Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Natural transformation refers to the process in which bacteria acquire new traits by uptaking naked DNA from the environment and integrating it into their genome through homologous recombination when they are in the specialized physiological state of competence. The natural transformation was first described in . Since Frederick Griffith first described natural transformations in in 1928, this phenomenon has been studied extensively. Induction of competence before natural transformation has been reported to involve about 10% of the pneumococcal genome. In addition to natural transformation, multiple physiological processes are involved, including biofilm formation, bacteriocin production, and fratricide. In this review, we summarized current knowledge about natural transformation in and described its competence regulation mechanism. This review also introduces the development of novel drugs and vaccines against infection by utilizing the existing knowledge of competence and natural transformation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319344240826100841
2024-09-03
2025-10-30
Loading full text...

Full text loading...

References

  1. KruckowK.L. ZhaoK. BowdishD.M.E. OrihuelaC.J. Acute organ injury and long-term sequelae of severe pneumococcal infections.Pneumonia2023151510.1186/s41479‑023‑00110‑y36870980
    [Google Scholar]
  2. DaoT.H. EchlinH. McKnightA. MarrE.S. JunkerJ. JiaQ. HaydenR. van OpijnenT. IsbergR.R. CooperV.S. RoschJ.W. Streptococcus pneumoniae favors tolerance via metabolic adaptation over resistance to circumvent fluoroquinolones.MBio2024152e02828-2310.1128/mbio.02828‑2338193698
    [Google Scholar]
  3. IkutaK.S. SwetschinskiL.R. Robles AguilarG. ShararaF. MestrovicT. GrayA.P. Davis WeaverN. WoolE.E. HanC. Gershberg HayoonA. AaliA. AbateS.M. Abbasi-KangevariM. Abbasi-KangevariZ. Abd-ElsalamS. AbebeG. AbediA. AbhariA.P. AbidiH. AboagyeR.G. AbsalanA. Abubaker AliH. AcunaJ.M. AdaneT.D. AddoI.Y. AdegboyeO.A. AdnanM. AdnaniQ.E.S. AfzalM.S. AfzalS. AghdamZ.B. AhinkorahB.O. AhmadA. AhmadA.R. AhmadR. AhmadS. AhmadS. AhmadiS. AhmedA. AhmedH. AhmedJ.Q. Ahmed RashidT. AjamiM. AjiB. Akbarzadeh-KhiaviM. AkunnaC.J. Al HamadH. AlahdabF. Al-AlyZ. AldeyabM.A. AlemanA.V. AlhalaiqaF.A.N. AlhassanR.K. AliB.A. AliL. AliS.S. AlimohamadiY. AlipourV. AlizadehA. AljunidS.M. AllelK. AlmustanyirS. AmeyawE.K. AmitA.M.L. AnandavelaneN. AncuceanuR. AndreiC.L. AndreiT. AnggrainiD. AnsarA. AnyasodorA.E. ArablooJ. AravkinA.Y. AredaD. AripovT. ArtamonovA.A. ArulappanJ. ArulebaR.T. AsaduzzamanM. AshrafT. AthariS.S. AtlawD. AttiaS. AusloosM. AwokeT. Ayala QuintanillaB.P. AyanaT.M. AzadnajafabadS. Azari JafariA. BD.B. BadarM. BadiyeA.D. BaghcheghiN. BagheriehS. BaigA.A. BanerjeeI. BaracA. BardhanM. Barone-AdesiF. BarqawiH.J. BarrowA. BaskaranP. BasuS. BatihaA-M.M. BediN. BeleteM.A. BelgaumiU.I. BenderR.G. BhandariB. BhandariD. BhardwajP. BhaskarS. BhattacharyyaK. BhattaraiS. BitarafS. BuonsensoD. ButtZ.A. Caetano dos SantosF.L. CaiJ. CalinaD. CamargosP. CámeraL.A. CárdenasR. CevikM. ChadwickJ. CharanJ. ChaurasiaA. ChingP.R. ChoudhariS.G. ChowdhuryE.K. ChowdhuryF.R. ChuD-T. ChukwuI.S. DadrasO. DagnawF.T. DaiX. DasS. DastiridouA. DebelaS.A. DemisseF.W. DemissieS. DerejeD. DereseM. DesaiH.D. DessalegnF.N. DessalegniS.A.A. DesyeB. DhadukK. DhimalM. DhingraS. DiaoN. DiazD. DjalaliniaS. DodangehM. DongarwarD. DoraB.T. DorostkarF. DsouzaH.L. DubljaninE. DunachieS.J. DurojaiyeO.C. EdinurH.A. EjiguH.B. EkholuenetaleM. EkundayoT.C. El-AbidH. ElhadiM. ElmonemM.A. EmamiA. Engelbert