Skip to content
2000
Volume 32, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Ascending incidence and poor outcomes make Alcoholic Liver Disease (ALD) a considerable public health concern. This review concluded the iron metabolism under physiology conditions and alcohol disturbance (leading to ferroptosis in ALD) and summarized the novel treatment, diagnosis, and prognosis of ferroptosis for ALD. ALD is characterized by alcohol-induced chronic metabolism disorder, peroxidation damage, and dysfunction of the anti-oxidant system. Current animal experiments and clinical studies identified ferroptosis as a new form of regulated cell death involved in ALD. One strong evidence is that the key iron regulatory hormone, hepcidin, is downgraded in ALD through NF-κB/IL-6/STAT3, BMP/SMAD, and Jak/STAT3 pathways, which would impair iron hemostasis and induce ferroptosis in ALD. Also, imbalance metabolism and other pathological responses in ALD induce and regulate ferroptosis, which proves ferroptosis participates in the pathophysiology of ALD oxidative stress, steatosis, and fibrosis. Inhibition of ferroptosis regulating hepcidin expression and metabolism impairment may provide new therapies for ALD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673317526240924050651
2024-10-09
2025-10-18
Loading full text...

Full text loading...

References

  1. Global status report on alcohol and health 2018.2018Available from: https://www.who.int/publications/i/item/9789241565639
  2. NagyL.E. DingW.X. CresciG. SaikiaP. ShahV.H. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes.Gastroenterology201615081756176810.1053/j.gastro.2016.02.035.
    [Google Scholar]
  3. ZhouY. WuR. WangX. BaoX. LuC. Roles of necroptosis in alcoholic liver disease and hepatic pathogenesis.Cell Prolif.2022553e1319310.1111/cpr.1319335083817
    [Google Scholar]
  4. HeoM.J. KimT.H. YouJ.S. BlayaD. Sancho-BruP. KimS.G. Alcohol dysregulates miR-148a in hepatocytes through FoxO1, facilitating pyroptosis via TXNIP overexpression.Gut201968470872010.1136/gutjnl‑2017‑31512329475852
    [Google Scholar]
  5. WilliamsJ.A. DingW.X. Role of autophagy in alcohol and drug-induced liver injury.Food Chem. Toxicol.202013611107510.1016/j.fct.2019.11107531877367
    [Google Scholar]
  6. Macías-RodríguezR.U. InzaugaratM.E. Ruiz-MargáinA. NelsonL.J. TrautweinC. CuberoF.J. Reclassifying hepatic cell death during liver damage: Ferroptosis—A novel form of non-apoptotic cell death?Int. J. Mol. Sci.2020215165110.3390/ijms2105165132121273
    [Google Scholar]
  7. WuJ. WangY. JiangR. XueR. YinX. WuM. MengQ. Ferroptosis in liver disease: New insights into disease mechanisms.Cell Death Discov.20217127610.1038/s41420‑021‑00660‑434611144
    [Google Scholar]
  8. KohgoY. OhtakeT. IkutaK. SuzukiY. HosokiY. SaitoH. KatoJ. Iron accumulation in alcoholic liver diseases.Alcohol. Clin. Exp. Res.20052911189S193S16344607
    [Google Scholar]
  9. AliN. FerraoK. MehtaK.J. Liver iron loading in alcohol-associated liver disease.Am. J. Pathol.202236306827
    [Google Scholar]
  10. BogdanA.R. MiyazawaM. HashimotoK. TsujiY. Regulators of iron homeostasis: New players in metabolism, cell death, and disease.Trends Biochem. Sci.201641327428610.1016/j.tibs.2015.11.01226725301
    [Google Scholar]
  11. GanzT. Systemic iron homeostasis.Physiol. Rev.20139341721174110.1152/physrev.00008.201324137020
    [Google Scholar]
  12. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  13. StockwellB.R. Friedmann AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.02128985560
    [Google Scholar]
  14. DixonS.J. StockwellB.R. The hallmarks of ferroptosis.Annual review of cancer biology JacksT. SawyersC.L. 3554
    [Google Scholar]
  15. KatsarouA. PantopoulosK. Basics and principles of cellular and systemic iron homeostasis.Mol. Aspects Med.20207510086610.1016/j.mam.2020.10086632564977
    [Google Scholar]
  16. LudwiczekS. TheurlI. Artner-DworzakE. ChorneyM. WeissG. Duodenal HFE expression and hepcidin levels determine body iron homeostasis: Modulation by genetic diversity and dietary iron availability.J. Mol. Med. (Berl.)200482637338210.1007/s00109‑004‑0542‑315173932
    [Google Scholar]
  17. FrazerD.M. WilkinsS.J. BeckerE.M. VulpeC.D. MckieA.T. TrinderD. AndersonG.J. Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats.Gastroenterology2002123383584410.1053/gast.2002.3535312198710
    [Google Scholar]
  18. KawabataH. Transferrin and transferrin receptors update.Free Radic. Biol. Med.2019133465410.1016/j.freeradbiomed.2018.06.03729969719
    [Google Scholar]
  19. YehK. YehM. MimsL. GlassJ. Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium.Am. J. Physiol. Gastrointest. Liver Physiol.20092961G55G6510.1152/ajpgi.90298.200818974313
    [Google Scholar]
  20. WangC.Y. BabittJ.L. Liver iron sensing and body iron homeostasis.Blood20191331182910.1182/blood‑2018‑06‑81589430401708
    [Google Scholar]
  21. PoliM. AspertiM. RuzzenentiP. RegoniM. ArosioP. Hepcidin antagonists for potential treatments of disorders with hepcidin excess.Front. Pharmacol.201458610.3389/fphar.2014.0008624808863
    [Google Scholar]
  22. AgarwalA.K. YeeJ. Hepcidin.Adv. Chronic Kidney Dis.201926429830510.1053/j.ackd.2019.04.00531477260
    [Google Scholar]
