Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Phytosomes are innovative compounds that enhance the bioavailability of plant-derived compounds, making them more effective in pharmaceuticals and nutraceuticals. By improving cellular absorption, phytosomes allow lower doses of plant extracts to achieve therapeutic effects, which may reduce both cost and the risk of potential side effects. The incorporation of phospholipids in phytosomes not only stabilizes the active compounds but also protects them from degradation in the gastrointestinal tract, potentially increasing their shelf life and efficacy. Despite their promise, more clinical trials are essential to fully validate the safety and therapeutic benefits of phytosomes. Ongoing research and developments may lead to a better understanding of their mechanisms of action and safety profiles and broaden their application in medicine.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319759250116104648
2025-01-24
2025-10-28
Loading full text...

Full text loading...

References

  1. KumarR. MehtaP. ShankarK.R. RajoraM.A.K. MishraY.K. MostafaviE. KaushikA. Nanotechnology-assisted metered-dose inhalers (MDIs) for high-performance pulmonary drug delivery applications.Pharm. Res.202239112831285510.1007/s11095‑022‑03286‑y35552983
    [Google Scholar]
  2. MukherjeeA. WatersA.K. KalyanP. AchrolA.S. KesariS. YenugondaV.M. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives.Int. J. Nanomedicine2019141937195210.2147/IJN.S19835330936695
    [Google Scholar]
  3. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑523238461
    [Google Scholar]
  4. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. SarabiaF. PradosJ. MelguizoC. López-RomeroJ.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials (Basel)20199463810.3390/nano904063831010180
    [Google Scholar]
  5. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  6. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  7. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  8. KesharwaniP. GothwalA. IyerA.K. JainK. ChourasiaM.K. GuptaU. Dendrimer nanohybrid carrier systems: An expanding horizon for targeted drug and gene delivery.Drug Discov. Today201823230031410.1016/j.drudis.2017.06.00928697371
    [Google Scholar]
  9. ZhuY. LiuC. PangZ. Dendrimer-based drug delivery systems for brain targeting.Biomolecules201991279010.3390/biom912079031783573
    [Google Scholar]
  10. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  11. ZareH. AhmadiS. GhasemiA. GhanbariM. RabieeN. BagherzadehM. KarimiM. WebsterT.J. HamblinM.R. MostafaviE. Carbon nanotubes: Smart drug/gene delivery carriers.Int. J. Nanomedicine2021167283728410.2147/IJN.S33828134737565
    [Google Scholar]
  12. WangY. YuanK. ShangZ. TanG. ZhongQ. HeY. MiaoG. LaiK. LiY. WangX. Construction of nanohydrogels for enhanced delivery of hydrophilic and hydrophobic drugs and improving chemotherapy efficacy.Eur. Polym. J.202318611183810.1016/j.eurpolymj.2023.111838
    [Google Scholar]
  13. RahimM.A. JanN. KhanS. ShahH. MadniA. KhanA. JabarA. KhanS. ElhissiA. HussainZ. AzizH.C. SohailM. KhanM. ThuH.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers (Basel)202113467010.3390/cancers1304067033562376
    [Google Scholar]
  14. HiwraleA. BharatiS. PingaleP. RajputA. Nanofibers: A current era in drug delivery system.Heliyon202399e1891710.1016/j.heliyon.2023.e1891737674834
    [Google Scholar]
  15. SousaM.G.C. RezendeT.M.B. FrancoO.L. Nanofibers as drug-delivery systems for antimicrobial peptides.Drug Discov. Today20212682064207410.1016/j.drudis.2021.03.00833741497
    [Google Scholar]
  16. LimongiT. SusaF. MariniM. AllioneM. TorreB. PisanoR. di FabrizioE. Lipid-based nanovesicular drug delivery systems.Nanomaterials (Basel)20211112339110.3390/nano1112339134947740
