Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Atherosclerotic cardiovascular disease (ASCVD) is an advanced chronic inflammatory disease and the leading cause of death worldwide. The pathological development of ASCVD begins with atherosclerosis, characterised by a pathological remodelling of the arterial wall, lipid accumulation and build-up of atheromatous plaque. As the disease advances, it narrows the vascular lumen and limits the blood, leading to ischaemic necrosis in coronary arteries. Exosomes are nano-sized lipid vesicles of different origins that can carry many bioactive molecules from their parental cells, thus playing an important role in intercellular communication. The roles of exosomes in atherosclerosis have recently been intensively studied, advancing our understanding of the underlying molecular mechanisms. In this review, we briefly introduce exosome biology and then focus on the roles of exosomes of different cellular origins in atherosclerosis development and progression, functional significance of their cargoes and physiological impact on recipient cells. Studies have demonstrated that exosomes originating from endothelial cells, vascular smooth muscle cells, macrophages, dendritic cells, platelets, stem cells, adipose tissue and other sources play an important role in the atherosclerosis development and progression by affecting cholesterol transport, inflammatory, apoptotic and other aspects of the recipient cells' metabolism. MicroRNAs are considered the most significant type of bioactive molecules transported by exosomes and involved in ASCVD development. Finally, we review the current achievements and limitations associated with the use of exosomes for the diagnosis and treatment of ASCVD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673302220240430173404
2024-05-03
2025-10-27
Loading full text...

Full text loading...

References

  1. FanJ. WatanabeT. Atherosclerosis: Known and unknown.Pathol. Int.202272315116010.1111/pin.1320235076127
    [Google Scholar]
  2. World Health OrganizationCardiovascular diseases.Available from: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
  3. BenslaimanJ.S. GarcíaG.U. SebalL.A. OlaetxeaJ.R. AllozaI. VandenbroeckK. VicenteB.A. MartínC. Pathophysiology of atherosclerosis.Int. J. Mol. Sci.2022236334610.3390/ijms2306334635328769
    [Google Scholar]
  4. BottsS.R. FishJ.E. HoweK.L. Dysfunctional vascular endothelium as a driver of atherosclerosis: Emerging insights into pathogenesis and treatment.Front. Pharmacol.20211278754110.3389/fphar.2021.78754135002720
    [Google Scholar]
  5. LibbyP. Inflammation during the life cycle of the atherosclerotic plaque.Cardiovasc. Res.2021117132525253610.1093/cvr/cvab30334550337
    [Google Scholar]
  6. JinnouchiH. SatoY. SakamotoA. CornelissenA. MoriM. KawakamiR. GadhokeN.V. KolodgieF.D. VirmaniR. FinnA.V. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability.Atherosclerosis2020306859510.1016/j.atherosclerosis.2020.05.01732654790
    [Google Scholar]
  7. PatelS. GuoM.K. SamadA.M. HoweK.L. Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis.Front. Cardiovasc. Med.202310120218710.3389/fcvm.2023.120218737304965
    [Google Scholar]
  8. BrownP.A. BrownP.D. Extracellular vesicles and atherosclerotic peripheral arterial disease.Cardiovasc. Pathol.20236310751010.1016/j.carpath.2022.10751036460259
    [Google Scholar]
