Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Addressing infectious conditions presents a formidable challenge, primarily due to the escalating issue of bacterial resistance. This, coupled with limited financial resources and stagnant antibiotic research, compounds the antibiotic crisis. Innovative strategies, including novel antibiotic development and alternative solutions, are crucial to combat microbial resistance. Nanotherapeutics offers a promising approach to enhance drug delivery systems. Integration into lipid-based nanoscale delivery systems, particularly through therapeutic substance encapsulation in liposomal carriers, significantly prolongs drug presence at infection sites. This not only reduces toxicity but also shields antibiotics from degradation. Lipidic carriers, particularly liposomes, exhibit remarkable specificity in targeting infectious cells. This holds great promise in combating antimicrobial resistance and potentially transforming treatment for multi-drug resistant infections. Leveraging liposomal carriers may lead to breakthroughs in addressing drug-resistant bacterial infections. This review emphasizes the potential of antimicrobial-loaded liposomes as a novel delivery system for bacterial infections. Encapsulating antimicrobial agents within liposomes enhances treatment efficiency. Moreover, liposomal systems counteract challenges posed by antimicrobial resistance, offering hope in managing persistent multidrug-resistant infections. In the battle against bacterial resistance and the antibiotics crisis, the use of antimicrobial-loaded liposomes as delivery vehicles shows great promise. This innovative approach not only extends drug effectiveness and reduces toxicity but also provides a path to address highly resistant infectious conditions. As research advances, liposomal nanotherapeutics may emerge as a transformative solution in the fight against bacterial infections.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322058241003073312
2024-10-17
2025-10-31
Loading full text...

Full text loading...

References

  1. VarelaM.F. StephenJ. LekshmiM. OjhaM. WenzelN. SanfordL.M. HernandezA.J. ParvathiA. KumarS.H. Bacterial resistance to antimicrobial agents.Antibiotics (Basel)202110559310.3390/antibiotics1005059334067579
    [Google Scholar]
  2. IredellJ. Antimicrobial resistance.Microbiol. Aust.2019402555610.1071/MA19016
    [Google Scholar]
  3. BassettiM. GarauJ. Current and future perspectives in the treatment of multidrug-resistant gram-negative infections.J. Antimicrob. Chemother.202176Suppl. 4iv23iv3710.1093/jac/dkab35234849997
    [Google Scholar]
  4. DartoisVA RubinEJ Anti-tuberculosis treatment strategies and drug development: Challenges and priorities.Nature Rev. Microbiol.2022201100731-y10.1038/s41579‑022‑00731‑y
    [Google Scholar]
  5. TerreniM. TaccaniM. PregnolatoM. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives.Molecules2021269267110.3390/molecules2609267134063264
    [Google Scholar]
  6. MiethkeM. PieroniM. WeberT. BrönstrupM. HammannP. HalbyL. Towards the sustainable discovery and development of new antibiotics.Nat. Rev. Chem.202151072672910.1038/s41570‑021‑00313‑1
    [Google Scholar]
  7. ParmanikA. DasS. KarB. BoseA. DwivediG.R. PandeyM.M. Current treatment strategies against multidrug-resistant bacteria: A review.Curr. Microbiol.2022791238810.1007/s00284‑022‑03061‑736329256
    [Google Scholar]
  8. Chinemerem NwobodoD. UgwuM.C. Oliseloke AnieC. Al-OuqailiM.T.S. Chinedu IkemJ. Victor ChigozieU. SakiM. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace.J. Clin. Lab. Anal.2022369e2465510.1002/jcla.2465535949048
    [Google Scholar]
  9. AljeldahM.M. Antimicrobial resistance and its spread is a global threat.Antibiotics (Basel)2022118108210.3390/antibiotics1108108236009948
    [Google Scholar]
  10. PatelG. PatelR. Thermoresponsive hydrogel: A carrier for tissue engineering and regenerative medicine. Hydrogels for Tissue Engineering and Regenerative Medicine: From Fundamentals to Applications. OliveiraJ.M. Silva-CorreiaJ. ReisR.L. Cambridge, MassachusettsAcademic Press202321323210.1016/B978‑0‑12‑823948‑3.00009‑9
    [Google Scholar]
  11. PatelR. PatelG. Preparation and characterization of a novel optimum modified liquisolid compact to enhance the dissolution profile of mifepristone.Dissolut. Technol.202330423824410.14227/DT300423P238
