Skip to content
2000
Volume 32, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cardiovascular disease is a major global public health challenge. Point-of-care testing (POCT) technologies are crucial for the prevention, early diagnosis, and treatment of cardiovascular conditions. Numerous POCT technologies for cardiovascular disease are currently available, which include but are not limited to conventional methods, paper-based microfluidic technology, microfluidic chip technology, electrochemical detection technology, ultrasonic detection technology, and smartphone-based detection technology. Each method has a broad range of applications and performs differently across various detection scenarios. This article offers a comprehensive analysis of current POCT technologies for cardiovascular disease, assessing their effectiveness, limitations, and future development directions. The aim is to provide insights and theoretical references for innovative research and clinical applications in POCT methods for cardiovascular disease.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673320582240920061613
2024-10-01
2025-10-18
Loading full text...

Full text loading...

References

  1. LindstromM. DeCleeneN. DorseyH. FusterV. JohnsonC.O. LeGrandK.E. MensahG.A. RazoC. StarkB. Varieur TurcoJ. RothG.A. Global burden of cardiovascular diseases and risks collaboration, 1990-2021.J. Am. Coll. Cardiol.202280252372242510.1016/j.jacc.2022.11.00136517116
    [Google Scholar]
  2. RizzoA. MerlerS. SorgentoniG. OderdaM. MollicaV. Gadaleta-CaldarolaG. SantoniM. MassariF. Risk of cardiovascular toxicities and hypertension in nonmetastatic castration-resistant prostate cancer patients treated with novel hormonal agents: a systematic review and meta-analysis.Expert Opin. Drug Metab. Toxicol.202117101237124310.1080/17425255.2021.197074534407702
    [Google Scholar]
  3. MendisS. PuskaP. NorrvingB. Global atlas on cardiovascular disease prevention and controlGenevaWorld Health Organization2011
    [Google Scholar]
  4. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.103912136533070
    [Google Scholar]
  5. SuleW.F. OluwayeluD.O. Real-time RT-PCR for COVID-19 diagnosis: challenges and prospects.Pan Afr. Med. J.202035Suppl. 212110.11604/pamj.supp.2020.35.2.2425833282076
    [Google Scholar]
  6. FerreiraC.E.S. GuerraJ.C.C. SlhessarenkoN. ScarteziniM. FrancaC.N. ColombiniM.P. BerlitzF. MachadoA.M.O. CampanaG.A. FaulhaberA.C.L. GaloroC.A. DiasC.M. ShcolnikW. MartinoM.D.V. CesarK.R. SumitaN.M. MendesM.E. FaulhaberM.H.W. PinhoJ.R.R. BarbosaI.V. BatistaM.C. KhawaliC. ParizV.M. AndrioloA. Point-of-Care Testing: General Aspects.Clin. Lab.20186411929479878
    [Google Scholar]
  7. MabbottS. FernandesS.C. SchechingerM. CoteG.L. FauldsK. MaceC.R. GrahamD. Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering.Analyst (Lond.)2020145398399110.1039/C9AN01748H31829323
    [Google Scholar]
  8. HuJ. CuiX. GongY. XuX. GaoB. WenT. LuT.J. XuF. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care.Biotechnol. Adv.201634330532010.1016/j.biotechadv.2016.02.00826898179
    [Google Scholar]
  9. YousefiF. MovahedpourA. ShabaninejadZ. GhasemiY. RabbaniS. Sobnani-NasabA. MohammadiS. HajimoradiB. RezaeiS. SavardashtakiA. MazoochiM. MirzaeiH. Electrochemical-based biosensors: New diagnosis platforms for cardiovascular disease.Curr. Med. Chem.202027152550257510.2174/092986732666619102411420731696797
    [Google Scholar]
  10. SaranteasT. MavrogenisA.F. MandilaC. PoularasJ. PanouF. Ultrasound in cardiac trauma.J. Crit. Care20173814415110.1016/j.jcrc.2016.10.03227907878