    [Google Scholar]
  17. TingY. JiangY. HoC.T. HuangQ. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals.J. Funct. Foods2014711212810.1016/j.jff.2013.12.010
    [Google Scholar]
  18. GaikwadS.S. MoradeY.Y. KothuleA.M. KshirsagarS.J. LaddhaU.D. SalunkheK.S. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook.Heliyon202396e1656110.1016/j.heliyon.2023.e1656137260890
    [Google Scholar]
  19. ChanchalD. SwarnlataS. Novel approaches in herbal cosmetics.J. Cosmet. Dermatol.200872899510.1111/j.1473‑2165.2008.00369.x18482010
    [Google Scholar]
  20. Di PierroF. MenghiA.B. BarrecaA. LucarelliM. CalandrelliA. Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: A clinical trial.Altern. Med. Rev.200914215416019594224
    [Google Scholar]
  21. GhanbarzadehB. BabazadehA. HamishehkarH. Nano- phytosome as a potential food-grade delivery system.Food Biosci.20161512613510.1016/j.fbio.2016.07.006
    [Google Scholar]
  22. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. LinX. DengY. SongY. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian J. Pharm. Sci.201914326527410.1016/j.ajps.2018.05.01132104457
    [Google Scholar]
  23. NsairatH. KhaterD. OdehF. JaberA.M. Al SulaibiM.A.M. AlshaerW. Al BawabA. MubarakM.S. Chapter 12 - Phytosomes: A Modernistic Approach to The Delivery of Herbal Drugs.Advanced and Modern Approaches for Drug Delivery NayakA.K. HasnainM.S. LahaB. MaitiS. New YorkAcademic Press202330135510.1016/B978‑0‑323‑91668‑4.00029‑0
    [Google Scholar]
  24. SriyaK.C. SaiD. SankarP.R. Phytosomes A novel approach for herbal phytochemicals for enhancing the bioavailability.Int. J. Pharm. Sci. Rev. Res.2020602126
    [Google Scholar]
  25. ShakeriA. SahebkarA. Phytosome: A fatty solution for efficient formulation of phytopharmaceuticals.Rec. Pat. Drug Deliv. Formul.201510171010.2174/187221130966615081315230526268361
    [Google Scholar]
  26. YadavN. ParveenS. BanerjeeM. Potential of nano- phytochemicals in cervical cancer therapy.Clin. Chim. Acta2020505607210.1016/j.cca.2020.01.03532017926
    [Google Scholar]
  27. YangB. DongY. WangF. ZhangY. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols.Molecules20202520461310.3390/molecules2520461333050462
    [Google Scholar]
  28. AroraS. SharmaA. KaurP. Preparation and charac- terization of phytosomal-phospholipid complex of P. amarus and its tablet formulation.J. Pharm. Technol. Res. Manage.20131111810.15415/jptrm.2013.11001
    [Google Scholar]
  29. LiuS. TanQ.Y. WangH. LiaoH. ZhangJ.Q. Preparation, characterization and in vitro anti-tumor activities of evodiamine phospholipids complex.Chung Kuo Yao Hsueh Tsa Chih201247517523
    [Google Scholar]
  30. DuttY. PandeyR.P. DuttM. GuptaA. VibhutiA. RajV.S. ChangC.M. PriyadarshiniA. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents.Coord. Chem. Rev.202349121525110.1016/j.ccr.2023.215251
    [Google Scholar]
  31. SusilawatiY. ChaerunisaA.Y. PurwaningsihH. Phytosome drug delivery system for natural cosmeceutical compounds.J. Adv. Pharm. Technol. Res.202112432733410.4103/japtr.JAPTR_100_2034820305
    [Google Scholar]
  32. BijakM. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt)-chemistry, bioavailability, and metabolism.Molecules20172211194210.3390/molecules2211194229125572
    [Google Scholar]
  33. LoguercioC. FestiD. Silybin and the liver: From basic research to clinical practice.World J. Gastroenterol.201117182288230110.3748/wjg.v17.i18.228821633595
    [Google Scholar]
  34. NaikS.R. PilgaonkarV.W. PandaV.S. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain.Phytother. Res.200620111013101610.1002/ptr.197616909446
    [Google Scholar]