  9. JeppesenD.K. FenixA.M. FranklinJ.L. HigginbothamJ.N. ZhangQ. ZimmermanL.J. LieblerD.C. PingJ. LiuQ. EvansR. FissellW.H. PattonJ.G. RomeL.H. BurnetteD.T. CoffeyR.J. Reassessment of exosome composition.Cell20191772428445.e1810.1016/j.cell.2019.02.02930951670
    [Google Scholar]
  10. GregoryC.D. RimmerM.P. Extracellular vesicles arising from apoptosis: Forms, functions, and applications.J. Pathol.2023260559260810.1002/path.613837294158
    [Google Scholar]
  11. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  12. XieS. ZhangQ. JiangL. Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications.Membranes202212549810.3390/membranes1205049835629824
    [Google Scholar]
  13. JadliA.S. BallasyN. EdalatP. PatelV.B. Inside(sight) of tiny communicator: Exosome biogenesis, secretion, and uptake.Mol. Cell. Biochem.20204671-2779410.1007/s11010‑020‑03703‑z32088833
    [Google Scholar]
  14. HuoL. DuX. LiX. LiuS. XuY. The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegenerative diseases.Front. Neurosci.20211573844210.3389/fnins.2021.73844234531720
    [Google Scholar]
  15. LiuQ. LiS. DupuyA. MaiH. SaillietN. LogéC. RobertJ.M.H. BrouardS. Exosomes as new biomarkers and drug delivery tools for the prevention and treatment of various diseases: Current perspectives.Int. J. Mol. Sci.20212215776310.3390/ijms2215776334360530
    [Google Scholar]
  16. Gutierrez-MillanC. Calvo DíazC. LanaoJ.M. ColinoC.I. Advances in exosomes-based drug delivery systems.Macromol. Biosci.2021211200026910.1002/mabi.20200026933094544
    [Google Scholar]
  17. SenderR. MiloR. The distribution of cellular turnover in the human body.Nat. Med.2021271454810.1038/s41591‑020‑01182‑933432173
    [Google Scholar]
  18. XiongM. ChenZ. TianJ. PengY. SongD. ZhangL. JinY. Exosomes derived from programmed cell death: Mechanism and biological significance.Cell Commun. Signal.202422115610.1186/s12964‑024‑01521‑038424607
    [Google Scholar]
  19. KakarlaR. HurJ. KimY.J. KimJ. ChwaeY.J. Apoptotic cell-derived exosomes: messages from dying cells.Exp. Mol. Med.20205211610.1038/s12276‑019‑0362‑831915368
    [Google Scholar]
  20. LiM. LiaoL. TianW. Extracellular vesicles derived from apoptotic cells: An essential link between death and regeneration.Front. Cell Dev. Biol.2020857351110.3389/fcell.2020.57351133134295
    [Google Scholar]
  21. KojimaY. WeissmanI.L. LeeperN.J. The role of efferocytosis in atherosclerosis.Circulation2017135547648910.1161/CIRCULATIONAHA.116.02568428137963
    [Google Scholar]
  22. GeY. HuangM. YaoY. Efferocytosis and its role in inflammatory disorders.Front. Cell Dev. Biol.20221083924810.3389/fcell.2022.83924835281078
    [Google Scholar]
  23. DabravolskiS.A. BezsonovE.E. BaigM.S. PopkovaT.V. OrekhovA.N. Mitochondrial lipid homeostasis at the crossroads of liver and heart diseases.Int. J. Mol. Sci.20212213694910.3390/ijms2213694934203309
    [Google Scholar]
  24. MudaliarS. EkanayakeP. Changing the diabetes treatment paradigm from glucose control to cardiorenal protection.Indian J. Med. Res.2021154565565710.4103/ijmr.ijmr_3114_2135532581
    [Google Scholar]
  25. SchafferJ.E. Lipotoxicity: Many roads to cell dysfunction and cell death: introduction to a thematic review series.J. Lipid Res.20165781327132810.1194/jlr.E06988027260998
    [Google Scholar]
  26. ReissA.B. AhmedS. JohnsonM. SaeedullahU. De LeonJ. Exosomes in cardiovascular disease: From mechanism to therapeutic target.Metabolites202313447910.3390/metabo1304047937110138
    [Google Scholar]
  27. ZhangY. HuY.W. ZhengL. WangQ. Characteristics and roles of exosomes in cardiovascular disease.DNA Cell Biol.201736320221110.1089/dna.2016.349628112546