    [Google Scholar]
  12. PatelR. PatelS. MominI. ShahS. The evolving landscape of colonoscopy: Recent developments and complication management. Colonoscopy - Diagnostic and Therapeutic AdvancesLondonInTechOpen202410.5772/intechopen.1003894
    [Google Scholar]
  13. PatelG. ShahS. PatelR. Nanocomposite hydrogels: An optimistic insight towards the treatments of ocular disorders.Recent Pat. Nanotechnol.202519220521510.2174/1872210517666230731102130
    [Google Scholar]
  14. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  15. KumarR. DkharD.S. KumariR. Divya MahapatraS. DubeyV.K. ChandraP. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect.J. Drug Deliv. Sci. Technol.20227410352610.1016/j.jddst.2022.103526
    [Google Scholar]
  16. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  17. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  18. ShahS. PatelA.A. PrajapatiB.G. AlexanderA. PandyaV. TrivediN. Multifaceted nanolipidic carriers: A modish stratagem accentuating nose-to-brain drug delivery.J. Nanoparticle Res.20232515005804-410.1007/s11051‑023‑05804‑4
    [Google Scholar]
  19. ZhangZ. FengZ. ZhaoX. JeanD. YuZ. ChapmanE.R. Functionalization and higher-order organization of liposomes with dna nanostructures.Nature Commun.202314525641013-210.1038/s41467‑023‑
    [Google Scholar]
  20. MukherjeeA. BishtB. DuttaS. PaulM.K. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy.Acta Pharmacol. Sin.202243112759277610.1038/s41401‑022‑00902‑w35379933
    [Google Scholar]
  21. JanB. JanR. AfzalS. AyoubM. MasoodiM.H. Non-traditional Approaches to Combat Antimicrobial Drug Resistance.Berlin, HeidelbergSpringer Link202379-100.10.1007/978‑981‑19‑9167‑7_4
    [Google Scholar]
  22. TrivediS. ShahS. PatelR. Review on novel oral iron formulations with enhanced bioavailability for the treatment of iron deficiency.J. Drug Deliv. Sci. Technol.20239010518110.1016/j.jddst.2023.105181
    [Google Scholar]
  23. BramerW.M. De JongeG.B. RethlefsenM.L. MastF. KleijnenJ. A systematic approach to searching: An efficient and complete method to develop literature searches.J. Med. Libr. Assoc.2018106453154110.5195/jmla.2018.28330271302
    [Google Scholar]
  24. ShuklaA. Antifungal nanoparticles for targeted treatment of fungal infections.US Patent 11273124B22018
  25. JamesB. Liposomal anti-infective formulations to inhibit non-tuberculous mycobacteria (ntm) microaggregate formation and establishment of NTM biofilm.WO Patent 20181869982018
  26. ABANCIA.U. Liposomal ozone nanosolutions.EP Patent 4203920A12018
  27. BR102022005943A2 - liposomal vescles containing fluopsin c for controlled release in the treatment of infectious diseases - Google Patents.2021Available from: https://patents.google.com/patent/BR102022005943A2/en (Accessed on: November 20, 2024).
  28. LiangliangY. A kind of preparation method of antibacterial peptide liposome.CN Patent 102462661A2018
  29. ZhouQ. Liposomal nano formulation of combinational antibiotics and the uses thereof.US Patent 20210113595A12018
  30. GuilfordF.T. Treatment of evolving bacterial resistance diseases including klebsiella pneumoniae with liposomally formulated glutathione.US Patent 9913801B22018
  31. GondaI. Liposomal ciprofloxacin formulations with activity against non-tuberculous mycobacteria.US Patent 9532986B22018
  32. US20170333379A1 - Formulations having anti-inflammatory activity and antimicrobial activity against gram-positive bacteria - Google Patents.2022Available from: https://patents.google.com/patent/US20170333379A1/en (Accessed on: November 20, 2024).
  33. FanY. ZhangQ. Development of liposomal formulations: From concept to clinical investigations.Asian J. Pharmaceut. Sci.201382818710.1016/j.ajps.2013.07.010
    [Google Scholar]
  34. BulbakeU. DoppalapudiS. KommineniN. KhanW. Liposomal formulations in clinical use: An updated review.Pharmaceutics2017921210.3390/pharmaceutics902001228346375
    [Google Scholar]
  35. ZylberbergC. MatosevicS. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape.Drug Deliv.20162393319332910.1080/10717544.2016.117713627145899
    [Google Scholar]
  36. AmD WaterS. Amphotericin B liposome for injection.2012Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/050740s031lbl.pdf (Accessed on: November 20, 2024).