  35. ShivanandP. PatelK. Phytosomes: Technical revolution in phytomedicine.Int. J. Pharm. Tech. Res.201021627631
    [Google Scholar]
  36. YanyuX. YunmeiS. ZhipengC. QinengP. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats.Int. J. Pharm.20063071778210.1016/j.ijpharm.2005.10.00116300915
    [Google Scholar]
  37. AlharbiW.S. AlmughemF.A. AlmehmadyA.M. JarallahS.J. AlsharifW.K. AlzahraniN.M. AlshehriA.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals.Pharmaceutics2021139147510.3390/pharmaceutics1309147534575551
    [Google Scholar]
  38. BaraniM. SangiovanniE. AngaranoM. RajizadehM.A. MehrabaniM. PiazzaS. GangadharappaH.V. PardakhtyA. MehrbaniM. Dell’AgliM. NematollahiM.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature.Int. J. Nanomedicine2021166983702210.2147/IJN.S31841634703224
    [Google Scholar]
  39. KhanA. ValiC.S. PrasadS.S. BharathiM.P. YusufS.M. AhmadR. NaikB.N. Modern approach of novel 3D printing of pharmaceuticals for individualized therapy: An innovative drug delivery system.Ann. Rom. Soc. Cell Biol.20212541925019261
    [Google Scholar]
  40. BabazadehA. ZeinaliM. HamishehkarH. Nano-Phytosome: A developing platform for herbal anti-cancer agents in cancer therapy.Curr. Drug Targets201819217018010.2174/138945011866617050809525028482783
    [Google Scholar]
  41. KaurI.P. KakkarV. DeolP.K. YadavM. SinghM. SharmaI. Issues and concerns in nanotech product development and its commercialization.J. Control. Release2014193516210.1016/j.jconrel.2014.06.00524933600
    [Google Scholar]
  42. GuptaS. KesarlaR. OmriA. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems.ISRN Pharm.2013201311610.1155/2013/84804324459591
    [Google Scholar]
  43. KiddP. HeadK. A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos).Altern. Med. Rev.200510319320316164374
    [Google Scholar]
  44. MatiasD. RijoP. Pinto ReisC. Phytosomes as biocompatible carriers of natural drugs.Curr. Med. Chem.201724656858910.2174/092986732366616102816085527804877
    [Google Scholar]
  45. GándolaY.B. PérezS.E. IreneP.E. SoteloA.I. MiquetJ.G. CorradiG.R. CarlucciA.M. GonzalezL. Mitogenic effects of phosphatidylcholine nanoparticles on MCF-7 breast cancer cells.BioMed Res. Int.20142014168703710.1155/2014/68703724772432
    [Google Scholar]
  46. ChivteP.S. PardhiV.S. JoshiV.A. RaniA. A review on therapeutic applications of phytosomes.J. Drug Deliv. Ther.201775172110.22270/jddt.v7i5.1513
    [Google Scholar]
  47. VuH.T.H. HookS.M. SiqueiraS.D. MüllertzA. RadesT. McDowellA. Are phytosomes a superior nanodelivery system for the antioxidant rutin?Int. J. Pharm.20185481829110.1016/j.ijpharm.2018.06.04229933062
    [Google Scholar]
  48. DewiM.K. MuhaiminM. JoniI.M. HermantoF. ChaerunisaaA.Y. Fabrication of phytosome with enhanced activity of Sonneratia alba: Formulation modeling and in vivo antimalarial study.Int. J. Nanomed.2024199411943510.3390/pharmaceutics1204034632290412
    [Google Scholar]
  49. RivaA. RonchiM. PetrangoliniG. BosisioS. AllegriniP. Improved oral absorption of quercetin from Quercetin Phytosome®, a new delivery system based on food grade lecithin.Eur. J. Drug Metab. Pharmacokinet.201944216917710.1007/s13318‑018‑0517‑330328058
    [Google Scholar]
  50. RondanelliM. PernaS. GasparriC. PetrangoliniG. AllegriniP. CavioniA. FalivaM.A. MansuetoF. PatelliZ. PeroniG. TartaraA. RivaA. Promising effects of 3-month period of Quercetin Phytosome(®) supplementation in the prevention of symptomatic COVID-19 disease in healthcare workers: A pilot study.Life (Basel)20221216610.3390/life1201006635054459
    [Google Scholar]
  51. MaramaldiG. TogniS. PaginI. GiacomelliL. CattaneoR. BurasteroS. EggenhoffnerR. Soothing and anti-itch effect of quercetin phytosome in human subjects: A single-blind study.Clin. Cosmet. Investig. Dermatol.20169556210.2147/CCID.S9889027013898