BainL. EnyewD.B. ErkhembayarR. EshratiB. EtaeeF. FagbamigbeA.F. FalahiS. FallahzadehA. FaraonE.J.A. FatehizadehA. FekaduG. FernandesJ.C. FerrariA. FetensaG. FilipI. FischerF. ForoutanM. GaalP.A. GadanyaM.A. GaidhaneA.M. GanesanB. GebrehiwotM. GhanbariR. Ghasemi NourM. GhashghaeeA. GholamrezanezhadA. GholizadehA. GolechhaM. GoleijP. GolinelliD. GoodridgeA. GunawardaneD.A. GuoY. GuptaR.D. GuptaS. GuptaV.B. GuptaV.K. GutaA. HabibzadehP. Haddadi AvvalA. HalwaniR. HanifA. HannanM.A. HarapanH. HassanS. HassankhaniH. HayatK. HeibatiB. HeidariG. HeidariM. Heidari-SoureshjaniR. HerteliuC. HeyiD.Z. HezamK. HoogarP. HoritaN. HossainM.M. HosseinzadehM. HostiucM. HostiucS. HoveidamaneshS. HuangJ. HussainS. HusseinN.R. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. ImamM.T. ImmuranaM. InbarajL.R. IradukundaA. IsmailN.E. IwuC.C.D. IwuC.J. JL.M. JakovljevicM. JamshidiE. JavaheriT. JavanmardiF. JavidniaJ. JayapalS.K. JayarajahU. JebaiR. JhaR.P. JooT. JosephN. JoukarF. JozwiakJ.J. KacimiS.E.O. KadashettiV. KalankeshL.R. KalhorR. KamalV.K. KandelH. KapoorN. KarkhahS. KassaB.G. KassebaumN.J. KatotoP.D.M.C. KeykhaeiM. KhajuriaH. KhanA. KhanI.A. KhanM. KhanM.N. KhanM.A.B. KhatatbehM.M. KhaterM.M. Khayat KashaniH.R. KhubchandaniJ. KimH. KimM.S. KimokotiR.W. KissoonN. KochharS. KompaniF. KosenS. KoulP.A. Koulmane LaxminarayanaS.L. Krapp LopezF. KrishanK. KrishnamoorthyV. KulkarniV. KumarN. KurmiO.P. KuttikkattuA. KyuH.H. LalD.K. LámJ. LandiresI. LasradoS. LeeS. LenziJ. LewyckaS. LiS. LimS.S. LiuW. LodhaR. LoftusM.J. LohiyaA. LorenzoviciL. LotfiM. MahmoodpoorA. MahmoudM.A. MahmoudiR. MajeedA. MajidpoorJ. MakkiA. MamoG.A. ManlaY. MartorellM. MateiC.N. McManigalB. Mehrabi NasabE. MehrotraR. MeleseA. Mendoza-CanoO. MenezesR.G. MentisA-F.A. MichaG. MichalekI.M. Micheletti Gomide Nogueira de SáA.C. Milevska KostovaN. MirS.A. MirghafourvandM. MirmoeeniS. MirrakhimovE.M. Mirza-Aghazadeh-AttariM. MisganawA.S. MisganawA. MisraS. MohammadiE. MohammadiM. Mohammadian-HafshejaniA. MohammedS. MohanS. MohseniM. MokdadA.H. MomtazmaneshS. MonastaL. MooreC.E. MoradiM. Moradi SarabiM. MorrisonS.D. MotaghinejadM. Mousavi IsfahaniH. Mousavi KhaneghahA. Mousavi-AghdasS.A. MubarikS. MulitaF. MuluG.B.B. MunroS.B. MuthupandianS. NairT.S. NaqviA.A. NarangH. NattoZ.S. NaveedM. NayakB.P. NazS. NegoiI. NejadghaderiS.A. Neupane KandelS. NgwaC.H. NiaziR.K. Nogueira de SáA.T. NorooziN. NouraeiH. NowrooziA. Nuñez-SamudioV. NutorJ.J. NzoputamC.I. NzoputamO.J. OanceaB. ObaidurR.M. OjhaV.A. OkekunleA.P. OkonjiO.C. OlagunjuA.T. OlusanyaB.O. Omar BaliA. OmerE. OtstavnovN. OumerB. P AM. PadubidriJ.R. PakshirK. PaliczT. PanaA. PardhanS. ParedesJ.L. ParekhU. ParkE-C. ParkS. PathakA. PaudelR. PaudelU. PawarS. Pazoki ToroudiH. PengM. PensatoU. PepitoV.C.F. PereiraM. PeresM.F.P. PericoN. PetcuI-R. PirachaZ.Z. PodderI. PokhrelN. PoluruR. PostmaM.J. PourtaheriN. PrashantA. QatteaI. RabieeM. RabieeN. RadfarA. RaeghiS. RafieiS. RaghavP.R. RahbarniaL. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RahmanianV. RamP. RanjhaM.M.A.N. RaoS.J. RashidiM-M. RasulA. RatanZ.A. RawafS. RawassizadehR. RazeghiniaM.S. RedwanE.M.M. RegasaM.T. RemuzziG. RetaM.A. RezaeiN. RezapourA. RiadA. RiponR.K. RuddK.E. SaddikB. SadeghianS. SaeedU. SafaeiM. SafaryA. SafiS.Z. SahebazzamaniM. SahebkarA. SahooH. SalahiS. SalahiS. SalariH. SalehiS. Samadi KafilH. SamyA.M. SanadgolN. SankararamanS. SanmarchiF. SathianB. SawhneyM. SayaG.K. SenthilkumaranS. SeylaniA. ShahP.A. ShaikhM.A. ShakerE. ShakhmardanovM.Z. SharewM.M. Sharifi-RazaviA. SharmaP. SheikhiR.A. SheikhyA. ShettyP.H. ShigematsuM. ShinJ.I. Shirzad-AskiH. ShivakumarK.M. ShobeiriP. ShorofiS.A. ShresthaS. SibhatM.M. SidemoN.B. SikderM.K. SilvaL.M.L.R. SinghJ.A. SinghP. SinghS. SirajM.S. SiwalS.S. SkryabinV.Y. SkryabinaA.A. SoceaB. SolomonD.D. SongY. SreeramareddyC.T. SulemanM. Suliankatchi