  37. IntelenceHighlights of prescribing information.2014Available from: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=6a9cbc29-9f15-4b24-8d86-206b82887f3d&type=display
  38. DailyMedAbelcet- amphotericin b, dimyristoylphosphatidylcholine, dl- and dimyristoylphosphatidylglycerol, dl- injection.2023Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5587db37-f21a-4a39-a319-e1077032ced9
  39. HMAMri product index.2021Available from: https://www.hma.eu/mriproductindex.html
  40. JacksonM.M. Infection prevention and control.Crit. Care Nurs. Clin. North Am.19924340140910.1016/S0899‑5885(18)30628‑21388985
    [Google Scholar]
  41. JohnP. Arikayce.2024Available from: https://www.rxlist.com/arikayce-drug.htm
  42. EMAArikayce liposomal.2024Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/arikayce-liposomal
  43. LayM. CallejoB. ChangS. HongD.K. LewisD.B. CarrollT.D. MatzingerS. FrittsL. MillerC.J. WarnerJ.F. LiangL. FairmanJ. Cationic lipid/dna complexes (jvrs-100) combined with influenza vaccine (fluzone®) increases antibody response, cellular immunity, and antigenically drifted protection.Vaccine200927293811382010.1016/j.vaccine.2009.04.05419406188
    [Google Scholar]
  44. HartikkaJ. BozoukovaV. YangC.K. YeM. RusalovD. ShlapoberskyM. VilaltaA. WeiQ. RollandA. SmithL.R. Vaxfectin®, a cationic lipid-based adjuvant for protein-based influenza vaccines.Vaccine200927466399640310.1016/j.vaccine.2009.06.01419552895
    [Google Scholar]
  45. National Institute of Allergy and Infectious Diseases (NIAID)Evaluating the safety and immunogenicity of an hiv-1 gp41 mper-656 liposome vaccine in healthy, hiv-uninfected adult Participants.2022Available from: https://clinicaltrials.gov/ct2/show/NCT03934541?term=liposome+AND+vaccine&draw=2&rank=1
  46. PatelR. YadavB.K. PatelG. Progresses in nano-enabled platforms for the treatment of vaginal disorders.Recent Pat. Nanotechnol.202317320822710.2174/187221051666622062815044735762539
    [Google Scholar]
  47. XingH. HwangK. LuY. Recent developments of liposomes as nanocarriers for theranostic applications.Theranostics2016691336135210.7150/thno.1546427375783
    [Google Scholar]
  48. AbbasiH. KouchakM. MirveisZ. HajipourF. KhodarahmiM. RahbarN. HandaliS. What we need to know about liposomes as drug nanocarriers: An updated review.Adv. Pharm. Bull.202213172310.34172/apb.2023.00936721822
    [Google Scholar]
  49. HarayamaT RiezmanH. Understanding the diversity of membrane lipid composition.Nat. Rev. Mol. Cell. Biol.201819528129610.1038/nrm.2017.138
    [Google Scholar]
  50. KaymazS.V. NobarH.M. SarıgülH. SoylukanC. AkyüzL. YüceM. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications.Adv. Colloid Interface Sci.202332210303510.1016/j.cis.2023.10303537931382
    [Google Scholar]
  51. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.20156DEC28610.3389/fphar.2015.0028626648870
    [Google Scholar]
  52. LingD. HackettM.J. HyeonT. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles.Nano Today20149445747710.1016/j.nantod.2014.06.005
    [Google Scholar]
  53. KanásováM NesměrákK. Systematic review of liposomes’ characterization methods.Monatshefte für Chemie - Chemical Monthly20171481581159310.1007/s00706‑017‑1994‑9
    [Google Scholar]
  54. ChoiS KangB YangE KimK KwakMK ChangPS. Precise control of liposome size using characteristic time depends on solvent type and membrane properties.Sci. Reports202313472831895-z10.1038/s41598‑023‑31895‑z
    [Google Scholar]
  55. FilipczakN. PanJ. YalamartyS.S.K. TorchilinV.P. Recent advancements in liposome technology.Adv. Drug Deliv. Rev.202015642210.1016/j.addr.2020.06.02232593642
    [Google Scholar]