    [Google Scholar]
  28. Méndez-BarberoN. MuñozG.C. ColioB.L. Cellular crosstalk between endothelial and smooth muscle cells in vascular wall remodeling.Int. J. Mol. Sci.20212214728410.3390/ijms2214728434298897
    [Google Scholar]
  29. FuS. ZhangY. LiY. LuoL. ZhaoY. YaoY. Extracellular vesicles in cardiovascular diseases.Cell Death Discov.2020616810.1038/s41420‑020‑00305‑y32821437
    [Google Scholar]
  30. YatesA.G. PinkR.C. ErdbrüggerU. SiljanderP.R.M. DellarE.R. PantaziP. AkbarN. CookeW.R. VatishM. Dias-NetoE. AnthonyD.C. CouchY. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo. J. Extracell. Vesicles2022111e1215110.1002/jev2.1215135041249
    [Google Scholar]
  31. RogersM.A. AtkinsS.K. ZhengK.H. SinghS.A. ChelvanambiS. PhamT.H. KuraokaS. StroesE.S.G. AikawaM. AikawaE. Lipoprotein(a) induces vesicular cardiovascular calcification revealed with single-extracellular vesicle analysis.Front. Cardiovasc. Med.2022977891910.3389/fcvm.2022.77891935155626
    [Google Scholar]
  32. BanoS. TandonS. TandonC. Emerging role of exosomes in arterial and renal calcification.Hum. Exp. Toxicol.20214091385140210.1177/0960327121100112233739177
    [Google Scholar]
  33. WangC. LiZ. LiuY. YuanL. Exosomes in atherosclerosis: Performers, bystanders, biomarkers, and therapeutic targets.Theranostics20211183996401010.7150/thno.5603533664877
    [Google Scholar]
  34. ZhangY.G. SongY. GuoX.L. MiaoR.Y. FuY.Q. MiaoC.F. ZhangC. Exosomes derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive atherosclerosis.Cell Cycle201918202672268210.1080/15384101.2019.165479731416388
    [Google Scholar]
  35. TianF. TangP. SunZ. ZhangR. ZhuD. HeJ. LiaoJ. WanQ. ShenJ. miR-210 in exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression.J. Diabetes Res.2020202011210.1155/2020/689468432258168
    [Google Scholar]
  36. ZhuJ. LiuB. WangZ. WangD. NiH. ZhangL. WangY. Exosomes from nicotine-stimulated macro- phages accelerate atherosclerosis through miR-21-3p /PTEN-mediated VSMC migration and proliferation.Theranostics20199236901691910.7150/thno.3735731660076
    [Google Scholar]
  37. DingJ. LiH. LiuW. WangX. FengY. GuanH. ChenZ. miR-186-5p dysregulation in serum exosomes from patients with AMI aggravates atherosclerosis via targeting LOX-1.Int. J. Nanomedicine2022176301631610.2147/IJN.S38390436536941
    [Google Scholar]
  38. ShanX. ZhangC. MaiC. HuX. ChengN. ChenW. PengD. WangL. JiZ. XieY. The biogenesis, biological functions, and applications of macrophage-derived exosomes.Front. Mol. Biosci.2021871546110.3389/fmolb.2021.71546134368234
    [Google Scholar]
  39. BazzanE. TinèM. CasaraA. BiondiniD. SemenzatoU. CocconcelliE. BalestroE. DaminM. RaduC.M. TuratoG. BaraldoS. SimioniP. SpagnoloP. SaettaM. CosioM.G. Critical review of the evolution of extracellular vesicles’ knowledge: From 1946 to today.Int. J. Mol. Sci.20212212641710.3390/ijms2212641734203956
    [Google Scholar]
  40. KowalJ. ArrasG. ColomboM. JouveM. MorathJ.P. BengtsonP.B. DingliF. LoewD. TkachM. ThéryC. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.Proc. Natl. Acad. Sci.20161138E968E97710.1073/pnas.152123011326858453
    [Google Scholar]
  41. LimH.J. YoonH. KimH. KangY.W. KimJ.E. KimO.Y. LeeE.Y. TwizereJ.C. RakJ. KimD.K. Extracellular vesicle proteomes shed light on the evolutionary, interactive, and functional divergence of their biogenesis mechanisms.Front. Cell Dev. Biol.2021973495010.3389/fcell.2021.73495034660591
    [Google Scholar]