AbdulkaderR. SultanaS. SzócskaM. TabatabaeizadehS-A. TabishM. TaheriM. TakiE. TanK-K. TandukarS. TatN.Y. TatV.Y. TeferaB.N. TeferaY.M. TemesgenG. TemsahM-H. TharwatS. ThiyagarajanA. TleyjehI.I. TroegerC.E. UmapathiK.K. UpadhyayE. Valadan TahbazS. ValdezP.R. Van den EyndeJ. van DoornH.R. VaziriS. VerrasG-I. ViswanathanH. VoB. WarisA. WassieG.T. WickramasingheN.D. YaghoubiS. YahyaG.A.T.Y. Yahyazadeh JabbariS.H. YigitA. YiğitV. YonD.K. YonemotoN. ZahirM. ZamanB.A. ZamanS.B. ZangiabadianM. ZareI. ZastrozhinM.S. ZhangZ-J. ZhengP. ZhongC. ZoladlM. ZumlaA. HayS.I. DolecekC. SartoriusB. MurrayC.J.L. NaghaviM. GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019.Lancet2022400103692221224810.1016/S0140‑6736(22)02185‑736423648
    [Google Scholar]
  4. StraumeD. StamsåsG.A. HåvarsteinL.S. Natural transformation and genome evolution in Streptococcus pneumoniae.Infect. Genet. Evol.20153337138010.1016/j.meegid.2014.10.02025445643
    [Google Scholar]
  5. MarksL.R. ReddingerR.M. HakanssonA.P. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae.MBio201235e00200-1210.1128/mBio.00200‑1223015736
    [Google Scholar]
  6. KwunM.J. IonA.V. OggioniM.R. BentleyS.D. CroucherN.J. Diverse regulatory pathways modulate bet hedging of competence induction in epigenetically-differentiated phase variants of Streptococcus pneumoniae.Nucleic Acids Res.20235119103751039410.1093/nar/gkad76037757859
    [Google Scholar]
  7. CroucherN.J. HarrisS.R. FraserC. QuailM.A. BurtonJ. van der LindenM. McGeeL. von GottbergA. SongJ.H. KoK.S. PichonB. BakerS. ParryC.M. LambertsenL.M. ShahinasD. PillaiD.R. MitchellT.J. DouganG. TomaszA. KlugmanK.P. ParkhillJ. HanageW.P. BentleyS.D. Rapid pneumococcal evolution in response to clinical interventions.Science2011331601643043410.1126/science.119854521273480
    [Google Scholar]
  8. KhemiciV. PrudhommeM. PolardP. Tight interplay between replication stress and competence induction in Streptococcus pneumoniae Cells2021108193810.3390/cells1008193834440707
    [Google Scholar]
  9. AggarwalS.D. YesilkayaH. DawidS. HillerN.L. The pneumococcal social network.PLoS Pathog.20201610e100893110.1371/journal.ppat.100893133119698
    [Google Scholar]
  10. LuoP. LiH. MorrisonD.A. Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae.Mol. Microbiol.200454117218310.1111/j.1365‑2958.2004.04254.x15458414
    [Google Scholar]
  11. MinhasV. DomenechA. SynefiaridouD. StraumeD. BrendelM. CebreroG. LiuX. CostaC. BaldryM. SirardJ.C. PerezC. GischN. HammerschmidtS. HåvarsteinL.S. VeeningJ.W. Competence remodels the pneumococcal cell wall exposing key surface virulence factors that mediate increased host adherence.PLoS Biol.2023211e300199010.1371/journal.pbio.300199036716340
    [Google Scholar]
  12. PetersonS.N. SungC.K. ClineR. DesaiB.V. SnesrudE.C. LuoP. WallingJ. LiH. MintzM. TsegayeG. BurrP.C. DoY. AhnS. GilbertJ. FleischmannR.D. MorrisonD.A. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays.Mol. Microbiol.20045141051107010.1046/j.1365‑2958.2003.03907.x14763980
    [Google Scholar]
  13. DagkessamanskaiaA. MoscosoM. HénardV. GuiralS. OverwegK. ReuterM. MartinB. WellsJ. ClaverysJ.P. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells.Mol. Microbiol.20045141071108610.1111/j.1365‑2958.2003.03892.x14763981
    [Google Scholar]