  56. AkramN. AfzaalM. SaeedF. ShahY.A. FaisalZ. AsgharA. AteeqH. NayikG.A. WaniS.H. HussainM. Asif ShahM. KhaneghahA.M. Liposomes: A promising delivery system for active ingredients in food and nutrition.Int. J. Food Prop.20232612476249210.1080/10942912.2023.2247578
    [Google Scholar]
  57. AndraV.V.S.N.L. PammiS.V.N. BhatrajuL.V.K.P. RuddarajuL.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents.Bionanoscience202212127429110.1007/s12668‑022‑00941‑x35096502
    [Google Scholar]
  58. PolakaS KatrajkarK Siva ReddyD V. ShuklaH ArafatB TekadeRK. Factors affecting the pharmacokinetics of the liposomal drugs. Biopharmaceutics and Pharmacokinetics Considerations.Cambridge, MassachusettsAcademic Press202156759910.1016/B978‑0‑12‑814425‑1.00016‑4
    [Google Scholar]
  59. PandeyP. PatelJ. KumarS. PathakY. Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems.Berlin, HeidelbergSpringerLink202214315810.1007/978‑3‑030‑83395‑4_8
    [Google Scholar]
  60. Sainaga JyothiV.G.S. BulusuR. Venkata Krishna RaoB. PranothiM. BandaS. Kumar BollaP. KommineniN. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update.Int. J. Pharm.202262412202210.1016/j.ijpharm.2022.12202235843364
    [Google Scholar]
  61. SubramaniT. GanapathyswamyH. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical.J. Food Sci. Technol.202057103545355510.1007/s13197‑020‑04360‑232903987
    [Google Scholar]
  62. AntimisiarisS.G. MaraziotiA. KannavouM. NatsaridisE. GkartziouF. KogkosG. MourtasS. Overcoming barriers by local drug delivery with liposomes.Adv. Drug Deliv. Rev.2021174538610.1016/j.addr.2021.01.01933539852
    [Google Scholar]
  63. AllahouL.W. MadaniS.Y. SeifalianA. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer.Int. J. Biomater.2021202111610.1155/2021/304196934512761
    [Google Scholar]
  64. YuanZ. GottsackerC. HeX. WaterkotteT. ParkY.C. Repetitive drug delivery using light-activated liposomes for potential antimicrobial therapies.Adv. Drug Deliv. Rev.202218711439510.1016/j.addr.2022.11439535709884
    [Google Scholar]
  65. FerreiraM. OgrenM. DiasJ.N.R. SilvaM. GilS. TavaresL. Aires-da-SilvaF. GasparM.M. AguiarS.I. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance.Molecules2021267204710.3390/molecules2607204733918529
    [Google Scholar]
  66. ChenL. KumarS. WuH. A review of current antibiotic resistance and promising antibiotics with novel modes of action to combat antibiotic resistance.Arch. Microbiol.20232051135610.1007/s00203‑023‑03699‑237863957
    [Google Scholar]
  67. UddinT.M. ChakrabortyA.J. KhusroA. ZidanB.M.R.M. MitraS. EmranT.B. DhamaK. RiponM.K.H. GajdácsM. SahibzadaM.U.K. HossainM.J. KoiralaN. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects.J. Infect. Public Health202114121750176610.1016/j.jiph.2021.10.02034756812
    [Google Scholar]
  68. PatelK. BunachitaS. AgarwalA.A. BhamidipatiA. PatelU.K. A comprehensive overview of antibiotic selection and the factors affecting it.Cureus2021133e1392510.7759/cureus.1392533868859
    [Google Scholar]
  69. MurugaiyanJ. KumarP.A. RaoG.S. IskandarK. HawserS. HaysJ.P. MohsenY. AdukkadukkamS. AwuahW.A. JoseR.A.M. SylviaN. NansubugaE.P. TiloccaB. RoncadaP. Roson-CaleroN. Moreno-MoralesJ. AminR. KumarB.K. KumarA. ToufikA.R. ZawT.N. AkinwotuO.O. SatyaseelaM.P. van DongenM.B.M. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics.Antibiotics (Basel)202211220010.3390/antibiotics1102020035203804
    [Google Scholar]
  70. Castro-SánchezE. MooreL.S.P. HussonF. HolmesA.H. What are the factors driving antimicrobial resistance? perspectives from a public event in london, england.BMC Infect. Dis.201616146510.1186/s12879‑016‑1810‑x27590053
    [Google Scholar]