    [Google Scholar]
  11. LeeS. ChuY. RyuJ. ParkY.J. YangS. KohS.B. Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: A systematic review and meta-analysis.Yonsei Med. J.202263Suppl.S93S10710.3349/ymj.2022.63.S9335040610
    [Google Scholar]
  12. MaoK. MinX. ZhangH. ZhangK. CaoH. GuoY. YangZ. Paper-based microfluidics for rapid diagnostics and drug delivery.J. Control. Release202032218719910.1016/j.jconrel.2020.03.01032169536
    [Google Scholar]
  13. FuH. QinZ. LiX. PanY. XuH. PanP. SongP. LiuX. Paper-based all-in-one origami nanobiosensor for point-of-care detection of cardiac protein markers in whole blood.ACS Sens.2023893574358410.1021/acssensors.3c0122137705448
    [Google Scholar]
  14. VitaleE. RizzoA. SantaK. JirilloE. Associations between “cancer risk”, “inflammation” and “metabolic syndrome”: A scoping review.Biology (Basel)202413535210.3390/biology1305035238785834
    [Google Scholar]
  15. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers (Basel)20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  16. MassariF. MollicaV. RizzoA. CosmaiL. RizzoM. PortaC. Safety evaluation of immune-based combinations in patients with advanced renal cell carcinoma: a systematic review and meta-analysis.Expert Opin. Drug Saf.202019101329133810.1080/14740338.2020.181122632799582
    [Google Scholar]
  17. SackmannE.K. FultonA.L. BeebeD.J. The present and future role of microfluidics in biomedical research.Nature2014507749118118910.1038/nature1311824622198
    [Google Scholar]
  18. MaQ. MaH. XuF. WangX. SunW. Microfluidics in cardiovascular disease research: state of the art and future outlook.Microsyst. Nanoeng.202171192810.1038/s41378‑021‑00245‑234567733
    [Google Scholar]
  19. BakirhanN.K. OzcelikayG. OzkanS.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors.J. Pharm. Biomed. Anal.201815940642410.1016/j.jpba.2018.07.02130036704
    [Google Scholar]
  20. GolematiS. CokkinosD.D. Recent advances in vascular ultrasound imaging technology and their clinical implications.Ultrasonics202211910659910.1016/j.ultras.2021.10659934624584
    [Google Scholar]
  21. TakxR.A.P. PartoviS. GhoshhajraB.B. Imaging of atherosclerosis.Int. J. Cardiovasc. Imaging201632151210.1007/s10554‑015‑0730‑y26239134
    [Google Scholar]
  22. DunnJ. RungeR. SnyderM. Wearables and the medical revolution.Per. Med.201815542944810.2217/pme‑2018‑004430259801
    [Google Scholar]
  23. WangX. LiuZ. ZhangT. Flexible sensing electronics for wearable/attachable health monitoring.Small20171325160279010.1002/smll.20160279028306196
    [Google Scholar]
  24. Bucciarelli-DucciC. OstenfeldE. BaldassarreL.A. FerreiraV.M. FrankL. KallianosK. RamanS.V. SrichaiM.B. McAlindonE. MavrogeniS. NtusiN.A.B. Schulz-MengerJ. ValenteA.M. OrdovasK.G. Cardiovascular disease in women: insights from magnetic resonance imaging.J. Cardiovasc. Magn. Reson.20202217110.1186/s12968‑020‑00666‑432981527
    [Google Scholar]
  25. HayrapetyanH. TranT. Tellez-CorralesE. MadirajuC. Enzyme-linked immunosorbent assay: Types and applications.Methods Mol. Biol.2023261211710.1007/978‑1‑0716‑2903‑1_136795355
    [Google Scholar]
  26. EverettB.M. MoorthyM.V. TikkanenJ.T. CookN.R. AlbertC.M. Markers of myocardial stress, myocardial injury, and subclinical inflammation and the risk of sudden death.Circulation2020142121148115810.1161/CIRCULATIONAHA.120.04694732700639
    [Google Scholar]