  23. UedaN. TakasawaK. Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease.Nutrients2018109117310.3390/nu10091173.
    [Google Scholar]
  24. PasrichaS.R. McHughK. DrakesmithH. Regulation of hepcidin by erythropoiesis: The story so far.Annu. Rev. Nutr.201636141743410.1146/annurev‑nutr‑071715‑05073127146013
    [Google Scholar]
  25. WrightingD.M. AndrewsN.C. Iron homeostasis and erythropoiesis.Curr. Top. Dev. Biol.20088214116710.1016/S0070‑2153(07)00006‑318282520
    [Google Scholar]
  26. ParrowN.L. GardenghiS. RamosP. CasuC. GradyR.W. AndersonE.R. ShahY.M. LiH. GinzburgY.Z. FlemingR.E. RivellaS. Decreased hepcidin expression in murine β-thalassemia is associated with suppression of Bmp/Smad signaling.Blood2012119133187318910.1182/blood‑2012‑01‑40556322461476
    [Google Scholar]
  27. D’AlessioF. HentzeM.W. MuckenthalerM.U. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation.J. Hepatol.20125751052106010.1016/j.jhep.2012.06.01522728873
    [Google Scholar]
  28. BabittJ.L. HuangF.W. WrightingD.M. XiaY. SidisY. SamadT.A. CampagnaJ.A. ChungR.T. SchneyerA.L. WoolfC.J. AndrewsN.C. LinH.Y. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression.Nat. Genet.200638553153910.1038/ng177716604073
    [Google Scholar]
  29. GrisouardJ. LiS. KubovcakovaL. RaoT.N. MeyerS.C. LundbergP. Hao-ShenH. RomanetV. MurakamiM. RadimerskiT. DirnhoferS. SkodaR.C. JAK2 exon 12 mutant mice display isolated erythrocytosis and changes in iron metabolism favoring increased erythropoiesis.Blood2016128683985110.1182/blood‑2015‑12‑68921627288519
    [Google Scholar]
  30. KautzL. JungG. ValoreE.V. RivellaS. NemethE. GanzT. Identification of erythroferrone as an erythroid regulator of iron metabolism.Nat. Genet.201446767868410.1038/ng.299624880340
    [Google Scholar]
  31. NemethE. GanzT. Hepcidin and iron in health and disease.Annu. Rev. Med.20237426127710.1146/annurev‑med‑043021‑032816.
    [Google Scholar]
  32. EspositoB.P. BreuerW. SirankaprachaP. PootrakulP. HershkoC. CabantchikZ.I. Labile plasma iron in iron overload: Redox activity and susceptibility to chelation.Blood200310272670267710.1182/blood‑2003‑03‑080712805056
    [Google Scholar]
  33. de SwartL. HendriksJ.C.M. van der VormL.N. CabantchikZ.I. EvansP.J. HodE.A. BrittenhamG.M. FurmanY. WojczykB. JanssenM.C.H. PorterJ.B. MattijssenV.E.J.M. BiemondB.J. MacKenzieM.A. OrigaR. GalanelloR. HiderR.C. SwinkelsD.W. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders.Haematologica20161011384510.3324/haematol.2015.13398326385212
    [Google Scholar]
  34. KakhlonO. CabantchikZ.I. The labile iron pool: Characterization, measurement, and participation in cellular processes(1).Free Radic. Biol. Med.20023381037104610.1016/S0891‑5849(02)01006‑712374615
    [Google Scholar]
  35. BrissotP. RopertM. Le LanC. LoréalO. Non-transferrin bound iron: A key role in iron overload and iron toxicity.Biochim. Biophys. Acta, Gen. Subj.20121820340341010.1016/j.bbagen.2011.07.01421855608
    [Google Scholar]
  36. LiangD. MinikesA.M. JiangX. Ferroptosis at the intersection of lipid metabolism and cellular signaling.Mol. Cell202282122215222710.1016/j.molcel.2022.03.02235390277
    [Google Scholar]
  37. ChenX. LiJ. KangR. KlionskyD.J. TangD. Ferroptosis: Machinery and regulation.Autophagy20211792054208110.1080/15548627.2020.181091832804006
    [Google Scholar]
  38. LeeJ.Y. KimW.K. BaeK.H. LeeS.C. LeeE.W. Lipid metabolism and ferroptosis.Biology (Basel)202110318410.3390/biology1003018433801564
    [Google Scholar]
  39. LiF.J. LongH.Z. ZhouZ.W. LuoH.Y. XuS.G. GaoL.C. SystemX. System Xc −/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy.Front. Pharmacol.20221391029210.3389/fphar.2022.91029236105219
    [Google Scholar]
  40. DollS. FreitasF.P. ShahR. AldrovandiM. da SilvaM.C. IngoldI. Goya GrocinA. Xavier da SilvaT.N. PanziliusE. ScheelC.H. MourãoA. BudayK. SatoM. WanningerJ. VignaneT. MohanaV. RehbergM. FlatleyA. SchepersA. KurzA. WhiteD. SauerM. SattlerM. TateE.W. SchmitzW. SchulzeA. O’DonnellV. PronethB. PopowiczG.M. PrattD.A. AngeliJ.P.F. ConradM. FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019575778469369810.1038/s41586‑019‑1707‑031634899