  71. LarssonD.G.J. FlachC.F. Antibiotic resistance in the environment.Nat. Rev. Microbiol.202220525726910.1038/s41579‑021‑00649‑x34737424
    [Google Scholar]
  72. von WintersdorffC.J.H. PendersJ. van NiekerkJ.M. MillsN.D. MajumderS. van AlphenL.B. SavelkoulP.H.M. WolffsP.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer.Front. Microbiol.20167FEB17310.3389/fmicb.2016.0017326925045
    [Google Scholar]
  73. DymekM. SikoraE. Liposomes as biocompatible and smart delivery systems – the current state.Adv. Colloid Interface Sci.202230910275710.1016/j.cis.2022.10275736152374
    [Google Scholar]
  74. ChelliahR. KhanI. DaliriE.B.M. TamizhiniL. PravithaK.S. BegumM. Liposomes for drug delivery: Progress and problems. Smart Nanomaterials in Biomedical ApplicationsBerlin, HeidelbergSpringer Link202142544710.1007/978‑3‑030‑84262‑8_15
    [Google Scholar]
  75. LombardoD. KiselevM.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application.Pharmaceutics202214354310.3390/pharmaceutics1403054335335920
    [Google Scholar]
  76. PóvoaP. MonizP. PereiraJ.G. CoelhoL. Optimizing antimicrobial drug dosing in critically ill patients.Microorganisms202197140110.3390/microorganisms907140134203510
    [Google Scholar]
  77. PowellJ.R. CookJ. WangY. PeckR. WeinerD. Drug dosing recommendations for all patients: A roadmap for change.Clin. Pharmacol. Ther.20211091657210.1002/cpt.192332453862
    [Google Scholar]
  78. TysonR.J. ParkC.C. PowellJ.R. PattersonJ.H. WeinerD. WatkinsP.B. GonzalezD. Precision dosing priority criteria: Drug, disease, and patient population variables.Front. Pharmacol.20201142010.3389/fphar.2020.0042032390828
    [Google Scholar]
  79. RawsonT.M. WilsonR.C. O’HareD. HerreroP. KambuguA. LamordeM. EllingtonM. GeorgiouP. CassA. HopeW.W. HolmesA.H. Optimizing antimicrobial use: Challenges, advances and opportunities.Nat. Rev. Microbiol.2021191274775810.1038/s41579‑021‑00578‑934158654
    [Google Scholar]
  80. OnufrakN.J. ForrestA. GonzalezD. Pharmacokinetic and pharmacodynamic principles of anti-infective dosing.Clin. Ther.20163891930194710.1016/j.clinthera.2016.06.01527449411
    [Google Scholar]
  81. EylerR.F. ShvetsK. Clinical pharmacology of antibiotics.Clin. J. Am. Soc. Nephrol.20191471080109010.2215/CJN.0814071830862698
    [Google Scholar]
  82. MasichA.M. OmeceneN.E. LaiJ. OngR. GravattL.A.H. KhanR.W. Pharmacokinetic-pharmacodynamic and clinical considerations for extended- and continuous-infusion antibiotics.Clin. Microbiol. Newsl.2023451411512310.1016/j.clinmicnews.2023.07.003
    [Google Scholar]
  83. LevisonM.E. LevisonJ.H. Pharmacokinetics and pharmacodynamics of antibacterial agents.Infect. Dis. Clin. North Am.200923479181510.1016/j.idc.2009.06.00819909885
    [Google Scholar]
  84. YılmazÇ. ÖzcengizG. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.Biochem. Pharmacol.2017133436210.1016/j.bcp.2016.10.00527765485
    [Google Scholar]
  85. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.11385134224787
    [Google Scholar]
  86. MohamedM. Abu LilaA.S. ShimizuT. AlaaeldinE. HusseinA. SarhanH.A. SzebeniJ. IshidaT. Pegylated liposomes: Immunological responses.Sci. Technol. Adv. Mater.201920171072410.1080/14686996.2019.162717431275462
    [Google Scholar]
  87. PanahiY. FarshbafM. MohammadhosseiniM. MirahadiM. KhalilovR. SaghfiS. AkbarzadehA. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications.Artif. Cells Nanomed. Biotechnol.201745478879910.1080/21691401.2017.128249628278586
    [Google Scholar]