  42. LiZ.G. ScottM.J. BrzóskaT. SunddP. LiY.H. BilliarT.R. WilsonM.A. WangP. FanJ. Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages.Mil. Med. Res.2018512410.1186/s40779‑018‑0173‑630056803
    [Google Scholar]
  43. PoznyakA.V. NikiforovN.G. StarodubovaA.V. PopkovaT.V. OrekhovA.N. Macrophages and foam cells: Brief overview of their role, linkage, and targeting potential in atherosclerosis.Biomedicines202199122110.3390/biomedicines909122134572406
    [Google Scholar]
  44. NiuC. WangX. ZhaoM. CaiT. LiuP. LiJ. WillardB. ZuL. ZhouE. LiY. PanB. YangF. ZhengL. Macrophage foam cell–derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion.J. Am. Heart Assoc.2016510e00409910.1161/JAHA.116.00409927792649
    [Google Scholar]
  45. GuiY. ZhengH. CaoR.Y. Foam cells in atherosclerosis: Novel insights into its origins, consequences, and molecular mechanisms.Front. Cardiovasc. Med.2022984594210.3389/fcvm.2022.84594235498045
    [Google Scholar]
  46. De MartinusR. GoldsburyJ. Endothelial TNF-α induction by Hsp60 secreted from THP-1 monocytes exposed to hyperglycaemic conditions.Cell Stress Chaperones201823451952510.1007/s12192‑017‑0858‑x29134442
    [Google Scholar]
  47. HuN. ZengX. TangF. XiongS. Exosomal long non- coding RNA LIPCAR derived from oxLDL-treated THP-1 cells regulates the proliferation of human umbilical vein endothelial cells and human vascular smooth muscle cells.Biochem. Biophys. Res. Commun.2021575657210.1016/j.bbrc.2021.08.05334455222
    [Google Scholar]
  48. LiuY. ZhangW-L. GuJ-J. SunY-Q. CuiH-Z. BuJ-Q. ChenZ-Y. Exosome-mediated miR-106a-3p derived from ox-LDL exposed macrophages accelerated cell proliferation and repressed cell apoptosis of human vascular smooth muscle cells.Eur. Rev. Med. Pharmacol. Sci.202024127039705010.26355/eurrev_202006_2169732633398
    [Google Scholar]
  49. ChenL. YangW. GuoY. ChenW. ZhengP. ZengJ. TongW. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis.PLoS One2017129e018540610.1371/journal.pone.018540628945793
    [Google Scholar]
  50. XiongF. MaoR. ZhangL. ZhaoR. TanK. LiuC. XuJ. DuG. ZhangT. CircNPHP4 in monocyte-derived small extracellular vesicles controls heterogeneous adhesion in coronary heart atherosclerotic disease.Cell Death Dis.2021121094810.1038/s41419‑021‑04253‑y34650036
    [Google Scholar]
  51. LiangW. ChenJ. ZhengH. LinA. LiJ. WuW. JieQ. MiR-199a-5p-containing macrophage-derived extracellular vesicles inhibit SMARCA4 and alleviate atherosclerosis by reducing endothelial cell pyroptosis.Cell Biol. Toxicol.202339359160510.1007/s10565‑022‑09732‑235930100
    [Google Scholar]
  52. FuX. ZongT. YangP. LiL. WangS. WangZ. LiM. LiX. ZouY. ZhangY. Htet AungL.H. YangY. YuT. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression.Food Chem. Toxicol.202115111215410.1016/j.fct.2021.11215433774093
    [Google Scholar]
  53. WuX. ZhangH. QiW. ZhangY. LiJ. LiZ. LinY. BaiX. LiuX. ChenX. YangH. XuC. ZhangY. YangB. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis.Cell Death Dis.20189217110.1038/s41419‑017‑0257‑329416034
    [Google Scholar]
  54. HuangC. HuangY. ZhouY. NieW. PuX. XuX. ZhuJ. Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells.Mol. Med. Rep.20181734605461010.3892/mmr.2018.838029328492
    [Google Scholar]
  55. BouchareychasL. DuongP. PhuT.A. AlsopE. MeechoovetB. ReimanR. NgM. YamamotoR. NakauchiH. GasperW.J. Van JensenK.K. RaffaiR.L. High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation & hematopoiesis.iScience202124810284710.1016/j.isci.2021.10284734381972
    [Google Scholar]