    [Google Scholar]
  41. DarH.H. AnthonymuthuT.S. PonomarevaL.A. SouryavongA.B. ShurinG.V. KapralovA.O. TyurinV.A. LeeJ.S. MallampalliR.K. WenzelS.E. BayirH. KaganV.E. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa : iNOS/NO• sabotage of theft-ferroptosis.Redox Biol.20214510204510.1016/j.redox.2021.10204534167028
    [Google Scholar]
  42. DuY. GuoZ. Recent progress in ferroptosis: Inducers and inhibitors.Cell Death Discov.20228150110.1038/s41420‑022‑01297‑736581640
    [Google Scholar]
  43. DolmaS. LessnickS.L. HahnW.C. StockwellB.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.Cancer Cell20033328529610.1016/S1535‑6108(03)00050‑312676586
    [Google Scholar]
  44. YagodaN. von RechenbergM. ZaganjorE. BauerA.J. YangW.S. FridmanD.J. WolpawA.J. SmuksteI. PeltierJ.M. BonifaceJ.J. SmithR. LessnickS.L. SahasrabudheS. StockwellB.R. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels.Nature2007447714686586910.1038/nature0585917568748
    [Google Scholar]
  45. YangY. LuoM. ZhangK. ZhangJ. GaoT. ConnellD.O. YaoF. MuC. CaiB. ShangY. ChenW. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma.Nat. Commun.202011143310.1038/s41467‑020‑14324‑x31974380
    [Google Scholar]
  46. GaoB. BatallerR. Alcoholic liver disease: Pathogenesis and new therapeutic targets.Gastroenterology201114151572158510.1053/j.gastro.2011.09.00221920463
    [Google Scholar]
  47. ChenA. Acetaldehyde stimulates the activation of latent transforming growth factor-β1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells.Biochem. J.2002368368369310.1042/bj2002094912223100
    [Google Scholar]
  48. MelloT. CeniE. SurrentiC. GalliA. Alcohol induced hepatic fibrosis: Role of acetaldehyde.Mol. Aspects Med.2008291-2172110.1016/j.mam.2007.10.00118164754
    [Google Scholar]
  49. DinglerF.A. WangM. MuA. MillingtonC.L. OberbeckN. WatchamS. PontelL.B. Kamimae-LanningA.N. LangevinF. NadlerC. CordellR.L. MonksP.S. YuR. WilsonN.K. HiraA. YoshidaK. MoriM. OkamotoY. OkunoY. MuramatsuH. ShiraishiY. KobayashiM. MoriguchiT. OsumiT. KatoM. MiyanoS. ItoE. KojimaS. YabeH. YabeM. MatsuoK. OgawaS. GöttgensB. HodskinsonM.R.G. TakataM. PatelK.J. Two aldehyde clearance systems are essential to prevent lethal formaldehyde accumulation in mice and humans.Mol. Cell20208069961012.e910.1016/j.molcel.2020.10.01233147438
    [Google Scholar]
  50. CeniE. MelloT. GalliA. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism.World J. Gastroenterol.20142047177561777210.3748/wjg.v20.i47.1775625548474
    [Google Scholar]
  51. Sönmez AydınF. HukkamlıB. BudakH. Coaction of hepatic thioredoxin and glutathione systems in iron overload-induced oxidative stress.J. Biochem. Mol. Toxicol.2021354e2270410.1002/jbt.2270433393188
    [Google Scholar]
  52. García-RuizC. MoralesA. BallestaA. RodésJ. KaplowitzN. Fernández-ChecaJ.C. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes.J. Clin. Invest.199494119320110.1172/JCI1173068040260
    [Google Scholar]
  53. Fernández-ChecaJ.C. García-RuizC. OokhtensM. KaplowitzN. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress.J. Clin. Invest.199187239740510.1172/JCI1150101991826
    [Google Scholar]
  54. ChanceB. SiesH. BoverisA. Hydroperoxide metabolism in mammalian organs.Physiol. Rev.197959352760510.1152/physrev.1979.59.3.52737532
    [Google Scholar]
  55. LuS.C. Regulation of glutathione synthesis.Mol. Aspects Med.2009301-2425910.1016/j.mam.2008.05.00518601945
    [Google Scholar]
  56. HwangJ. SuhH.W. JeonY.H. HwangE. NguyenL.T. YeomJ. LeeS.G. LeeC. KimK.J. KangB.S. JeongJ.O. OhT.K. ChoiI. LeeJ.O. KimM.H. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein.Nat. Commun.201451295810.1038/ncomms395824389582
    [Google Scholar]
  57. BaiL. YanF. DengR. GuR. ZhangX. BaiJ. Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4.Mol. Neurobiol.20215873187319710.1007/s12035‑021‑02320‑133634378
    [Google Scholar]
  58. FairfieldB. SchnablB. Gut dysbiosis as a driver in alcohol-induced liver injury.JHEP Reports20213210022010.1016/j.jhepr.2020.10022033598648
    [Google Scholar]