  88. SartelliM. BarieP.S. CoccoliniF. AbbasM. AbboL.M. AbdukhalilovaG.K. AbrahamY. AbubakarS. Abu-ZidanF.M. AdebisiY.A. AdamouH. AfandiyevaG. AgastraE. AlfouzanW.A. Al-HasanM.N. AliS. AliS.M. AllawF. Allwell-BrownG. AmirA. AmponsahO.K.O. Al OmariA. AnsaloniL. AnsariS. ArauzA.B. AugustinG. AwaziB. AzfarM. BahM.S.B. BalaM. BanagalaA.S.K. BaralS. BassettiM. BavestrelloL. BeilmanG. BekeleK. BenboubkerM. BeovićB. BergamascoM.D. BertagnolioS. BifflW.L. BlotS. BoermeesterM.A. BonomoR.A. BrinkA. BrusaferroS. ButembaJ. CaínzosM.A. Camacho-OrtizA. CantonR. CascioA. CassiniA. Cástro-SanchezE. CatarciM. CatenaR. Chamani-TabrizL. ChandyS.J. CharaniE. CheadleW.G. ChebetD. ChikoweI. ChiaraF. ChengV.C-C. ChiotiA. CocuzM.E. CoimbraR. CorteseF. CuiY. CzepielJ. DasicM. de Francisco SerpaN. de JongeS.W. DelibegovicS. DellingerE.P. DemetrashviliZ. De PalmaA. De SilvaD. De SimoneB. De WaeleJ. DhingraS. DiazJ.J. DimaC. DiraniN. DodooC.C. DorjG. DuaneT.M. EckmannC. EgyirB. ElmangoryM.M. EnaniM.A. ErgonulO. Escalera-AntezanaJ.P. EscandonK. EttuA-W.O. FadareJ.O. FantoniM. FarahbakhshM. FaroM.P. FerreresA. FloccoG. FoianiniE. FryD.E. GarciaA.F. GerardiC. GhannamW. GiamarellouH. GlushkovaN. GkiokasG. GoffD.A. GomiH. GottfredssonM. GriffithsE.A. Guerra GronerthR.I. GuiraoX. GuptaY.K. Halle-EkaneG. HansenS. HaqueM. HardcastleT.C. HaymanD.T.S. HeckerA. HellM. HoV.P. HodonouA.M. IsikA. IslamS. ItaniK.M.F. JaidaneN. JammerI. JenkinsD.R. KamaraI.F. KanjS.S. JumbamD. KeikhaM. KhannaA.K. KhannaS. KapoorG. KapoorG. KariukiS. KhamisF. KhokhaV. KiggunduR. KigubaR. KimH.B. KimP.K. KirkpatrickA.W. KlugerY. KoW-C. KokK.Y.Y. KotechaV. KoumaI. KovacevicB. KrasniqiJ. KrutovaM. KryvoruchkoI. KullarR. LabiK.A. LabricciosaF.M. LakohS. LakatosB. LansangM.A.D. LaxminarayanR. LeeY.R. LeoneM. LeppaniemiA. HaraG.L. LitvinA. LohsiriwatV. MachainG.M. MahomoodallyF. MaierR.V. MajumderM.A.A. MalamaS. ManasaJ. ManchandaV. Manzano-NunezR. Martínez-MartínezL. Martin-LoechesI. MarwahS. MasedaE. MathewosM. MavesR.C. McNamaraD. MemishZ. MertzD. MishraS.K. MontraversP. MoroM.L. MossialosE. MottaF. MudendaS. MugabiP. MugishaM.J.M. MylonakisE. NapolitanoL.M. NathwaniD. NkambaL. NsutebuE.F. O’ConnorD.B. OgunsolaS. JensenP.Ø. OrdoñezJ.M. OrdoñezC.A. OttolinoP. OuedraogoA-S. PaivaJ.A. PalmieriM. PanA. PantN. PanykoA. PaolilloC. PatelJ. PeaF. PetroneP. PetrosilloN. PintarT. PlaudisH. PoddaM. Ponce-de-LeonA. PowellS.L. Puello-GuerreroA. PulciniC. RasaK. RegimbeauJ-M. RelloJ. Retamozo-PalaciosM.R. Reynolds-CampbellG. RibeiroJ. RickardJ. Rocha-PereiraN. RosenthalV.D. RossoliniG.M. RwegereraG.M. RwigambaM. SabbatucciM. SaladžinskasŽ. SalamaR.E. SaliT. SalileS.S. SallI. KafilH.S. SakakushevB.E. SawyerR.G. ScatizziM. SeniJ. SeptimusE.J. SgangaG. ShabanzadehD.M. ShelatV.G. ShibabawA. SomvilleF. SoufS. StefaniS. TacconelliE. TanB.K. TattevinP. Rodriguez-TaverasC. TellesJ.P. Téllez-AlmenaresO. TessierJ. ThangN.T. TimmermannC. TimsitJ-F. TochieJ.N. TolonenM. TruebaG. TsioutisC. TumiettoF. TuonF.F. UlrychJ. UranuesS. van DongenM. van GoorH. VelmahosG.C. VereczkeiA. ViaggiB. VialeP. VilaJ. VossA. VranešJ. WatkinsR.R. Wanjiru-KorirN. WaworuntuO. Wechsler-FördösA. YadgarovaK. YahayaM. YahyaA.I. XiaoY. ZakariaA.D. ZakrisonT.L. Zamora MesiaV. SiquiniW. DarziA. PaganiL. CatenaF. Ten golden rules for optimal antibiotic use in hospital settings: The warning call to action.World J. Emerg. Surg.20231815010.1186/s13017‑023‑00518‑338057900
    [Google Scholar]
  89. LeekhaS. TerrellC.L. EdsonR.S. General principles of antimicrobial therapy.Mayo Clin. Proc.201186215616710.4065/mcp.2010.063921282489
    [Google Scholar]
  90. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery - from magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  91. KalelkarP.P. RiddickM. GarcíaA.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections.Nature Rev. Mater.20212021395410.1038/s41578‑021‑00362‑4
    [Google Scholar]