    [Google Scholar]
  52. KomeilI.A. El-RefaieW.M. GowayedM.A. El-GanainyS.O. El AchyS.N. HuttunenK.M. AbdallahO.Y. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma.Int. J. Pharm.202160112056410.1016/j.ijpharm.2021.12056433812970
    [Google Scholar]
  53. AgarwalA. WahajuddinM. ChaturvediS. SinghS.K. RashidM. GargR. ChauhanD.I. SultanaN. GayenJ.R. Formulation and characterization of phytosomes as drug delivery system of formononetin: An effective anti-osteoporotic agent.Curr. Drug Deliv.202421226127010.2174/156720182066623012411490636734892
    [Google Scholar]
  54. TalaatS.M. ElnaggarY.S.R. El-GanainyS.O. GowayedM.A. AllamM. AbdallahO.Y. Self-assembled fisetin-phospholipid complex: Fisetin-integrated phytosomes for effective delivery to breast cancer.Eur. J. Pharm. Biopharm.202318917418810.1016/j.ejpb.2023.06.00937343893
    [Google Scholar]
  55. AlhakamyN.A. FahmyU.A. EldinS.M.B. AhmedO.A.A. AldawsariH.M. OkbazghiS.Z. AlfalehM.A. AbdulaalW.H. AlamoudiA.J. MadyF.M. Scorpion venom-functionalized quercetin phytosomes for breast cancer management: In vitro response surface optimization and anticancer activity against MCF-7 cells.Polymers (Basel)20211419310.3390/polym1401009335012116
    [Google Scholar]
  56. SabzichiM. HamishehkarH. RamezaniF. SharifiS. TabasinezhadM. PirouzpanahM. GhanbariP. SamadiN. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling.Asian Pac. J. Cancer Prev.201415135311531610.7314/APJCP.2014.15.13.531125040994
    [Google Scholar]
  57. KimS. ImmJ.Y. The Effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice.Molecules20202523550310.3390/molecules2523550333255372
    [Google Scholar]
  58. ShriramR.G. MoinA. AlotaibiH.F. KhafagyE.S. Al SaqrA. Abu LilaA.S. CharyuluR.N. Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin.Pharmaceuticals (Basel)202215779010.3390/ph1507079035890088
    [Google Scholar]
  59. KuamwatR.S. MruthunjayaK. GuptaM.K. Hepatoprotective effect of gallic acid and gallic acid phytosome against carbon tetrachloride induced damage in albino rats.Res. J. Pharm. Tech.201255677681
    [Google Scholar]
  60. IparV.S. DsouzaA. DevarajanP.V. Enhancing curcumin oral bioavailability through nanoformulations.Eur. J. Drug Metab. Pharmacokinet.201944445948010.1007/s13318‑019‑00545‑z30771095
    [Google Scholar]
  61. HatamipourM. JamialahmadiT. RamezaniM. TabassiS.A.S. Simental-MendíaL.E. SarborjiM.R. BanachM. SahebkarA. Protective effects of curcumin phytosomes against high-fat diet-induced atherosclerosis.Adv. Exp. Med. Biol.20211308374410.1007/978‑3‑030‑64872‑5_433861435
    [Google Scholar]
  62. BaradaranS. Hajizadeh MoghaddamA. Khanjani JelodarS. Moradi-korN. Protective effects of curcumin and its nano-phytosome on carrageenan-induced inflammation in mice model: Behavioral and biochemical responses.J. Inflamm. Res.202013455110.2147/JIR.S23246232021378
    [Google Scholar]
  63. PivariF. MingioneA. PiazziniG. CeccaraniC. OttavianoE. BrasacchioC. Dei CasM. VischiM. CozzolinoM.G. FogagnoloP. RivaA. PetrangoliniG. BarreaL. Di RenzoL. BorghiE. SignorelliP. ParoniR. SoldatiL. Curcumin supplementation (Meriva®) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease.Nutrients202214123110.3390/nu1401023135011106
    [Google Scholar]
  64. TafishA.M. El-SherbinyM. Al-KarmalawyA.A. SolimanO.A.E.A. SalehN.M. Carvacrol-loaded phytosomes for enhanced wound healing: Molecular docking, formulation, doe-aided optimization, and in vitro/in vivo evaluation.Int. J. Nanomedicine2023185749578010.2147/IJN.S42161737849641
    [Google Scholar]