  59. MihmS. Danger-associated molecular patterns (DAMPs): Molecular triggers for sterile inflammation in the liver.Int. J. Mol. Sci.20181910310410.3390/ijms1910310430309020
    [Google Scholar]
  60. MandrekarP. SzaboG. Signalling pathways in alcohol-induced liver inflammation.J. Hepatol.20095061258126610.1016/j.jhep.2009.03.00719398236
    [Google Scholar]
  61. JanssensS. BeyaertR. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members.Mol. Cell200311229330210.1016/S1097‑2765(03)00053‑412620219
    [Google Scholar]
  62. YaoJ. MackmanN. EdgingtonT.S. FanS.T. Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors.J. Biol. Chem.199727228177951780110.1074/jbc.272.28.177959211933
    [Google Scholar]
  63. OakS. MandrekarP. CatalanoD. KodysK. SzaboG. TLR2- and TLR4-mediated signals determine attenuation or augmentation of inflammation by acute alcohol in monocytes.J. Immunol.2006176127628763510.4049/jimmunol.176.12.762816751410
    [Google Scholar]
  64. KishoreR. McMullenM.R. NagyL.E. Stabilization of tumor necrosis factor alpha mRNA by chronic ethanol: Role of A + U-rich elements and p38 mitogen-activated protein kinase signaling pathway.J. Biol. Chem.200127645419304193710.1074/jbc.M10718120011551956
    [Google Scholar]
  65. McMullenM.R. PritchardM.T. WangQ. MillwardC.A. CronigerC.M. NagyL.E. Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice.Gastroenterology200512872066207610.1053/j.gastro.2005.02.06515940638
    [Google Scholar]
  66. McClainC.J. CohenD.A. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis.Hepatology19899334935110.1002/hep.18400903022920991
    [Google Scholar]
  67. McCarthyG.M. WardenA.S. BridgesC.R. BlednovY.A. HarrisR.A. Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling.Addict. Biol.201823388990310.1111/adb.1253928840972
    [Google Scholar]
  68. MandrekarP. CatalanoD. WhiteB. SzaboG. Moderate alcohol intake in humans attenuates monocyte inflammatory responses: inhibition of nuclear regulatory factor kappa B and induction of interleukin 10.Alcohol. Clin. Exp. Res.200630113513910.1111/j.1530‑0277.2006.00012.x16433741
    [Google Scholar]
  69. HuM. YinH. MitraM.S. LiangX. AjmoJ.M. NadraK. ChrastR. FinckB.N. YouM. Hepatic-specific lipin-1 deficiency exacerbates experimental alcohol-induced steatohepatitis in mice.Hepatology20135861953196310.1002/hep.2658923787969
    [Google Scholar]
  70. FerraoK. AliN. MehtaK.J. Iron and iron-related proteins in alcohol consumers: Cellular and clinical aspects.J. Mol. Med. (Berl.)2022100121673168910.1007/s00109‑022‑02254‑836214835
    [Google Scholar]
  71. Dostalikova-CimburovaM. BalusikovaK. KratkaK. ChmelikovaJ. HejdaV. HnanicekJ. NeubauerovaJ. VranovaJ. KovarJ. HorakJ. Role of duodenal iron transporters and hepcidin in patients with alcoholic liver disease.J. Cell. Mol. Med.20141891840185010.1111/jcmm.1231024894955
    [Google Scholar]
  72. UesugiT. FrohM. ArteelG.E. BradfordB.U. ThurmanR.G. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice.Hepatology200134110110810.1053/jhep.2001.2535011431739
    [Google Scholar]
  73. ZmijewskiE. LuS. Harrison-FindikD.D. TLR4 signaling and the inhibition of liver hepcidin expression by alcohol.World J. Gastroenterol.20142034121611217010.3748/wjg.v20.i34.1216125232250
    [Google Scholar]
  74. HoriguchiN. WangL. MukhopadhyayP. ParkO. JeongW.I. LafdilF. Osei-HyiamanD. MohA. FuX.Y. PacherP. KunosG. GaoB. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury.Gastroenterology200813441148115810.1053/j.gastro.2008.01.01618395093
    [Google Scholar]
  75. CasanovasG. Mleczko-SaneckaK. AltamuraS. HentzeM.W. MuckenthalerM.U. Bone morphogenetic protein (BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD.J. Mol. Med. (Berl.)200987547148010.1007/s00109‑009‑0447‑219229506
    [Google Scholar]
  76. ZhaoY. WangC. YangT. WangH. ZhaoS. SunN. ChenY. ZhangH. FanH. Chlorogenic acid alleviates chronic stress-induced duodenal ferroptosis via the inhibition of the IL-6/JAK2/STAT3 signaling pathway in rats.J. Agric. Food Chem.202270144353436110.1021/acs.jafc.2c0119635380825
    [Google Scholar]
  77. MehalW.Z. HIF-1α is a major and complex player in alcohol induced liver diseases.J. Hepatol.201256231131210.1016/j.jhep.2011.09.00921963521