  14. EcheniqueJ.R. TrombeM.C. Competence repression under oxygen limitation through the two-component MicAB signal-transducing system in Streptococcus pneumoniae and involvement of the PAS domain of MicB.J. Bacteriol.2001183154599460810.1128/JB.183.15.4599‑4608.200111443095
    [Google Scholar]
  15. PiñasG.E. CortesP.R. OrioA.G.A. EcheniqueJ. Acidic stress induces autolysis by a CSP-independent ComE pathway in Streptococcus pneumoniae.Microbiology (Reading)200815451300130810.1099/mic.0.2007/015925‑018451038
    [Google Scholar]
  16. DomenechA. SlagerJ. VeeningJ.W. Antibiotic-induced cell chaining triggers pneumococcal competence by reshaping quorum sensing to autocrine-like signaling.Cell Rep.201825923902400.e310.1016/j.celrep.2018.11.00730485808
    [Google Scholar]
  17. WangJ. LiJ.W. LiJ. HuangY. WangS. ZhangJ.R. Regulation of pneumococcal epigenetic and colony phases by multiple two-component regulatory systems.PLoS Pathog.2020163e100841710.1371/journal.ppat.100841732187228
    [Google Scholar]
  18. StuparM. TanL. KerrE.D. De VossC.J. FordeB.M. SchulzB.L. WestN.P. TcrXY is an acid-sensing two-component transcriptional regulator of Mycobacterium tuberculosis required for persistent infection.Nat. Commun.2024151161510.1038/s41467‑024‑45343‑738388565
    [Google Scholar]
  19. BemA.E. VelikovaN. PellicerM.T. BaarlenP. MarinaA. WellsJ.M. Bacterial histidine kinases as novel antibacterial drug targets.ACS Chem. Biol.201510121322410.1021/cb500713525436989
    [Google Scholar]
  20. YuW.L. PanJ.G. QinR.X. LuZ.H. BaiX.H. SunY. TCS01 Two-component system influenced the virulence of Streptococcus pneumoniae by regulating PcpA.Infect. Immun.2023915e00100-2310.1128/iai.00100‑2337052497
    [Google Scholar]
  21. HåvarsteinL.S. CoomaraswamyG. MorrisonD.A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae.Proc. Natl. Acad. Sci. USA19959224111401114410.1073/pnas.92.24.111407479953
    [Google Scholar]
  22. BoudesM. SanchezD. GrailleM. van TilbeurghH. DurandD. Quevillon-CheruelS. Structural insights into the dimerization of the response regulator ComE from Streptococcus pneumoniae.Nucleic Acids Res.20144285302531310.1093/nar/gku11024500202
    [Google Scholar]
  23. MillyT.A. RenshawC.P. Tal-GanY. Developing multispecies quorum-sensing modulators based on the Streptococcus mitis competence-stimulating peptide.J. Biol. Chem.20232991210544810.1016/j.jbc.2023.10544837951305
    [Google Scholar]
  24. PiñasG.E. Reinoso-VizcainoN.M. Yandar BarahonaN.Y. CortesP.R. DuranR. BadapandaC. RathoreA. BicharaD.R. CianM.B. OliveroN.B. PerezD.R. EcheniqueJ. Crosstalk between the serine/threonine kinase StkP and the response regulator ComE controls the stress response and intracellular survival of Streptococcus pneumoniae.PLoS Pathog.2018146e100711810.1371/journal.ppat.100711829883472
    [Google Scholar]
  25. MartinB. SouletA.L. MirouzeN. PrudhommeM. Mortier-BarrièreI. GranadelC. Noirot-GrosM.F. NoirotP. PolardP. ClaverysJ.P. ComE / ComE ∼ P interplay dictates activation or extinction status of pneumococcal X-state (competence).Mol. Microbiol.201387239441110.1111/mmi.1210423216914
    [Google Scholar]
  26. JohnstonC. Mortier-BarriereI. KhemiciV. PolardP. Fine-tuning cellular levels of DprA ensures transformant fitness in the human pathogen Streptococcus pneumoniae.Mol. Microbiol.2018109566367510.1111/mmi.1406829995987
    [Google Scholar]
  27. AggarwalS.D. EutseyR. West-RobertsJ. DomenechA. XuW. AbdullahI.T. MitchellA.P. VeeningJ.W. YesilkayaH. HillerN.L. Function of BriC peptide in the pneumococcal competence and virulence portfolio.PLoS Pathog.20181410e100732810.1371/journal.ppat.100732830308062
    [Google Scholar]