  65. VaradkarM. GadgoliC. Preparation and evaluation of wound healing activity of phytosomes of crocetin from Nyctanthes arbor-tristis in rats.J. Tradit. Complement. Med.202212435436010.1016/j.jtcme.2021.10.00235747356
    [Google Scholar]
  66. SharmaA. GuptaN.K. DixitV.K. Complexation with phosphatidyl choline as a strategy for absorption enhancement of boswellic acid.Drug Deliv.201017858759510.3109/10717544.2010.50146120624027
    [Google Scholar]
  67. XuL. XuD. LiZ. GaoY. ChenH. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells.Beilstein J. Nanotechnol.2019101933194210.3762/bjnano.10.18931598460
    [Google Scholar]
  68. VyasA. Singh ChauhanN. JainT. SinghaiA. K. JainV. Picroside-1-Phytovesicle: A novel approach for antihepatotoxic activity.Res. J. Pharm. Technol.20231652353235810.52711/0974‑360X.2023.00387
    [Google Scholar]
  69. KhanA.D. SinghM.K. LavhaleP.M. Polyherbal phytosomal gel for enhanced topical delivery: Design, optimization by central composite design, in vitro and ex-vivo evaluation.J. Dispers. Sci. Technol.202345611410.1080/01932691.2023.2195927
    [Google Scholar]
  70. Neslihan DundarA. OzdemirS. UzunerK. Ekrem ParlakM. Irmak SahinO. Fatih DagdelenA. Turker SaricaogluF. Characterization of pomegranate peel extract loaded nanophytosomes and the enhancement of bio-accessibility and storage stability.Food Chem.202339813392110.1016/j.foodchem.2022.13392135969988
    [Google Scholar]
  71. SainiV. BalaR. AroraS. Formulation and evaluation of phyto-phospholipid complex of methanolic extract of leaves of Andrographis paniculate. Res. J. Pharm. Technol.202316283083410.52711/0974‑360X.2023.00141
    [Google Scholar]
  72. PoliP. CarnevaleS. ScoccaA. DavolioP.L. BusiS. MeneghinM. PetrangoliniG. RivaA. YangS. Promising health benefits of adjuvant Acmella and Zingiber extracts combined with coenzyme Q10 phytosomes, supplementation in chronic pain treated with medical cannabis: A prospective and open-label clinical study.Evid. Based Complement. Alternat. Med.202220221610.1155/2022/709916135733629
    [Google Scholar]
  73. ShoeibiA. KarimiE. ZareianM. OskoueianE. Enhancing healthcare outcomes and modulating apoptosis- and antioxidant-related genes through the nano-phytosomal delivery of phenolics extracted from Allium ampeloprasum. Genes (Basel)2023148154710.3390/genes1408154737628599
    [Google Scholar]
  74. ManciniS. NardoL. GregoriM. RibeiroI. MantegazzaF. Delerue-MatosC. MasseriniM. GrossoC. Functionalized liposomes and phytosomes loading Annona muricata L. aqueous extract: Potential nanoshuttles for brain-delivery of phenolic compounds.Phytomedicine20184223324410.1016/j.phymed.2018.03.05329655691
    [Google Scholar]
  75. DemirB. BarlasF.B. GulerE. GumusP.Z. CanM. YavuzM. CoskunolH. TimurS. Gold nanoparticle loaded phytosomal systems: Synthesis, characterization and in vitro investigations.RSC Advances2014465346873469510.1039/C4RA05108D
    [Google Scholar]
  76. UnR.N. BarlasF.B. YavuzM. Ag SeleciD. SeleciM. GumusZ.P. GulerE. DemirB. CanM. CoskunolH. TimurS. Phyto-niosomes: In vitro assessment of the novel nanovesicles containing marigold extract.Int. J. Polym. Mater.2015641792793710.1080/00914037.2015.1030663
    [Google Scholar]
  77. Ortega-PérezL.G. Ayala-RuizL.A. Magaña-RodríguezO.R. Piñón-SimentalJ.S. Aguilera-MéndezA. Godínez-HernándezD. Rios-ChavezP. Development and evaluation of phytosomes containing Callistemon citrinus leaf extract: A preclinical approach for the treatment of obesity in a rodent model.Pharmaceutics2023159217810.3390/pharmaceutics1509217837765149
    [Google Scholar]
  78. RaniA. KumarS. KharR.K. Casuarina equisetifolia extract loaded phytosomes: Optimization, characterization and in vivo evaluation of antidiabetic and antihyperlipidemic activities in Wistar rats.Drug Deliv. Lett.20199211613310.2174/2210303109666190118162157