    [Google Scholar]
  78. WakabayashiI. Relationships of habitual alcohol intake with erythrocyte-related indices in middle-aged Japanese men.Acta Haematol.2019142315416110.1159/00049910231085906
    [Google Scholar]
  79. GiglioM.J. SantoroR.C. BozziniC.E. Effect of chronic ethanol administration on production of and response to erythropoietin in the mouse.Alcohol. Clin. Exp. Res.19848332332510.1111/j.1530‑0277.1984.tb05520.x6377952
    [Google Scholar]
  80. ZhangA.S. EnnsC.A. A long sought after “receptor” for ERFE?Blood2018132141463146410.1182/blood‑2018‑08‑86958630287465
    [Google Scholar]
  81. NaiA. RubioA. CampanellaA. GourbeyreO. ArtusoI. BordiniJ. GinesteA. LatourC. Besson-FournierC. LinH.Y. CoppinH. RothM.P. CamaschellaC. SilvestriL. MeynardD. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice.Blood2016127192327233610.1182/blood‑2015‑11‑68149426755707
    [Google Scholar]
  82. Harrison-FindikD.D. KleinE. CristC. EvansJ. TimchenkoN. GollanJ. Iron-mediated regulation of liver hepcidin expression in rats and mice is abolished by alcohol.Hepatology20074661979198510.1002/hep.2189517763462
    [Google Scholar]
  83. Harrison-FindikD.D. SchaferD. KleinE. TimchenkoN.A. KulaksizH. ClemensD. FeinE. AndriopoulosB. PantopoulosK. GollanJ. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression.J. Biol. Chem.200628132229742298210.1074/jbc.M60209820016737972
    [Google Scholar]
  84. KohgoY. OhtakeT. IkutaK. SuzukiY. TorimotoY. KatoJ. Dysregulation of systemic iron metabolism in alcoholic liver diseases.J. Gastroenterol. Hepatol.200823s1S78S8110.1111/j.1440‑1746.2007.05290.x18336670
    [Google Scholar]
  85. ZhangH. PotterB.J. The effect of ethanol metabolism on ferritin uptake by freshly isolated rat hepatocytes: is acetaldehyde responsible for this alteration?Alcohol. Clin. Exp. Res.199216230130710.1111/j.1530‑0277.1992.tb01381.x1590551
    [Google Scholar]
  86. RamachandranP. IredaleJ.P. Macrophages: Central regulators of hepatic fibrogenesis and fibrosis resolution.J. Hepatol.20125661417141910.1016/j.jhep.2011.10.02622314426
    [Google Scholar]
  87. CaiC. ZengD. GaoQ. MaL. ZengB. ZhouY. WangH. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis.Sci. Rep.20211111338610.1038/s41598‑021‑92839‑z34183746
    [Google Scholar]
  88. UrsiniF. MaiorinoM. Lipid peroxidation and ferroptosis: The role of GSH and GPx4.Free Radic. Biol. Med.202015217518510.1016/j.freeradbiomed.2020.02.02732165281
    [Google Scholar]
  89. ColellA. García-RuizC. MirandaM. ArditeE. MaríM. MoralesA. CorralesF. KaplowitzN. Fernández-ChecaJ.C. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor.Gastroenterology199811561541155110.1016/S0016‑5085(98)70034‑49834283
    [Google Scholar]
  90. GaoH. JinZ. BandyopadhyayG. WangG. ZhangD. RochaK.C. LiuX. ZhaoH. KisselevaT. BrennerD.A. KarinM. YingW. Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis.Cell Metab.202234812011213.e510.1016/j.cmet.2022.07.00635921818
    [Google Scholar]
  91. KajarabilleN. Latunde-DadaG.O. Programmed cell-death by ferroptosis: Antioxidants as mitigators.Int. J. Mol. Sci.20192019496810.3390/ijms2019496831597407
    [Google Scholar]
  92. Harrison-FindikD.D. LuS. ZmijewskiE.M. JonesJ. ZimmermanM.C. Effect of alcohol exposure on hepatic superoxide generation and hepcidin expression.World J. Biol. Chem.20134411913010.4331/wjbc.v4.i4.11924340135
    [Google Scholar]
  93. MaH. ShuQ. LiD. WangT. LiL. SongX. LouK. XuH. Accumulation of intracellular ferrous iron in inflammatory-activated macrophages.Biol. Trace Elem. Res.202235852674
    [Google Scholar]
  94. GeX. AntoineD.J. LuY. ArriazuE. LeungT.M. KlepperA.L. BranchA.D. FielM.I. NietoN. High mobility group box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD).J. Biol. Chem.201428933226722269110.1074/jbc.M114.55214124928512
    [Google Scholar]
  95. MuM. HuangC.X. QuC. LiP.L. WuX.N. YaoW. ShenC. HuangR. WanC.C. JianZ.W. ZhengL. WuR.Q. LaoX.M. KuangD.M. Targeting ferroptosis-elicited inflammation suppresses hepatocellular carcinoma metastasis and enhances sorafenib efficacy.Cancer Res.202484684185410.1158/0008‑5472.CAN‑23‑1796.