  56. LiuP. WangS. WangG. ZhaoM. DuF. LiK. WangL. WuH. ChenJ. YangY. SuG. Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation.J. Cell. Mol. Med.202226205165518010.1111/jcmm.1754136071548
    [Google Scholar]
  57. LeeW.R. KimK.H. AnH.J. ParkY.Y. KimK.S. LeeC.K. MinB.K. ParkK. Effects of chimeric decoy oligodeoxynucleotide in the regulation of transcription factors NF-κB and Sp1 in an animal model of atherosclerosis.Basic Clin. Pharmacol. Toxicol.2013112423624310.1111/bcpt.1202923107157
    [Google Scholar]
  58. NguyenM.A. KarunakaranD. GeoffrionM. ChengH.S. TandocK. MaticP.L. HedinU. MaegdefesselL. FishJ.E. RaynerK.J. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration.Arterioscler. Thromb. Vasc. Biol.2018381496310.1161/ATVBAHA.117.30979528882869
    [Google Scholar]
  59. WangQ. DongY. WangH. microRNA-19b-3p-containing extracellular vesicles derived from macrophages promote the development of atherosclerosis by targeting JAZF1.J. Cell. Mol. Med.2022261485910.1111/jcmm.1693834910364
    [Google Scholar]
  60. WangY. XuZ. WangX. ZhengJ. PengL. ZhouY. SongY. LuZ. Extracellular-vesicle containing miRNA-503-5p released by macrophages contributes to atherosclerosis.Aging2021138122391225710.18632/aging.10385533872218
    [Google Scholar]
  61. WeiL. ZhaoS. WangG. ZhangS. LuoW. QinZ. BiX. TanY. MengM. QinJ. QinH. TianD. ZhangA. SMAD7 methylation as a novel marker in atherosclerosis.Biochem. Biophys. Res. Commun.2018496270070510.1016/j.bbrc.2018.01.12129366786
    [Google Scholar]
  62. LiK. CuiM. ZhangK. WangG. ZhaiS. M1 macrophages-derived extracellular vesicles elevate microRNA-185-3p to aggravate the development of atherosclerosis in ApoE-/- mice by inhibiting small mothers against decapentaplegic 7.Int. Immunopharmacol.20219010713810.1016/j.intimp.2020.10713833302032
    [Google Scholar]
  63. ChenF. LiJ. SheJ. ChenT. YuanZ. Exosomal microRNA-16-5p from macrophage exacerbates atherosclerosis via modulating mothers against decapentaplegic homolog 7.Microvasc. Res.202214210436810.1016/j.mvr.2022.10436835378135
    [Google Scholar]
  64. GaoW. LiuH. YuanJ. WuC. HuangD. MaY. ZhuJ. MaL. GuoJ. ShiH. ZouY. GeJ. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway.J. Cell. Mol. Med.201620122318232710.1111/jcmm.1292327515767
    [Google Scholar]
  65. ZhongX. GaoW. WuR. LiuH. GeJ. Dendritic cell exosome-shuttled miRNA146a regulates exosome-induced endothelial cell inflammation by inhibiting IRAK-1: A feedback control mechanism.Mol. Med. Rep.20192065315532310.3892/mmr.2019.1074931638185
    [Google Scholar]
  66. LinB. XieW. ZengC. WuX. ChenA. LiH. JiangR. LiP. Transfer of exosomal microRNA-203-3p from dendritic cells to bone marrow-derived macrophages reduces development of atherosclerosis by downregulating Ctss in mice.Aging20211311156381565810.18632/aging.10384234077394
    [Google Scholar]
  67. WuM.D. AtkinsonT.M. LindnerJ.R. Platelets and von Willebrand factor in atherogenesis.Blood2017129111415141910.1182/blood‑2016‑07‑69267328174163
    [Google Scholar]
  68. GurbelP.A. FoxK.A.A. TantryU.S. ten CateH. WeitzJ.I. Combination antiplatelet and oral anticoagulant therapy in patients with coronary and peripheral artery disease.Circulation2019139182170218510.1161/CIRCULATIONAHA.118.03358031034291
    [Google Scholar]
  69. GardinC. FerroniL. LeoS. TremoliE. ZavanB. Platelet-derived exosomes in atherosclerosis.Int. J. Mol. Sci.202223201254610.3390/ijms23201254636293399
    [Google Scholar]
  70. GoetzlE.J. GoetzlL. KarlinerJ.S. TangN. PulliamL. Human plasma platelet-derived exosomes: Effects of aspirin.FASEB J.20163052058206310.1096/fj.201500150R26873936