  92. ChoiV. RohnJ.L. StoodleyP. CarugoD. StrideE. Drug delivery strategies for antibiofilm therapy.Nat. Rev. Microbiol.202321955557210.1038/s41579‑023‑00905‑2
    [Google Scholar]
  93. LamJ.K.W. ZhouQ. Advances in pulmonary drug delivery systems and inhalation formulations.Pharm. Res.20234051013101410.1007/s11095‑023‑03534‑937217660
    [Google Scholar]
  94. YueL. ZhangX. ZhaoC. ChenR. ChenX. RaoL. Inhaled drug delivery: Past, present, and future.Nano Today20235210194210.1016/j.nantod.2023.101942
    [Google Scholar]
  95. PatelG. PatelP. SonaraZ. PatelR. Fabrication and optimization of 3d printed insert coated with rate controlling membrane in the treatment of recurrent vaginal candidiasis via vaginal route.Preprint20232710.2139/ssrn.4514316
    [Google Scholar]
  96. SouT. BergströmC.A.S. Contemporary formulation development for inhaled pharmaceuticals.J. Pharm. Sci.20211101668610.1016/j.xphs.2020.09.00632916138
    [Google Scholar]
  97. BassettiM. VenaA. RussoA. PeghinM. Inhaled liposomal antimicrobial delivery in lung infections.Drugs202080131309131810.1007/s40265‑020‑01359‑z32691293
    [Google Scholar]
  98. HouJ. FuR. YuT. GeP. WangY. ZhaoM. ZouA. XianyuY. Synergistic antibacterial therapy for multidrug-resistant bacterial infections using multifunctional nanozymes.Nano Today20245410211810.1016/j.nantod.2023.102118
    [Google Scholar]
  99. SimõesA. VeigaF. VitorinoC. Progressing towards the sustainable development of cream formulations.Pharmaceutics202012764710.3390/pharmaceutics1207064732659962
    [Google Scholar]
  100. GargT. RathG. GoyalA.K. Comprehensive review on additives of topical dosage forms for drug delivery.Drug Deliv.201522896998710.3109/10717544.2013.87935524456019
    [Google Scholar]
  101. ChangR.K. RawA. LionbergerR. YuL. Generic development of topical dermatologic products: Formulation development, process development, and testing of topical dermatologic products.AAPS J.2013151415210.1208/s12248‑012‑9411‑023054971
    [Google Scholar]
  102. SchlichM. MusazziU.M. CampaniV. BiondiM. FranzéS. LaiF. Design and development of topical liposomal formulations in a regulatory perspective.Drug Deliv. Transl. Res.20221281811182810.1007/s13346‑021‑01089‑z
    [Google Scholar]
  103. AugustinM. GoepelL. JacobiA. BosseB. MuellerS. HoppM. Efficacy and tolerability of liposomal polyvinylpyrrolidone-iodine hydrogel for the localized treatment of chronic infective, inflammatory, dermatoses: An uncontrolled pilot study.Clin. Cosmet. Investig. Dermatol.20171037338410.2147/CCID.S14188728989281
    [Google Scholar]
  104. BurgessD. MorrisM. SubramanyamM. JuhairiyahF. De LangeE.C.M. Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential.The AAPS J.202123611610.1208/s12248‑021‑00648‑z
    [Google Scholar]
  105. JayapriyaP. PardhiE. VasaveR. GuruS.K. MadanJ. MehraN.K. A review on stimuli-ph responsive liposomal formulation in cancer therapy.J. Drug Deliv. Sci. Technol.20239010517210.1016/j.jddst.2023.105172
    [Google Scholar]
  106. DaraeeH. EtemadiA. KouhiM. AlimirzaluS. AkbarzadehA. Application of liposomes in medicine and drug delivery.Artif. Cells Nanomed. Biotechnol.201644138139110.3109/21691401.2014.95363325222036
    [Google Scholar]
  107. DimovN. KastnerE. HussainM. PerrieY. SzitaN. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system.Sci. Reports20177111310.1038/s41598‑017‑11533‑1
    [Google Scholar]
  108. HajiahmadiF. AlikhaniM.Y. ShariatifarH. ArabestaniM.R. AhmadvandD. The bactericidal effect of liposomal vancomycin as a topical combating system against methicillin-resistant Staphylococcus aureus skin wound infection in mice.Med. J. Islam. Repub. Iran201933115310.47176/mjiri.33.15332280659
    [Google Scholar]