  28. LuoP. MorrisonD.A. Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae.J. Bacteriol.2003185134935810.1128/JB.185.1.349‑358.200312486073
    [Google Scholar]
  29. KunthavaiP.C. KannanM. RagunathanP. Structural analysis of alternate sigma factor ComX with RpoC, RpoB and its cognate CIN promoter reveals a distinctive promoter melting mechanism.J. Biomol. Struct. Dyn.202240146272628510.1080/07391102.2021.188233833554755
    [Google Scholar]
  30. ClaverysJ.P. PrudhommeM. MartinB. Induction of competence regulons as a general response to stress in gram-positive bacteria.Annu. Rev. Microbiol.200660145147510.1146/annurev.micro.60.080805.14213916771651
    [Google Scholar]
  31. HartlF.U. Hayer-HartlM. Molecular chaperones in the cytosol: from nascent chain to folded protein.Science200229555611852185810.1126/science.106840811884745
    [Google Scholar]
  32. SchirmerE.C. GloverJ.R. SingerM.A. LindquistS. HSP100/Clp proteins: a common mechanism explains diverse functions.Trends Biochem. Sci.199621828929610.1016/S0968‑0004(96)10038‑48772382
    [Google Scholar]
  33. MazieroM. LaneD. PolardP. BergéM. Fever-like temperature bursts promote competence development via an HtrA-dependent pathway in Streptococcus pneumoniae.PLoS Genet.2023199e101094610.1371/journal.pgen.101094637699047
    [Google Scholar]
  34. OhM.W. LinJ. ChongS.Y. LewS.Q. AlamT. LauG.W. Time-resolved RNA-seq analysis to unravel the in vivo competence induction by Streptococcus pneumoniae during pneumonia-derived sepsis.Microbiol. Spectr.2024123e03050-2310.1128/spectrum.03050‑2338305162
    [Google Scholar]
  35. WeyderM. PrudhommeM. BergéM. PolardP. FichantG. Dynamic modeling of Streptococcus pneumoniae competence provides regulatory mechanistic insights into its tight temporal regulation.Front. Microbiol.20189163710.3389/fmicb.2018.0163730087661
    [Google Scholar]
  36. MirouzeN. BergéM.A. SouletA.L. Mortier-BarrièreI. QuentinY. FichantG. GranadelC. Noirot-GrosM.F. NoirotP. PolardP. MartinB. ClaverysJ.P. Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence.Proc. Natl. Acad. Sci. USA201311011E1035E104410.1073/pnas.121986811023440217
    [Google Scholar]
  37. BergéM.J. MercyC. Mortier-BarrièreI. VanNieuwenhzeM.S. BrunY.V. GrangeasseC. PolardP. CampoN. A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae.Nat. Commun.201781162110.1038/s41467‑017‑01716‑929158515
    [Google Scholar]
  38. HåvarsteinL.S. MartinB. JohnsborgO. GranadelC. ClaverysJ.P. New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor.Mol. Microbiol.20065941297103710.1111/j.1365‑2958.2005.05021.x16430701
    [Google Scholar]
  39. EldholmV. GuttB. JohnsborgO. BrücknerR. MaurerP. HakenbeckR. MascherT. HåvarsteinL.S. The pneumococcal cell envelope stress-sensing system LiaFSR is activated by murein hydrolases and lipid II-interacting antibiotics.J. Bacteriol.201019271761177310.1128/JB.01489‑0920118250
    [Google Scholar]
  40. HeL.Y. LeY.J. GuoZ. LiS. YangX.Y. The role and regulatory network of the CiaRH two-component system in streptococcal species.Front. Microbiol.20211269385810.3389/fmicb.2021.69385834335522
    [Google Scholar]
  41. EcheniqueJ.R. Chapuy-RegaudS. TrombeM.C. Competence regulation by oxygen in Streptococcus pneumoniae : involvement of ciaRH and comCDE.Mol. Microbiol.200036368869610.1046/j.1365‑2958.2000.01891.x10844657
    [Google Scholar]
  42. LauxA. SexauerA. SivaselvarajahD. KaysenA. BrücknerR. Control of competence by related non-coding csRNAs in Streptococcus pneumoniae R6.Front. Genet.2015624610.3389/fgene.2015.0024626257773
    [Google Scholar]