  27. HarpazD. SeetR.C.S. MarksR.S. TokA.I.Y. B-type natriuretic peptide as a significant brain biomarker for stroke triaging using a bedside point-of-care monitoring biosensor.Biosensors (Basel)202010910712810.3390/bios1009010732859068
    [Google Scholar]
  28. CalabriaD. CalabrettaM.M. ZangheriM. MarchegianiE. TrozziI. GuardigliM. MicheliniE. Di NardoF. AnfossiL. BaggianiC. MirasoliM. Recent advancements in enzyme-based lateral flow immunoassays.Sensors (Basel)20212110335810.3390/s2110335834065971
    [Google Scholar]
  29. JiangX. LillehojP.B. Lateral flow immunochromatographic assay on a single piece of paper.Analyst (Lond.)202114631084109010.1039/D0AN02073G33347520
    [Google Scholar]
  30. PanferovV.G. ZherdevA.V. DzantievB.B. Post-assay chemical enhancement for highly sensitive lateral flow immunoassays: A critical review.Biosensors (Basel)202313986691210.3390/bios1309086637754100
    [Google Scholar]
  31. HuangL. TianS. ZhaoW. LiuK. MaX. GuoJ. Multiplexed detection of biomarkers in lateral-flow immunoassays.Analyst (Lond.)202014582828284010.1039/C9AN02485A32219225
    [Google Scholar]
  32. O’ByrneP. HIV self-testing: A review and analysis to guide HIV prevention policy.Public Health Nurs.202138588589110.1111/phn.1291734043831
    [Google Scholar]
  33. Abu-FrehaN. Mathew JacobB. ElhoashlaA. AfawiZ. Abu-HammadT. ElsanaF. PazS. EtzionO. Chronic hepatitis C: Diagnosis and treatment made easy.Eur. J. Gen. Pract.202228110210810.1080/13814788.2022.205616135579223
    [Google Scholar]
  34. SeokY. MaukM.G. LiR. QianC. Trends of respiratory virus detection in point-of-care testing: A review.Anal. Chim. Acta2023126434128310.1016/j.aca.2023.34128337230728
    [Google Scholar]
  35. ShevlinE. MorrowR.A. Comparative performance of the Uni-Gold™ HSV-2 Rapid: A point-of-care HSV-2 diagnostic test in unselected sera from a reference laboratory.J. Clin. Virol.201461337838110.1016/j.jcv.2014.08.01225200648
    [Google Scholar]
  36. MajumderJ. MinkoT. Recent developments on therapeutic and diagnostic approaches for COVID-19.AAPS J.20212311410.1208/s12248‑020‑00532‑233400058
    [Google Scholar]
  37. AlhabbabR.Y. Lateral flow immunoassays for detecting viral infectious antigens and antibodies.Micromachines (Basel)202213111901192310.3390/mi1311190136363922
    [Google Scholar]
  38. Di NardoF. ChiarelloM. CavaleraS. BaggianiC. AnfossiL. Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives.Sensors (Basel)202121155185521810.3390/s2115518534372422
    [Google Scholar]
  39. XuQ. XuH. GuH. LiJ.B. WangY. WeiM. Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detection of cardiac troponin I.Mater. Sci. Eng. C200929370270710.1016/j.msec.2009.01.009
    [Google Scholar]
  40. RyuY. JinZ. KangM.S. KimH-S. Increase in the detection sensitivity of a lateral flow assay for a cardiac marker by oriented immobilization of antibody.Biochip J.20115319319810.1007/s13206‑011‑5301‑2
    [Google Scholar]
  41. ZhuJ. ZouN. ZhuD. WangJ. JinQ. ZhaoJ. MaoH. Simultaneous detection of high-sensitivity cardiac troponin I and myoglobin by modified sandwich lateral flow immunoassay: proof of principle.Clin. Chem.201157121732173810.1373/clinchem.2011.17169421998340
    [Google Scholar]
  42. ChanC.P.Y. SumK.W. CheungK.Y. GlatzJ.F.C. SandersonJ.E. HempelA. LehmannM. RennebergI. RennebergR. Development of a quantitative lateral-flow assay for rapid detection of fatty acid-binding protein.J. Immunol. Methods20032791-29110010.1016/S0022‑1759(03)00243‑612969550
    [Google Scholar]