    [Google Scholar]
  79. SbriniG. BrivioP. FumagalliM. GiavariniF. CarusoD. RacagniG. Dell’AgliM. SangiovanniE. CalabreseF. Centella asiatica L. phytosome improves cognitive performance by promoting bdnf expression in rat prefrontal cortex.Nutrients202012235510.3390/nu1202035532013132
    [Google Scholar]
  80. MauriP. PalmaA.D. PozziF. BasilicoF. RivaA. MorazzoniP. BombardelliE. RossoniG. LC–MS characterization of terpene lactones in plasma of experimental animals treated with Ginkgo biloba extracts.J. Pharm. Biomed. Anal.200640376376810.1016/j.jpba.2005.10.04816343838
    [Google Scholar]
  81. NaikS.R. PilgaonkarV.W. PandaV.S. Neuropharmacological evaluation of Ginkgo biloba phytosomes in rodents.Phytother. Res.2006201090190510.1002/ptr.197316909444
    [Google Scholar]
  82. KumarS. BaldiA. SharmaD.K. In vitro antioxidant assay guided ex vivo investigation of cytotoxic effect of phytosomes assimilating taxifolin rich fraction of Cedrus deodara bark extract on human breast cancer cell lines (MCF7).J. Drug Deliv. Sci. Technol.20216310248610.1016/j.jddst.2021.102486
    [Google Scholar]
  83. RatheeS. KambojA. Optimization and development of antidiabetic phytosomes by the Box–Behnken design.J. Liposome Res.201828216117210.1080/08982104.2017.131191328337938
    [Google Scholar]
  84. GovindaramL.K. BrattyM.A. AlhazmiH.A. KandasamyR. ThangavelN. IbrahimA.M. MariyaG.A. KumarP. Formulation, biopharmaceutical evaluation and in-vitro screening of polyherbal phytosomes for breast cancer therapy.Drug Dev. Ind. Pharm.2022481055256510.1080/03639045.2022.213891136269296
    [Google Scholar]
  85. RajammaS.S. KrishnaswamiV. PrabuS.L. KandasamyR. Geophila repens phytosome-loaded intranasal gel with improved nasal permeation for the effective treatment of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20226910308710.1016/j.jddst.2021.103087
    [Google Scholar]
  86. NaikS.R. PandaV.S. Antioxidant and hepatoprotective effects of Ginkgo biloba phytosomes in carbon tetrachloride-induced liver injury in rodents.Liver Int.200727339339910.1111/j.1478‑3231.2007.01463.x17355462
    [Google Scholar]
  87. NaikS.R. PandaV.S. Hepatoprotective effect of Ginkgoselect Phytosome® in rifampicin induced liver injurym in rats: Evidence of antioxidant activity.Fitoterapia200879643944510.1016/j.fitote.2008.02.01318534776
    [Google Scholar]
  88. PandaV.S. NaikS.R. Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: A biochemical and histoarchitectural evaluation.Exp. Toxicol. Pathol.2008604-539740410.1016/j.etp.2008.03.01018513933
    [Google Scholar]
  89. KumarN. GoelR. SinghM. SharmaN.K. GaurP.K. SharmaP.K. Development and evaluation of Hedyotis corymbosa (L.) extract containing phytosomes: A preclinical approach for treatment of neuropathic pain in rodent model.J. Microencapsul.202340318619610.1080/02652048.2023.218893836880280
    [Google Scholar]
  90. GoelR. KumarN. SinghN. MishraR. Nanoencapsulation and characterisation of Hypericum perforatum for the treatment of neuropathic pain.J. Microencapsul.202340640241110.1080/02652048.2023.221530637191895
    [Google Scholar]
  91. RatheeS. KambojA. Phytochemical characterization and antidiabetic potential of standardized total methanolic extract and phytosomes of Momordica dioica Roxb. ex Willd. fruit.Int. J. Green Pharm.2017111157165
    [Google Scholar]
  92. WanjiruJ. GathirwaJ. SauliE. SwaiH.S. Formulation, optimization, and evaluation of Moringa oleifera leaf polyphenol-loaded phytosome delivery system against breast cancer cell lines.Molecules20222714443010.3390/molecules2714443035889305
    [Google Scholar]