    [Google Scholar]
  96. AhnH. LeeG. KimJ. ParkJ. KangS.G. YoonS.I. LeeE. LeeG.S. NLRP3 triggers attenuate lipocalin-2 expression independent with inflammasome activation.Cells2021107166010.3390/cells1007166034359830
    [Google Scholar]
  97. XiaoX. YeohB.S. Vijay-KumarM. Lipocalin 2: An emerging player in iron homeostasis and inflammation.Annu. Rev. Nutr.201737110313010.1146/annurev‑nutr‑071816‑06455928628361
    [Google Scholar]
  98. CaiY. JogasuriaA. YinH. XuM.J. HuX. WangJ. KimC. WuJ. LeeK. GaoB. YouM. The detrimental role played by lipocalin-2 in alcoholic fatty liver in mice.Am. J. Pathol.201618692417242810.1016/j.ajpath.2016.05.00627427417
    [Google Scholar]
  99. TsukamotoH. Iron regulation of hepatic macrophage TNFalpha expression.Free Radic. Biol. Med.200232430931310.1016/S0891‑5849(01)00772‑911841920
    [Google Scholar]
  100. LinM. RippeR.A. NiemeläO. BrittenhamG. TsukamotoH. Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages.Am. J. Physiol.19972726 Pt 1G1355G13649227470
    [Google Scholar]
  101. GhoshA.K. VaughanD.E. PAI-1 in tissue fibrosis.J. Cell. Physiol.2012227249350710.1002/jcp.2278321465481
    [Google Scholar]
  102. HamaguchiE. TakamuraT. ShimizuA. NagaiY. Tumor necrosis factor-alpha and troglitazone regulate plasminogen activator inhibitor type 1 production through extracellular signal-regulated kinase- and nuclear factor-kappaB-dependent pathways in cultured human umbilical vein endothelial cells.J. Pharmacol. Exp. Ther.2003307398799410.1124/jpet.103.05434614534369
    [Google Scholar]
  103. WuA. FengB. YuJ. YanL. CheL. ZhuoY. LuoY. YuB. WuD. ChenD. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis.Redox Biol.20214610213110.1016/j.redox.2021.10213134530349
    [Google Scholar]
  104. LiY. ChenM. XuY. YuX. XiongT. DuM. SunJ. LiuL. TangY. YaoP. Iron-mediated lysosomal membrane permeabilization in ethanol-induced hepatic oxidative damage and apoptosis: Protective effects of quercetin.Oxid. Med. Cell. Longev.201620161414761010.1155/2016/414761027057276
    [Google Scholar]
  105. LunovaM. GoehringC. KuscuogluD. MuellerK. ChenY. WaltherP. DescheminJ.C. VaulontS. HaybaeckJ. LacknerC. TrautweinC. StrnadP. Hepcidin knockout mice fed with iron-rich diet develop chronic liver injury and liver fibrosis due to lysosomal iron overload.J. Hepatol.201461363364110.1016/j.jhep.2014.04.03424816174
    [Google Scholar]
  106. ZhouB. LiuJ. KangR. KlionskyD.J. KroemerG. TangD. Ferroptosis is a type of autophagy-dependent cell death.Semin. Cancer Biol.2020668910010.1016/j.semcancer.2019.03.00230880243
    [Google Scholar]
  107. BabutaM. FuriI. BalaS. BukongT.N. LoweP. CatalanoD. CalendaC. KodysK. SzaboG. Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA 155 in alcoholic liver disease.Hepatology20197062123214110.1002/hep.30766.