  43. HuJ. WangL. LiF. HanY.L. LinM. LuT.J. XuF. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays.Lab Chip201313224352435710.1039/c3lc50672j24056409
    [Google Scholar]
  44. BritoV. AlcarazA. AugustovskiF. Pichón-RiviereA. García-MartíS. BardachA. CiapponiA. LopezA. ComandéD. High sensitivity C protein as an independent risk factor in people with and without history of cardiovascular disease.Arch. Cardiol. Mex.201585212413525700576
    [Google Scholar]
  45. OhY.K. JoungH.A. KimS. KimM.G. Vertical flow immunoassay (VFA) biosensor for a rapid one-step immunoassay.Lab Chip201313576877210.1039/c2lc41016h23303290
    [Google Scholar]
  46. KimS. HaoY. MillerE.A. TayD.M.Y. YeeE. KongsupholP. JiaH. McBeeM. PreiserP.R. SikesH.D. Vertical flow cellulose-based assays for SARS-CoV-2 antibody detection in human serum.ACS Sens.2021651891189810.1021/acssensors.1c0023533822583
    [Google Scholar]
  47. JoungH.A. OhY.K. KimM.G. An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor.Biosens. Bioelectron.20145333033510.1016/j.bios.2013.10.00424176968
    [Google Scholar]
  48. QinZ. ChanW.C.W. BoulwareD.R. AkkinT. ButlerE.K. BischofJ.C. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast.Angew. Chem. Int. Ed.201251184358436110.1002/anie.20120099722447488
    [Google Scholar]
  49. WarrenA.D. KwongG.A. WoodD.K. LinK.Y. BhatiaS.N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics.Proc. Natl. Acad. Sci. USA2014111103671367610.1073/pnas.131465111124567404
    [Google Scholar]
  50. ChenY. HuangS. ZhouL. WangX. YangH. LiW. Coronavirus Disease 2019 (COVID-19): Emerging detection technologies and auxiliary analysis.J. Clin. Lab. Anal.2022361e2415210.1002/jcla.2415234894011
    [Google Scholar]
  51. OzerT. McMahonC. HenryC.S. Advances in paper-based analytical devices.Annu. Rev. Anal. Chem. (Palo Alto, Calif.)20201318510910.1146/annurev‑anchem‑061318‑11484531986055
    [Google Scholar]
  52. PollockN.R. RollandJ.P. KumarS. BeattieP.D. JainS. NoubaryF. WongV.L. PohlmannR.A. RyanU.S. WhitesidesG.M. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing.Sci. Transl. Med.20124152152ra12910.1126/scitranslmed.300398122993296
    [Google Scholar]
  53. SathishkumarN. ToleyB.J. Paper-microfluidic signal-enhanced immunoassays.Prog. Mol. Biol. Transl. Sci.2022186126728810.1016/bs.pmbts.2021.07.01535033288
    [Google Scholar]
  54. TabatabaeiM.S. AhmedM. Enzyme-linked immunosorbent assay (ELISA).Methods Mol. Biol.2022250811513410.1007/978‑1‑0716‑2376‑3_1035737237
    [Google Scholar]
  55. LeeD. AsmareN. SariogluA.F. Paper-based multi-well depletion ELISA.Lab Chip202323225126010.1039/D2LC00960A36598080
    [Google Scholar]
  56. SaorinG. CaligiuriI. RizzolioF. Microfluidic organoids-on-a-chip: The future of human models.Semin. Cell Dev. Biol.2023144415410.1016/j.semcdb.2022.10.00136241560
    [Google Scholar]
  57. WesteinE. van der MeerA.D. KuijpersM.J.E. FrimatJ.P. van den BergA. HeemskerkJ.W.M. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner.Proc. Natl. Acad. Sci. USA201311041357136210.1073/pnas.120990511023288905
    [Google Scholar]
  58. GervaisL. DelamarcheE. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.Lab Chip20099233330333710.1039/b906523g19904397
    [Google Scholar]
  59. GervaisL. HitzbleckM. DelamarcheE. Capillary-driven multiparametric microfluidic chips for one-step immunoassays.Biosens. Bioelectron.2011271647010.1016/j.bios.2011.06.01621752632
    [Google Scholar]
  60. NairM.P. TeoA.J.T. LiK.H.H. Acoustic biosensors and microfluidic devices in the decennium: Principles and applications.Micromachines (Basel)20211312410.3390/mi1301002435056189
