ. ZhouZ. XiaoX. YangY. ShengW. WuY. ZengY. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer.Biomaterials201435144333434410.1016/j.biomaterials.2014.02.00624565525
    [Google Scholar]
  223. Riaz RajokaM.S. ZhaoL. MehwishH.M. WuY. MahmoodS. Chitosan and its derivatives: Synthesis, biotechnological applications, and future challenges.Appl. Microbiol. Biotechnol.201910341557157110.1007/s00253‑018‑9550‑z30607489
    [Google Scholar]
  224. BhattacharjeeR. NegiA. BhattacharyaB. DeyT. MitraP. PreetamS. KumarL. KarS. DasS.S. IqbalD. KamalM. AlghofailiF. MalikS. DeyA. JhaS.K. OjhaS. Paiva-SantosA.C. KesariK.K. JhaN.K. Nanotheranostics to target antibiotic-resistant bacteria: Strategies and applications.OpenNano20231110013810.1016/j.onano.2023.100138
    [Google Scholar]
  225. SilvaM. CaladoR. MartoJ. BettencourtA. AlmeidaA. GonçalvesL. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration.Mar. Drugs2017151237010.3390/md1512037029194378
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673285334240112104709
Loading
/content/journals/cmc/10.2174/0109298673285334240112104709
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test