    [Google Scholar]
  108. TanT.C.H. CrawfordD.H.G. JaskowskiL.A. SubramaniamV.N. CloustonA.D. CraneD.I. BridleK.R. AndersonG.J. FletcherL.M. Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury.Lab. Invest.201393121295131210.1038/labinvest.2013.12124126888
    [Google Scholar]
  109. ZhaoY. LuJ. MaoA. ZhangR. GuanS. Autophagy inhibition plays a protective role in ferroptosis induced by alcohol via the p62–Keap1–Nrf2 pathway.J. Agric. Food Chem.202169339671968310.1021/acs.jafc.1c0375134388345
    [Google Scholar]
  110. XueM. TianY. SuiY. ZhaoH. GaoH. LiangH. QiuX. SunZ. ZhangY. QinY. Protective effect of fucoidan against iron overload and ferroptosis-induced liver injury in rats exposed to alcohol.Biomed. Pharmacother.202215311340210.1016/j.biopha.2022.11340236076527
    [Google Scholar]
  111. IshidaK. KajiK. SatoS. OgawaH. TakagiH. TakayaH. KawarataniH. MoriyaK. NamisakiT. AkahaneT. YoshijiH. Sulforaphane ameliorates ethanol plus carbon tetrachloride-induced liver fibrosis in mice through the Nrf2-mediated antioxidant response and acetaldehyde metabolization with inhibition of the LPS/TLR4 signaling pathway.J. Nutr. Biochem.20218910857310.1016/j.jnutbio.2020.10857333388347
    [Google Scholar]
  112. SingalA.K. BatallerR. AhnJ. KamathP.S. ShahV.H. ACG Clinical guideline: Alcoholic liver disease.Am. J. Gastroenterol.2018113217519410.1038/ajg.2017.46929336434
    [Google Scholar]
  113. MerliM. BerzigottiA. Zelber-SagiS. DasarathyS. MontagneseS. GentonL. PlauthM. ParésA. EASL clinical practice guidelines on nutrition in chronic liver disease.J. Hepatol.201970117219310.1016/j.jhep.2018.06.02430144956
    [Google Scholar]
  114. VonghiaL. LeggioL. FerrulliA. BertiniM. GasbarriniG. AddoloratoG. Acute alcohol intoxication.Eur. J. Intern. Med.200819856156710.1016/j.ejim.2007.06.03319046719
    [Google Scholar]
  115. Di MiceliM. GronierB. Pharmacology, systematic review and recent clinical trials of metadoxine.Rev. Recent Clin. Trials201813211412510.2174/157488711366618022710021729485008
    [Google Scholar]
  116. Gutiérrez-RuizM.C. BucioL. CorreaA. SouzaV. HernándezE. Gómez-QuirozL.E. KershenobichD. Metadoxine prevents damage produced by ethanol and acetaldehyde in hepatocyte and hepatic stellate cells in culture.Pharmacol. Res.200144543143610.1006/phrs.2001.088311712874
    [Google Scholar]
  117. ArabJ.P. SehrawatT.S. SimonettoD.A. VermaV.K. FengD. TangT. DreyerK. YanX. DaleyW.L. SanyalA. ChalasaniN. RadaevaS. YangL. VargasH. IbacacheM. GaoB. GoresG.J. MalhiH. KamathP.S. ShahV.H. An open-label, dose-escalation study to assess the safety and efficacy of IL-22 agonist F-652 in patients with alcohol-associated hepatitis.Hepatology202072244145310.1002/hep.3104631774566
    [Google Scholar]
  118. PhilipsC.A. PandeA. ShasthryS.M. JamwalK.D. KhillanV. ChandelS.S. KumarG. SharmaM.K. MaiwallR. JindalA. ChoudharyA. HussainM.S. SharmaS. SarinS.K. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: A pilot study.Clin. Gastroenterol. Hepatol.201715460060210.1016/j.cgh.2016.10.02927816755
    [Google Scholar]
  119. TuW. WangH. LiS. LiuQ. ShaH. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases.Aging Dis.201910363765110.14336/AD.2018.051331165007
    [Google Scholar]
  120. ColakY. YesilA. MutluH.H. CakliliO.T. UlasogluC. SenatesE. TakirM. KostekO. YilmazY. EncF.Y. TasanG. TuncerI. A potential treatment of non-alcoholic fatty liver disease with SIRT1 activators.J. Gastrointestin. Liver Dis.201423331131910.15403/jgld.2014.1121.233.yck25267960
    [Google Scholar]
  121. de GregorioE. ColellA. MoralesA. MaríM. Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease.Int. J. Mol. Sci.20202111385810.3390/ijms2111385832485811
    [Google Scholar]
  122. SongX.Y. LiuP.C. LiuW.W. ZhouJ. HayashiT. MizunoK. HattoriS. FujisakiH. IkejimaT. Silibinin inhibits ethanol- or acetaldehyde-induced ferroptosis in liver cell lines.Toxicol. In Vitro20228210538810.1016/j.tiv.2022.10538835595033
    [Google Scholar]
  123. YouY. LiuC. LiuT. TianM. WuN. YuZ. ZhaoF. QiJ. ZhuQ. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease.Free Radic. Biol. Med.2022193Pt 280881910.1016/j.freeradbiomed.2022.10.32236336231
    [Google Scholar]
  124. WuX. WangY. JiaR. FangF. LiuY. CuiW. Computational and biological investigation of the soybean lecithin–gallic acid complex for ameliorating alcoholic liver disease in mice with iron overload.Food Funct.20191085203521410.1039/C9FO01022J31380553
    [Google Scholar]
  125. CohenJ.I. RoychowdhuryS. DiBelloP.M. JacobsenD.W. NagyL.E. Exogenous thioredoxin prevents ethanol-induced oxidative damage and apoptosis in mouse liver.Hepatology20094951709171710.1002/hep.2283719205032