    [Google Scholar]
  71. SunY. LiuX. ZhangD. LiuF. ChengY. MaY. ZhouY. ZhaoY. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126.Curr. Vasc. Pharmacol.201917437938710.2174/157016111666618031314213929532758
    [Google Scholar]
  72. DabravolskiS.A. KhotinaV.A. OmelchenkoA.V. KalmykovV.A. OrekhovA.N. The role of the VEGF family in atherosclerosis development and its potential as treatment targets.Int. J. Mol. Sci.202223293110.3390/ijms2302093135055117
    [Google Scholar]
  73. SrivastavaM.V.P. BhasinA. VivekanandhanS. MogantyR. TalwarT. SharmaS. KuthialaN. KumaranS. BhatiaR. Vascular endothelial growth factor as predictive biomarker for stroke severity and outcome; An evaluation of a new clinical module in acute ischemic stroke.Neurol. India20196751280128510.4103/0028‑3886.27124131744959
    [Google Scholar]
  74. YangJ. XuH. ChenK. ZhengD. LiuS. ZhouX. LinY. ChengH. LuoQ. YangM. YanX. HaoJ. Platelets-derived miR-200a-3p modulate the expression of ET-1 and VEGFA in endothelial cells by targeting MAPK14.Front. Physiol.20221389310210.3389/fphys.2022.89310235755441
    [Google Scholar]
  75. LiJ. TanM. XiangQ. ZhouZ. YanH. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response.Thromb. Res.20171549610510.1016/j.thromres.2017.04.01628460288
    [Google Scholar]
  76. YaoY. SunW. SunQ. JingB. LiuS. LiuX. ShenG. ChenR. WangH. Platelet-derived exosomal microRNA-25-3p inhibits coronary vascular endothelial cell inflammation through adam10 via the NF-κB signaling pathway in ApoE−/− mice.Front. Immunol.201910220510.3389/fimmu.2019.0220531632389
    [Google Scholar]
  77. ZhengB. YinW. SuzukiT. ZhangX. ZhangY. SongL. JinL. ZhanH. ZhangH. LiJ. WenJ. RETRACTED: Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis.Mol. Ther.20172561279129410.1016/j.ymthe.2017.03.03128408180
    [Google Scholar]
  78. LiL. WangZ. HuX. WanT. WuH. JiangW. HuR. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells.Biochem. Biophys. Res. Commun.2016479234335010.1016/j.bbrc.2016.09.07827644883
    [Google Scholar]
  79. ChistiakovD.A. OrekhovA.N. BobryshevY.V. Vascular smooth muscle cell in atherosclerosis.Acta Physiol.20152141335010.1111/apha.1246625677529
    [Google Scholar]
  80. HeS. WuC. XiaoJ. LiD. SunZ. LiM. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis.Scand. J. Immunol.2018874e1264810.1111/sji.1264829465752
    [Google Scholar]
  81. WangX. LiH. ChenS. HeJ. ChenW. DingY. HuangJ. P300/CBP-associated factor ( PCAF) attenuated M1 macrophage inflammatory responses possibly through KLF2 and KLF4.Immunol. Cell Biol.202199772473610.1111/imcb.1245533768642
    [Google Scholar]
  82. ChangY.J. LiY.S. WuC.C. WangK.C. HuangT.C. ChenZ. ChienS. Extracellular microRNA-92a mediates endothelial cell–macrophage communication.Arterioscler. Thromb. Vasc. Biol.201939122492250410.1161/ATVBAHA.119.31270731597449
    [Google Scholar]
  83. ZhangZ. YiD. ZhouJ. ZhengY. GaoZ. HuX. YingG. PengX. WenT. Exosomal LINC01005 derived from oxidized low-density lipoprotein-treated endothelial cells regulates vascular smooth muscle cell phenotypic switch.Biofactors202046574375310.1002/biof.166532663367
    [Google Scholar]
  84. GaoH. WangX. LinC. AnZ. YuJ. CaoH. FanY. LiangX. Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis.Biol. Chem.2020401336737610.1515/hsz‑2019‑021931318684
    [Google Scholar]
  85. ChenL. HuL. LiQ. MaJ. LiH. Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation.Acta Biochim. Biophys. Sin.201951121233124110.1093/abbs/gmz12331768526