  43. SebertM.E. PatelK.P. PlotnickM. WeiserJ.N. Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system.J. Bacteriol.2005187123969397910.1128/JB.187.12.3969‑3979.200515937159
    [Google Scholar]
  44. LiuY. ZengY. HuangY. GuL. WangS. LiC. MorrisonD.A. DengH. ZhangJ.R. HtrA-mediated selective degradation of DNA uptake apparatus accelerates termination of pneumococcal transformation.Mol. Microbiol.201911241308132510.1111/mmi.1436431396996
    [Google Scholar]
  45. AndreassenP.R. TrappettiC. MinhasV. NielsenF.D. PakulaK. PatonJ.C. JørgensenM.G. Host-glycan metabolism is regulated by a species-conserved two-component system in Streptococcus pneumoniae.PLoS Pathog.2020163e100833210.1371/journal.ppat.100833232130269
    [Google Scholar]
  46. ZhangY. ZhangJ. XiaoJ. WangH. YangR. GuoX. ZhengY. YinY. ZhangX. comCDE (Competence) operon is regulated by CcpA in Streptococcus pneumoniae D39.Microbiol. Spectr.2023113e00012-2310.1128/spectrum.00012‑2337036382
    [Google Scholar]
  47. MohedanoM.L. AmblarM. de la FuenteA. WellsJ.M. LópezP. The response regulator yycF inhibits expression of the fatty acid biosynthesis repressor fabT in Streptococcus pneumoniae.Front. Microbiol.20167132610.3389/fmicb.2016.0132627610104
    [Google Scholar]
  48. EcheniqueJ.R. TrombeM.C. Competence modulation by the NADH oxidase of Streptococcus pneumoniae involves signal transduction.J. Bacteriol.2001183276877210.1128/JB.183.2.768‑772.200111133974
    [Google Scholar]
  49. WagnerC. SaizieuA. SchönfeldH.J. KamberM. LangeR. ThompsonC.J. PageM.G. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon.Infect. Immun.200270116121612810.1128/IAI.70.11.6121‑6128.200212379689
    [Google Scholar]
  50. WangC.Y. PatelN. WholeyW.Y. DawidS. ABC transporter content diversity in Streptococcus pneumoniae impacts competence regulation and bacteriocin production.Proc. Natl. Acad. Sci. USA201811525E5776E578510.1073/pnas.180466811529866828
    [Google Scholar]
  51. KjosM. MillerE. SlagerJ. LakeF.B. GerickeO. RobertsI.S. RozenD.E. VeeningJ.W. Expression of Streptococcus pneumoniae bacteriocins is induced by antibiotics via regulatory interplay with the competence system.PLoS Pathog.2016122e100542210.1371/journal.ppat.100542226840404
    [Google Scholar]
  52. WholeyW.Y. KochanT.J. StorckD.N. DawidS. Coordinated bacteriocin expression and competence in Streptococcus pneumoniae contributes to genetic adaptation through neighbor predation.PLoS Pathog.2016122e100541310.1371/journal.ppat.100541326840124
    [Google Scholar]
  53. PhamT.H. LiangZ.X. MarcellinE. TurnerM.S. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria.Curr. Genet.201662473173810.1007/s00294‑016‑0600‑827074767
    [Google Scholar]
  54. BaiY. YangJ. EiseleL.E. UnderwoodA.J. KoestlerB.J. WatersC.M. MetzgerD.W. BaiG. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence.J. Bacteriol.2013195225123513210.1128/JB.00769‑1324013631
    [Google Scholar]
  55. ZarrellaT.M. YangJ. MetzgerD.W. BaiG. Bacterial second messenger cyclic di-AMP modulates the competence state in Streptococcus pneumoniae.J. Bacteriol.20202024e00691-1910.1128/JB.00691‑1931767779
    [Google Scholar]
  56. ZarrellaT.M. BaiG. The many roles of the bacterial second messenger cyclic di-AMP in adapting to stress cues.J. Bacteriol.20202031e00348-2010.1128/JB.00348‑2032839175
    [Google Scholar]
  57. ZhangJ. YeW. WuK. XiaoS. ZhengY. ShuZ. YinY. ZhangX. Inactivation of transcriptional regulator fabT influences colony phase variation of Streptococcus pneumoniae.MBio2021124e01304-2110.1128/mBio.01304‑2134399624
    [Google Scholar]