    [Google Scholar]
  126. GuarenteL. Sirtuins as potential targets for metabolic syndrome.Nature2006444712186887410.1038/nature0548617167475
    [Google Scholar]
  127. YaoH. RahmanI. Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence.Biochem. Pharmacol.201284101332133910.1016/j.bcp.2012.06.03122796566
    [Google Scholar]
  128. FengY. ChenY. WuX. ChenJ. ZhouQ. LiuB. ZhangL. YiC. Interplay of energy metabolism and autophagy.Autophagy202420141410.1080/15548627.2023.224730037594406
    [Google Scholar]
  129. YinH. HuM. LiangX. AjmoJ.M. LiX. BatallerR. OdenaG. StevensS.M.Jr YouM. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver.Gastroenterology2014146380181110.1053/j.gastro.2013.11.00824262277
    [Google Scholar]
  130. BergamaschiG. Di SabatinoA. PasiniA. UbezioC. CostanzoF. GrataroliD. MasottiM. AlvisiC. CorazzaG.R. Intestinal expression of genes implicated in iron absorption and their regulation by hepcidin.Clin. Nutr.20173651427143310.1016/j.clnu.2016.09.02127729173
    [Google Scholar]
  131. ZhouZ. YeT.J. DeCaroE. BuehlerB. StahlZ. BonavitaG. DanielsM. YouM. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis.Am. J. Pathol.20201901829210.1016/j.ajpath.2019.09.01231610175
    [Google Scholar]
  132. KadonoK. KageyamaS. NakamuraK. HiraoH. ItoT. KojimaH. DeryK.J. LiX. Kupiec-WeglinskiJ.W. Myeloid Ikaros–SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver.J. Hepatol.202276489690910.1016/j.jhep.2021.11.02634871625
    [Google Scholar]
  133. DingR.B. BaoJ. DengC.X. Emerging roles of SIRT1 in fatty liver diseases.Int. J. Biol. Sci.201713785286710.7150/ijbs.1937028808418
    [Google Scholar]
  134. PrezaG.C. RuchalaP. PinonR. RamosE. QiaoB. PeraltaM.A. SharmaS. WaringA. GanzT. NemethE. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload.J. Clin. Invest.2011121124880488810.1172/JCI5769322045566
    [Google Scholar]
  135. IkedaY. TajimaS. Izawa-IshizawaY. KihiraY. IshizawaK. TomitaS. TsuchiyaK. TamakiT. Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes.PLoS One201277e4046510.1371/journal.pone.004046522792339
    [Google Scholar]
  136. Luque-RamírezM. Álvarez-BlascoF. AlpañésM. Escobar-MorrealeH.F. Role of decreased circulating hepcidin concentrations in the iron excess of women with the polycystic ovary syndrome.J. Clin. Endocrinol. Metab.201196384685210.1210/jc.2010‑221121209031
    [Google Scholar]
  137. LatourC. KautzL. Besson-FournierC. IslandM.L. Canonne-HergauxF. LoréalO. GanzT. CoppinH. RothM.P. Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin.Hepatology201459268369410.1002/hep.2664823907767
    [Google Scholar]
  138. RaynardB. BalianA. FallikD. CapronF. BedossaP. ChaputJ.C. NaveauS. Risk factors of fibrosis in alcohol-induced liver disease.Hepatology200235363563810.1053/jhep.2002.3178211870378
    [Google Scholar]
  139. NahonP. SuttonA. RufatP. ZiolM. ThabutG. SchischmanoffP.O. VidaudD. CharnauxN. CouvertP. Ganne-CarrieN. TrinchetJ.C. GattegnoL. BeaugrandM. Liver iron, HFE gene mutations, and hepatocellular carcinoma occurrence in patients with cirrhosis.Gastroenterology2008134110211010.1053/j.gastro.2007.10.03818061182
    [Google Scholar]
  140. Ganne-CarriéN. ChristidisC. ChastangC. ZiolM. ChapelF. Imbert-BismutF. TrinchetJ.C. GuettierC. BeaugrandM. Liver iron is predictive of death in alcoholic cirrhosis: A multivariate study of 229 consecutive patients with alcoholic and/or hepatitis C virus cirrhosis: A prospective follow up study.Gut200046227728210.1136/gut.46.2.27710644325
    [Google Scholar]
  141. MoonM.S. McDevittE.I. ZhuJ. StanleyB. KrzeminskiJ. AminS. AliagaC. MillerT.G. IsomH.C. Elevated hepatic iron activates NF-E2-related factor 2-regulated pathway in a dietary iron overload mouse model.Toxicol. Sci.20121291748510.1093/toxsci/kfs19322649188
    [Google Scholar]
  142. ShibazakiS. UchiyamaS. TsudaK. TaniuchiN. Copper deficiency caused by excessive alcohol consumption.BMJ Case Rep.20172017bcr201710.1136/bcr‑2017‑22092128951428
    [Google Scholar]
  143. MoirandR. LescoatG. DelamaireD. LauvinL. CampionJ.P. DeugnierY. BrissotP. Increase in glycosylated and nonglycosylated serum ferritin in chronic alcoholism and their evolution during alcohol withdrawal.Alcohol. Clin. Exp. Res.199115696396910.1111/j.1530‑0277.1991.tb05196.x1686373
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673317526240924050651
Loading
/content/journals/cmc/10.2174/0109298673317526240924050651
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alcoholic liver disease; ferroptosis; hepcidin; inflammatory; iron metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test