    [Google Scholar]
  61. JengM.J. SharmaM. LiY.C. LuY.C. YuC.Y. TsaiC.L. HuangS.F. ChangL.B. LaiC.S. Surface acoustic wave sensor for C-reactive protein detection.Sensors (Basel)202020226640665110.3390/s2022664033228249
    [Google Scholar]
  62. LeeJ. ChoiY.S. LeeY. LeeH.J. LeeJ.N. KimS.K. HanK.Y. ChoE.C. ParkJ.C. LeeS.S. Sensitive and simultaneous detection of cardiac markers in human serum using surface acoustic wave immunosensor.Anal. Chem.201183228629863510.1021/ac202084921992491
    [Google Scholar]
  63. ҪimenD. BereliN. GünaydınS. DenizliA. Molecular imprinted nanoparticle assisted surface plasmon resonance biosensors for detection of thrombin.Talanta202224612348410.1016/j.talanta.2022.12348435462248
    [Google Scholar]
  64. WangY. XuX. LiY. LiC. WangX. WuJ. LiY. Handcrafted silver substrates boost surface plasmon resonance for ultra-sensitive lipid analysis.Talanta202426912543210.1016/j.talanta.2023.12543238039677
    [Google Scholar]
  65. SeokJ.S. JuH. Plasmonic optical biosensors for detecting C-reactive protein: A review.Micromachines (Basel)2020111089510.3390/mi1110089532992442
    [Google Scholar]
  66. ChinC.D. LaksanasopinT. CheungY.K. SteinmillerD. LinderV. ParsaH. WangJ. MooreH. RouseR. UmviligihozoG. KaritaE. MwambarangweL. BraunsteinS.L. van de WijgertJ. SahaboR. JustmanJ.E. El-SadrW. SiaS.K. Microfluidics-based diagnostics of infectious diseases in the developing world.Nat. Med.20111781015101910.1038/nm.240821804541
    [Google Scholar]
  67. GrimaldiA.M. ForteE. InfanteT. CavaliereC. SalvatoreM. CademartiriF. Future perspectives of nanoparticle-based contrast agents for cardiac magnetic resonance in myocardial infarction.Nanomedicine20191732934110.1016/j.nano.2019.02.00330802547
    [Google Scholar]
  68. Doménech-CarbóM.T. Doménech-CarbóA. Spot tests: past and present.ChemTexts.20228147010.1007/s40828‑021‑00152‑z34976574
    [Google Scholar]
  69. ChamiJ. FlemingS. TaylorC.J. BankheadC.R. JamesT. ShineB. McLellanJ. HobbsF.D.R. PereraR. Point-of-care NT-proBNP monitoring for heart failure: observational feasibility study in primary care.BJGP Open202263BJGPO.2022.000510.3399/BJGPO.2022.000535288446
    [Google Scholar]
  70. LarcherR. LottelierM. BadiouS. DupuyA.M. BargnouxA.S. CristolJ.P. Analytical performances of the novel i-STAT alinity point-of-care analyzer.Diagnostics (Basel)202313229729910.3390/diagnostics1302029736673107
    [Google Scholar]
  71. LinY. ZhangY. LiuY. CuiK. KangJ. ZhouZ. How to choose a point-of-care testing for troponin.J. Clin. Lab. Anal.2020347e2326310.1002/jcla.2326332222055
    [Google Scholar]
  72. OzdalgicB. YetisenA.K. TasogluS. Smartphone and wearable diagnostics.Expert Rev. Mol. Diagn.202323535735910.1080/14737159.2023.220381737058278
    [Google Scholar]
  73. WuX. PanJ. ZhuX. HongC. HuA. ZhuC. LiuY. YangK. ZhuL. MS 2 device: smartphone-facilitated mobile nucleic acid analysis on microfluidic device.Analyst (Lond.)2021146123823383310.1039/D1AN00367D34121097
    [Google Scholar]
  74. YangC. YangY. ZhaoG. WangH. DaiY. HuangX. A low-cost microfluidic-based detection device for rapid identification and quantification of biomarkers-based on a smartphone.Biosensors (Basel)202313775376510.3390/bios1307075337504151
    [Google Scholar]
  75. LiF. ZhengY. WuJ. ZhaoL. ShuiL. PuQ. LiuS. Smartphone assisted immunodetection of HIV p24 antigen using reusable, centrifugal microchannel array chip.Talanta2019203838910.1016/j.talanta.2019.05.04231202353
    [Google Scholar]