  93. LimA.W. NgP.Y. ChiengN. NgS.F. Moringa oleifera leaf extract–loaded phytophospholipid complex for potential application as wound dressing.J. Drug Deliv. Sci. Technol.20195410132910.1016/j.jddst.2019.101329
    [Google Scholar]
  94. RaniA. KumarS. KharR.K. Murraya koenigii extract loaded phytosomes prepared using antisolvent precipitation technique for improved antidiabetic and hypolidemic activity.J. Pharm. Educ. Res.2022562ss326s33810.5530/ijper.56.2s.103
    [Google Scholar]
  95. MahmoodT.H. Al-SamydaiA. SulaibiM.A. AlqaralehM. AbedA.I. ShalanN. AlsanabrahA. AlsotariS.T. NsairatH. AlshaerW. Development of pegylated nano-phytosome formulation with oleuropein and rutin to compare anti-colonic cancer activity with Olea europaea leaves extract.Chem. Biodivers.2023208e20230053410.1002/cbdv.20230053437498138
    [Google Scholar]
  96. PanancheryJ. GadgoliC. In-vivo evaluation of phytosomal gel of the petroleum ether extract of root bark of Onosma echiodes for wound healing activity in rats.Indones. J. Pharm.202132447448310.22146/ijp.2351
    [Google Scholar]
  97. KumarN. GoelR. GaurP.K. SaxenaP.K. PuriD. ChaudharyR. YasirM. Development and evaluation of phytosome-loaded microsphere system for delivery of ginseng extract.J. Microencapsul.2021387-849650610.1080/02652048.2021.198204234529549
    [Google Scholar]
  98. NnamaniP.O. KenechukwuF.C. AsogwaF.O. MomohM.A. LehrC.M. AttamaA.A. Novel anti-ulcer phytosomal formulation of ethanol extract of Pentaclethra macrophylla stem-bark.Trop. J. Nat. Prod. Res.20204838539110.26538/tjnpr/v4i8.11
    [Google Scholar]
  99. KumarS. BaldiA. SharmaD.K. Characterization and In vitro investigation of antiscabietic effect of phytosomes assimilating quercetin and naringenin rich fraction of Pistacia integerrima galls extract against Sarcoptes scabiei. J. Drug Deliv. Sci. Technol.20226710285110.1016/j.jddst.2021.102851
    [Google Scholar]
  100. DeleanuM. TomaL. SandaG.M. BarbălatăT. NiculescuL.Ş. SimaA.V. DeleanuC. SăcărescuL. SuciuA. AlexandruG. CrişanI. PopescuM. StancuC.S. Formulation of phytosomes with extracts of ginger rhizomes and rosehips with improved bioavailability, antioxidant and anti-inflammatory effects in vivo. Pharmaceutics2023154106610.3390/pharmaceutics1504106637111552
    [Google Scholar]
  101. BernardoJ. SantosA.C. VideiraR.A. ValentãoP. VeigaF. AndradeP.B. Trichilia catigua and Turnera diffusa phyto-phospholipid nanostructures: Physicochemical characterization and bioactivity in cellular models of induced neuroinflammation and neurotoxicity.Int. J. Pharm.202262012177410.1016/j.ijpharm.2022.12177435489602
    [Google Scholar]
  102. CotelleseR. LeddaA. BelcaroG. CesaroneM.R. ScipioneC. ScipioneV. DugallM. FeragalliB. RivaA. AllegriniP. PetrangoliniG. TogniS. Anthocran® Phytosome®: Prevention of recurring urinary infections and symptoms after catheterization.J. Diet. Suppl.2023201556710.1080/19390211.2021.197207434632933
    [Google Scholar]
  103. AhmadH. AryaA. AgrawalS. SamuelS.S. SinghS.K. ValicherlaG.R. SangwanN. MitraK. GayenJ.R. PaliwalS. ShuklaR. DwivediA.K. Phospholipid complexation of NMITLI118RT+: Way to a prudent therapeutic approach for beneficial outcomes in ischemic stroke in rats.Drug Deliv.20162393606361810.1080/10717544.2016.121295027685355
    [Google Scholar]
  104. WahabS. AlshahraniM.Y. AhmadM.F. AbbasH. Current trends and future perspectives of nanomedicine for the management of colon cancer.Eur. J. Pharmacol.202191017446410.1016/j.ejphar.2021.17446434474029
    [Google Scholar]
  105. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.200914322624619803548
    [Google Scholar]
  106. DobrovolskaiaM.A. McNeilS.E. Immunological properties of engineered nanomaterials.Nat. Nanotechnol.20072846947810.1038/nnano.2007.22318654343