  58. JohnstonC. MartinB. GranadelC. PolardP. ClaverysJ.P. Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation.PLoS Pathog.201392e100317810.1371/journal.ppat.100317823459610
    [Google Scholar]
  59. LacksS.A. AyalewS. De La CampaA.G. GreenbergB. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the Dpn II restriction system.Mol. Microbiol.20003551089109810.1046/j.1365‑2958.2000.01777.x10712690
    [Google Scholar]
  60. CerritelliS. SpringhornS.S. LacksS.A. DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function.Proc. Natl. Acad. Sci. USA198986239223922710.1073/pnas.86.23.92232687877
    [Google Scholar]
  61. KantS. SunY. PancholiV. StkP- and PhpP-mediated posttranslational modifications modulate the S. pneumoniae metabolism, polysaccharide capsule, and virulence.Infect. Immun.2023914e00296-2210.1128/iai.00296‑2236877045
    [Google Scholar]
  62. BurnsideK. RajagopalL. Regulation of prokaryotic gene expression by eukaryotic-like enzymes.Curr. Opin. Microbiol.201215212513110.1016/j.mib.2011.12.00622221896
    [Google Scholar]
  63. EcheniqueJ. KadiogluA. RomaoS. AndrewP.W. TrombeM.C. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae.Infect. Immun.20047242434243710.1128/IAI.72.4.2434‑2437.200415039376
    [Google Scholar]
  64. SaskováL. NovákováL. BaslerM. BrannyP. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae.J. Bacteriol.2007189114168417910.1128/JB.01616‑0617416671
    [Google Scholar]
  65. OsakiM. ArcondéguyT. BastideA. TouriolC. PratsH. TrombeM.C. The StkP/PhpP signaling couple in Streptococcus pneumoniae: cellular organization and physiological characterization.J. Bacteriol.2009191154943495010.1128/JB.00196‑0919502404
    [Google Scholar]
  66. SteinmoenH. KnutsenE. HåvarsteinL.S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population.Proc. Natl. Acad. Sci. USA200299117681768610.1073/pnas.11246459912032343
    [Google Scholar]
  67. SteinmoenH. TeigenA. HåvarsteinL.S. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation.J. Bacteriol.2003185247176718310.1128/JB.185.24.7176‑7183.200314645278
    [Google Scholar]
  68. GuiralS. MitchellT.J. MartinB. ClaverysJ.P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae : Genetic requirements.Proc. Natl. Acad. Sci. USA2005102248710871510.1073/pnas.050087910215928084
    [Google Scholar]
  69. LópezR. GarcíaE. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage.FEMS Microbiol. Rev.200428555358010.1016/j.femsre.2004.05.00215539074
    [Google Scholar]
  70. VidalJ.E. HoweryK.E. LudewickH.P. NavaP. KlugmanK.P. Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells.Infect. Immun.20138141341135310.1128/IAI.01096‑1223403556
    [Google Scholar]
  71. TrappettiC. PotterA.J. PatonA.W. OggioniM.R. PatonJ.C. LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae.Infect. Immun.201179114550455810.1128/IAI.05644‑1121875962
    [Google Scholar]
  72. TrappettiC. GualdiL. Di MeolaL. JainP. KorirC.C. EdmondsP. IannelliF. RicciS. PozziG. OggioniM.R. The impact of the competence quorum sensing system on Streptococcus pneumoniae biofilms varies depending on the experimental model.BMC Microbiol.20111117510.1186/1471‑2180‑11‑7521492426
    [Google Scholar]
  73. Moreno-GámezS. SorgR.A. DomenechA. KjosM. WeissingF.J. van DoornG.S. VeeningJ.W. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence.Nat. Commun.20178185410.1038/s41467‑017‑00903‑y29021534
    [Google Scholar]
  74. StevensK.E. ChangD. ZwackE.E. SebertM.E. Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors.MBio201125e00071-1110.1128/mBio.00071‑1121933920
    [Google Scholar]