  109. DholeS. MahakalkarC. KshirsagarS. BhargavaA. Antibiotic prophylaxis in surgery: Current insights and future directions for surgical site infection prevention.Cureus20231510e4785810.7759/cureus.4785838021553
    [Google Scholar]
  110. WangX. FangL. WangS. ChenY. MaH. ZhaoH. XieZ. Antibiotic treatment regimens for bone infection after debridement: A study of 902 cases.BMC Musculoskelet. Disord.202021121510.1186/s12891‑020‑03214‑432264852
    [Google Scholar]
  111. HuiT. YongqingX. TianeZ. GangL. YonggangY. MuyaoJ. JunL. JingD. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate.Arch. Orthop. Trauma Surg.2009129101301130810.1007/s00402‑008‑0782‑819034468
    [Google Scholar]
  112. Aditi PriyadarshiniB. MahalakshmiK. Naveen KumarV. Mutant prevention concentration of ciprofloxacin against Klebsiella pneumoniae clinical isolates: An ideal prognosticator in treating multidrug-resistant strains.Int. J. Microbiol.20192019685010810.1155/2019/6850108
    [Google Scholar]
  113. ChenY.C. LiY.T. LeeC.L. KuoY.T. HoC.L. LinW.C. Electroactive membrane fusion-liposome for increased electron transfer to enhance radiodynamic therapy.Nat. Nanotechnol.202318121492150110.1038/s41565‑023‑01476‑2
    [Google Scholar]
  114. CuiZ. LiY. QinY. LiJ. ShiL. WanM. HuM. ChenY. JiY. HouY. YeF. LiuC. Polymyxin b-targeted liposomal photosensitizer cures mdr a. baumannii burn infections and accelerates wound healing via M1/M2 macrophage polarization.J. Control. Release202436629731110.1016/j.jconrel.2023.12.04638161034
    [Google Scholar]
  115. NacucchioM.C. BelloraM.J. SordelliD.O. D’AquinoM. Enhanced liposome-mediated activity of piperacillin against staphylococci.Antimicrob. Agents Chemother.198527113713910.1128/AAC.27.1.1373872624
    [Google Scholar]
  116. GasparD.P. FariaV. GonçalvesL.M.D. TaboadaP. Remuñán-LópezC. AlmeidaA.J. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies.Int. J. Pharm.20164971-219920910.1016/j.ijpharm.2015.11.05026656946
    [Google Scholar]
  117. ZhangW. WangZ. WuC. JinY. LiuX. WuZ. LiuJ. The effect of dspe-peg2000, cholesterol and drug incorporated in bilayer on the formation of discoidal micelles.Eur. J. Pharm. Sci.2018125748510.1016/j.ejps.2018.09.01330236551
    [Google Scholar]
  118. NicolosiD. ScaliaM. NicolosiV.M. PignatelloR. Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against gram-negative bacteria.Int. J. Antimicrob. Agents201035655355810.1016/j.ijantimicag.2010.01.01520219328
    [Google Scholar]
  119. ForierK. RaemdonckK. De SmedtS.C. DemeesterJ. CoenyeT. BraeckmansK. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.J. Control. Release201419060762310.1016/j.jconrel.2014.03.05524794896
    [Google Scholar]
  120. AlipourM. HalwaniM. OmriA. SuntresZ.E. Antimicrobial effectiveness of liposomal polymyxin b against resistant gram-negative bacterial strains.Int. J. Pharm.20083551-229329810.1016/j.ijpharm.2007.11.03518164881
    [Google Scholar]
  121. Drulis-KawaZ. Dorotkiewicz-JachA. Liposomes as delivery systems for antibiotics.Int. J. Pharm.20103871-218719810.1016/j.ijpharm.2009.11.03319969054
    [Google Scholar]
  122. FurneriP.M. FrestaM. PuglisiG. TemperaG. Ofloxacin-loaded liposomes: In vitro activity and drug accumulation in bacteria.Antimicrob. Agents Chemother.20004492458246410.1128/AAC.44.9.2458‑2464.200010952595
    [Google Scholar]
  123. Bartomeu GarciaC. ShiD. WebsterT.J. Tat-functionalized liposomes for the treatment of meningitis: An in vitro study.Int. J. Nanomedicine2017123009302110.2147/IJN.S13012528442909
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322058241003073312
Loading
/content/journals/cmc/10.2174/0109298673322058241003073312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test