    [Google Scholar]
  86. AdolfssonE. HeleniusG. FribergÖ. SamanoN. FrøbertO. JohanssonK. Bone marrow- and adipose tissue-derived mesenchymal stem cells from donors with coronary artery disease; growth, yield, gene expression and the effect of oxygen concentration.Scand. J. Clin. Lab. Invest.202080431832610.1080/00365513.2020.174102332189529
    [Google Scholar]
  87. PhinneyD.G. PittengerM.F. Concise review: MSC-derived exosomes for cell-free therapy.Stem Cells201735485185810.1002/stem.257528294454
    [Google Scholar]
  88. ZhouF. LiK. YangK. Adipose-derived stem cell exosomes and related micrornas in atherosclerotic cardiovascular disease.J. Cardiovasc. Transl. Res.202316245346210.1007/s12265‑022‑10329‑736223051
    [Google Scholar]
  89. ShaoL. ZhangY. LanB. WangJ. ZhangZ. ZhangL. XiaoP. MengQ. GengY. YuX. LiY. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair.BioMed Res. Int.20171910.1155/2017/415070528203568
    [Google Scholar]
  90. LiJ. XueH. LiT. ChuX. XinD. XiongY. QiuW. GaoX. QianM. XuJ. WangZ. LiG. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage.Biochem. Biophys. Res. Commun.2019510456557210.1016/j.bbrc.2019.02.00530739785
    [Google Scholar]
  91. ChenS. ZhouH. ZhangB. HuQ. Exosomal miR-512-3p derived from mesenchymal stem cells inhibits oxidized low-density lipoprotein-induced vascular endothelial cells dysfunction via regulating Keap1.J. Biochem. Mol. Toxicol.202135611110.1002/jbt.2276733760324
    [Google Scholar]
  92. LuoX. WangY. ZhuX. ChenY. XuB. BaiX. WengX. XuJ. TaoY. YangD. DuJ. LvY. ZhangS. HuS. LiJ. JiaH. MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction.Redox Biol.20246910298710.1016/j.redox.2023.10298738100883
    [Google Scholar]
  93. XingX. LiZ. YangX. LiM. LiuC. PangY. ZhangL. LiX. LiuG. XiaoY. Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis.Aging20201243880389810.18632/aging.10285732096479
    [Google Scholar]
  94. ChatterjeeV. YangX. MaY. WuM.H. YuanS.Y. Extracellular vesicles: new players in regulating vascular barrier function.Am. J. Physiol. Heart Circ. Physiol.20203196H1181H119610.1152/ajpheart.00579.202033035434
    [Google Scholar]
  95. YangX. HaoJ. LuoJ. LuX. KongX. Adipose tissue-derived extracellular vesicles: Systemic messengers in health and disease (Review).Mol. Med. Rep.202328418910.3892/mmr.2023.1307637615193
    [Google Scholar]
  96. ThomouT. MoriM.A. DreyfussJ.M. KonishiM. SakaguchiM. WolfrumC. RaoT.N. WinnayJ.N. Garcia- MartinR. GrinspoonS.K. GordenP. KahnC.R. Adipose-derived circulating miRNAs regulate gene expression in other tissues.Nature2017542764245045510.1038/nature2136528199304
    [Google Scholar]
  97. TangY. YangL.J. LiuH. SongY.J. YangQ.Q. LiuY. QianS.W. TangQ.Q. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis.Cell Rep.202342111194810.1016/j.celrep.2022.11194836640325
    [Google Scholar]
  98. XieZ. WangX. LiuX. DuH. SunC. ShaoX. TianJ. GuX. WangH. TianJ. YuB. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization.J. Am. Heart Assoc.201875e00744210.1161/JAHA.117.00744229502100
    [Google Scholar]
  99. LiuY. SunY. LinX. ZhangD. HuC. LiuJ. ZhuY. GaoA. HanH. ChaiM. ZhangJ. ZhouY. ZhaoY. Perivascular adipose-derived exosomes reduce foam cell formation by regulating expression of cholesterol transporters.Front. Cardiovasc. Med.2021869751010.3389/fcvm.2021.69751034490366
    [Google Scholar]