  75. CassoneM. GagneA.L. SpruceL.A. SeeholzerS.H. SebertM.E. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide.J. Biol. Chem.201228746384493845910.1074/jbc.M112.39148223012372
    [Google Scholar]
  76. SlagerJ. KjosM. AttaiechL. VeeningJ.W. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin.Cell2014157239540610.1016/j.cell.2014.01.06824725406
    [Google Scholar]
  77. Starving the bacterium that causes pneumonia. Florienne Loder, University of Melbourne 2021.Available from: https://medicalxpress.com/news/2021-08-starving-bacterium-pneumonia.html(accessed on 31-7-2024)
  78. JohnstonC. CampoN. BergéM.J. PolardP. ClaverysJ.P. Streptococcus pneumoniae, le transformiste.Trends Microbiol.201422311311910.1016/j.tim.2014.01.00224508048
    [Google Scholar]
  79. JohnstonC. MartinB. FichantG. PolardP. ClaverysJ.P. Bacterial transformation: distribution, shared mechanisms and divergent control.Nat. Rev. Microbiol.201412318119610.1038/nrmicro319924509783
    [Google Scholar]
  80. GolubchikT. BrueggemannA.B. StreetT. GertzR.E.Jr SpencerC.C.A. HoT. GiannoulatouE. Link-GellesR. HardingR.M. BeallB. PetoT.E.A. MooreM.R. DonnellyP. CrookD.W. BowdenR. Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event.Nat. Genet.201244335235510.1038/ng.107222286217
    [Google Scholar]
  81. ZhuL. LauG.W. Inhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptide.PLoS Pathog.201179e100224110.1371/journal.ppat.100224121909280
    [Google Scholar]
  82. YangY. KoiralaB. SanchezL.A. PhillipsN.R. HamryS.R. Tal-GanY. Structure–activity relationships of the competence stimulating peptides (CSPs) in Streptococcus pneumoniae reveal motifs critical for intra-group and cross-group ComD receptor activation.ACS Chem. Biol.20171241141115110.1021/acschembio.7b0000728221753
    [Google Scholar]
  83. KoiralaB. LinJ. LauG.W. Tal-GanY. Development of a dominant negative competence-stimulating peptide (dnCSP) that attenuates Streptococcus pneumoniae infectivity in a mouse model of acute pneumonia.ChemBioChem201819222380238610.1002/cbic.20180050530211457
    [Google Scholar]
  84. YangY. LinJ. HarringtonA. CornilescuG. LauG.W. Tal-GanY. Designing cyclic competence-stimulating peptide (CSP) analogs with pan-group quorum-sensing inhibition activity in Streptococcus pneumoniae.Proc. Natl. Acad. Sci. USA202011731689169910.1073/pnas.191581211731915298
    [Google Scholar]
  85. ZuY. LiW. WangQ. ChenJ. GuoQ. ComDE two- component signal transduction systems in oral streptococci: structure and function.Curr. Issues Mol. Biol.20193220125810.21775/cimb.032.20131166173
    [Google Scholar]
  86. DomenechA. BrochadoA.R. SenderV. HentrichK. Henriques-NormarkB. TypasA. VeeningJ.W. Proton motive force disruptors block bacterial competence and horizontal gene transfer.Cell Host Microbe2020274544555.e310.1016/j.chom.2020.02.00232130952
    [Google Scholar]
  87. SeonS.H. ChoiJ.A. YangE. PyoS. SongM.K. RheeD.K. Intranasal immunization with an attenuated pep27 mutant provides protection from influenza virus and secondary pneumococcal infections.J. Infect. Dis.2018217463764010.1093/infdis/jix59429145619
    [Google Scholar]
  88. KimS.J. SeonS.H. LuongT.T. GhoshP. PyoS. RheeD.K. Immunization with attenuated non-transformable pneumococcal pep27 and comD mutant provides serotype-independent protection against pneumococcal infection.Vaccine2019371909810.1016/j.vaccine.2018.11.02730467061
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319344240826100841
Loading
/content/journals/cmc/10.2174/0109298673319344240826100841
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test