    [Google Scholar]
  107. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑422407288
    [Google Scholar]
  108. GuidanceD. Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology.Biotechnol. Law Rep.201130561361610.1089/blr.2011.9814
    [Google Scholar]
  109. DobrovolskaiaM.A. AggarwalP. HallJ.B. McNeilS.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.Mol. Pharm.20085448749510.1021/mp800032f18510338
    [Google Scholar]
  110. TejaP.K. MithiyaJ. KateA.S. BairwaK. ChautheS.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview.Phytomedicine20229615389010.1016/j.phymed.2021.15389035026510
    [Google Scholar]
  111. ElenaM. EleftheriaG. YiannisS. LefterisZ.C. MichaelP. GeorgiosA. ChristosP.C. Chapter 25 - Clinical Trials of Nanovesicles for Drug Delivery Applications.Applications of Nanovesicular Drug Delivery NayakA.K. HasnainM.S. LahaB. MaitiS. New YorkAcademic Press202246748610.1016/B978‑0‑323‑91865‑7.00002‑X
    [Google Scholar]
  112. FlaigT.W. GlodéM. GustafsonD. van BokhovenA. TaoY. WilsonS. SuL.J. LiY. HarrisonG. AgarwalR. CrawfordE.D. LuciaM.S. PollakM. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer.Prostate201070884885510.1002/pros.2111820127732
    [Google Scholar]
  113. GilardiniL. PasqualinottoL. Di PierroF. RissoP. InvittiC. Effects of Greenselect Phytosome® on weight maintenance after weight loss in obese women: A randomized placebo-controlled study.BMC Complement. Altern. Med.201616123310.1186/s12906‑016‑1214‑x27450231
    [Google Scholar]
  114. RivaA. PetrangoliniG. AllegriniP. PernaS. GiacosaA. PeroniG. FalivaM.A. NasoM. RondanelliM. Artichoke and bergamot phytosome alliance: A randomized double blind clinical trial in mild hypercholesterolemia.Nutrients202114110810.3390/nu1401010835010984
    [Google Scholar]
  115. Di PierroF. KhanA. IqtadarS. MumtazS.U. ChaudhryM.N.A. BertuccioliA. DerosaG. MaffioliP. TogniS. RivaA. AllegriniP. RecchiaM. ZerbinatiN. Quercetin as a possible complementary agent for early-stage COVID-19: Concluding results of a randomized clinical trial.Front. Pharmacol.202313109685310.3389/fphar.2022.109685336712674
    [Google Scholar]
  116. RazaviS.M. GholaminS. EskandariA. MohsenianN. GhorbanihaghjoA. DelazarA. RashtchizadehN. Keshtkar-JahromiM. ArganiH. Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia.J. Med. Food201316325525810.1089/jmf.2012.240823437789
    [Google Scholar]
  117. AllegriP. CiminoL. DavisJ.L. Tugal-TutkunI. Assessment of the anti-inflammatory effects of NORFLO® ORO in acute relapses of HLA-B27-associated autoimmune uveitis: A multicenter, randomized, placebo-controlled, double-blind clinical study.Ocul. Immunol. Inflamm.202331352653510.1080/09273948.2022.203921035353651
    [Google Scholar]
  118. Fança-BerthonP. TenonM. Bouter-BanonS.L. ManfréA. MaudetC. DionA. ChevallierH. LavalJ. van BreemenR.B. Pharmacokinetics of a single dose of turmeric curcuminoids depends on formulation: Results of a human crossover study.J. Nutr.202115171802181610.1093/jn/nxab08733877323
    [Google Scholar]
  119. Di PierroF. DerosaG. MaffioliP. BertuccioliA. TogniS. RivaA. AllegriniP. KhanA. KhanS. KhanB.A. AltafN. ZahidM. UjjanI.D. NigarR. KhushkM.I. PhulpotoM. LailA. DevrajaniB.R. AhmedS. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: A prospective, randomized, controlled, and open-label study.Int. J. Gen. Med.2021142359236610.2147/IJGM.S31872034135619
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319759250116104648
Loading
/content/journals/cmc/10.2174/0109298673319759250116104648
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioavailability; drug delivery; natural products; Phytosomes; plant extracts; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test