  76. HuangW. LuoS. YangD. ZhangS. Applications of smartphone-based near-infrared (NIR) imaging, measurement, and spectroscopy technologies to point-of-care (POC) diagnostics.J. Zhejiang Univ. Sci. B202122317118910.1631/jzus.B200038833719223
    [Google Scholar]
  77. PügnerT. KnobbeJ. GrügerH. Near-infrared grating spectrometer for mobile phone applications.Appl. Spectrosc.201670573474510.1177/000370281663827727170776
    [Google Scholar]
  78. ChenD. LiN. ZengS. LvX. ChenL. LiuX. HuQ. Multiparameter mobile blood analysis for complete blood count using contrast-enhanced defocusing imaging and machine vision.Analyst (Lond.)202314892021203410.1039/D3AN00070B36970954
    [Google Scholar]
  79. KaileK. GodavartyA. Development and validation of a smartphone-based near-infrared optical imaging device to measure physiological changes in-vivo.Micromachines (Basel)201910318010.3390/mi1003018030857323
    [Google Scholar]
  80. JiD. LowS.S. ZhangD. LiuL. LuY. LiuQ. Smartphone-based electrochemical system for biosensors and biodetection.Methods Mol. Biol.2022239349351410.1007/978‑1‑0716‑1803‑5_2634837196
    [Google Scholar]
  81. JędrzakA. KuznowiczM. RębiśT. JesionowskiT. Portable glucose biosensor based on polynorepinephrine@magnetite nanomaterial integrated with a smartphone analyzer for point-of-care application.Bioelectrochemistry202214510807110808110.1016/j.bioelechem.2022.10807135074730
    [Google Scholar]
  82. BhaiyyaM. KulkarniM.B. PattnaikP.K. GoelS. Internet of things-enabled photomultiplier tube- and smartphone-based electrochemiluminescence platform to detect choline and dopamine using 3D-printed closed bipolar electrodes.Luminescence202237235736510.1002/bio.417934931738
    [Google Scholar]
  83. YangT.Y. HuangL. MalwadeS. HsuC.Y. ChenY.C. Diagnostic accuracy of ambulatory devices in detecting atrial fibrillation: systematic review and meta-analysis.JMIR Mhealth Uhealth202194e2616710.2196/2616733835039
    [Google Scholar]
  84. KnightS. LipothJ. NamvariM. GuC. HedayatiM. Syed-AbdulS. SpiteriR.J. The accuracy of wearable photoplethysmography sensors for telehealth monitoring: A scoping review.Telemed. J. E Health202329681382810.1089/tmj.2022.018236288566
    [Google Scholar]
  85. AjmalB-A.T. Boonya-AnantaT. RodriguezA.J. Du LeV.N. Ramella-RomanJ.C. Monte Carlo analysis of optical heart rate sensors in commercial wearables: the effect of skin tone and obesity on the photoplethysmography (PPG) signal.Biomed. Opt. Express202112127445745710.1364/BOE.43989335003845
    [Google Scholar]
  86. AskarianB. JungK. ChongJ.W. Monitoring of heart rate from photoplethysmographic signals using a samsung galaxy note8 in underwater environments.Sensors (Basel)20191913284610.3390/s1913284631248022
    [Google Scholar]
  87. FreyL. MenonC. ElgendiM. Blood pressure measurement using only a smartphone.NPJ Digit. Med.2022518610010.1038/s41746‑022‑00629‑235794240
    [Google Scholar]
  88. LeeC. LeeC. FernandoC. ChowC.M. Comparison of apple watch vs kardiaMobile: A tale of two devices.CJC Open202241193994510.1016/j.cjco.2022.07.01136444370
    [Google Scholar]
  89. BaribeauY. SharkeyA. ChaudharyO. KrummS. FatimaH. MahmoodF. MatyalR. Handheld point-of-care ultrasound probes: The new generation of POCUS.J. Cardiothorac. Vasc. Anesth.202034113139314510.1053/j.jvca.2020.07.00432736998
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673320582240920061613
Loading
/content/journals/cmc/10.2174/0109298673320582240920061613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test