  100. LiuY. SunY. LinX. ZhangD. HuC. LiuJ. ZhuY. GaoA. HanH. ChaiM. ZhangJ. ZhaoY. ZhouY. Perivascular adipose-derived exosomes reduce macrophage foam cell formation through miR-382-5p and the BMP4-PPARγ-ABCA1/ABCG1 pathways.Vascul. Pharmacol.202214310696810.1016/j.vph.2022.10696835123060
    [Google Scholar]
  101. TrovatoE. Di FeliceV. BaroneR. Extracellular vesicles: Delivery vehicles of myokines.Front. Physiol.20191052210.3389/fphys.2019.0052231133872
    [Google Scholar]
  102. SilvestroS. GugliandoloA. ChiricostaL. DiomedeF. TrubianiO. BramantiP. PizzicannellaJ. MazzonE. MicroRNA profiling of HL-1 cardiac cells-derived extracellular vesicles.Cells202110227310.3390/cells1002027333573156
    [Google Scholar]
  103. ChistiakovD. OrekhovA. BobryshevY. Cardiac extracellular vesicles in normal and infarcted heart.Int. J. Mol. Sci.20161716310.3390/ijms1701006326742038
    [Google Scholar]
  104. BeiY. XuT. LvD. YuP. XuJ. CheL. DasA. TiggesJ. ToxavidisV. GhiranI. ShahR. LiY. ZhangY. DasS. XiaoJ. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury.Basic Res. Cardiol.201711243810.1007/s00395‑017‑0628‑z28534118
    [Google Scholar]
  105. MatsuiT. OsakiF. HiragiS. SakamakiY. FukudaM. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells.EMBO Rep.2021225e5147510.15252/embr.20205147533724661
    [Google Scholar]
  106. HaleyR. WangY. ZhouZ. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells.PLoS Genet.2018148e100755810.1371/journal.pgen.100755830138370
    [Google Scholar]
  107. ZamaniP. FereydouniN. ButlerA.E. NavashenaqJ.G. SahebkarA. The therapeutic and diagnostic role of exosomes in cardiovascular diseases.Trends Cardiovasc. Med.201929631332310.1016/j.tcm.2018.10.01030385010
    [Google Scholar]
  108. BarileL. VassalliG. Exosomes: Therapy delivery tools and biomarkers of diseases.Pharmacol. Ther.2017174637810.1016/j.pharmthera.2017.02.02028202367
    [Google Scholar]
  109. LiZ. ZhaoP. ZhangY. WangJ. WangC. LiuY. YangG. YuanL. Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model.Theranostics20211162953296510.7150/thno.4987433456582
    [Google Scholar]
  110. WuG. ZhangJ. ZhaoQ. ZhuangW. DingJ. ZhangC. GaoH. PangD.W. PuK. XieH.Y. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment.Angew. Chem. Int. Ed.202059104068407410.1002/anie.20191370031854064
    [Google Scholar]
  111. RøsandØ. HøydalM.A. Cardiac exosomes in ischemic heart disease-A narrative review.Diagnostics202111226910.3390/diagnostics1102026933572486
    [Google Scholar]
  112. HeoJ. KangH. Exosome-based treatment for atherosclerosis.Int. J. Mol. Sci.2022232100210.3390/ijms2302100235055187
    [Google Scholar]
  113. MoghaddamA.S. AfshariJ.T. EsmaeiliS.A. SaburiE. JoneidiZ. Momtazi-BorojeniA.A. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease.Atherosclerosis20192851910.1016/j.atherosclerosis.2019.03.01630939341
    [Google Scholar]
  114. ColaoI.L. CortelingR. BracewellD. WallI. Manufacturing exosomes: A promising therapeutic platform.Trends Mol. Med.201824324225610.1016/j.molmed.2018.01.00629449149
    [Google Scholar]
  115. WangX. ChenY. ZhaoZ. MengQ. YuY. SunJ. YangZ. ChenY. LiJ. MaT. LiuH. LiZ. YangJ. ShenZ. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction.J. Am. Heart Assoc.2018715e00873710.1161/JAHA.118.00873730371236
    [Google Scholar]
  116. KohlmaierA. HoldtL.M. TeupserD. Long noncoding RNAs in cardiovascular disease.Curr. Opin. Cardiol.202338317919210.1097/HCO.000000000000104136930221
    [Google Scholar]
  117. LongQ. LvB. JiangS. LinJ. The landscape of circular RNAs in cardiovascular diseases.Int. J. Mol. Sci.2023245457110.3390/ijms2405457136902000
    [Google Scholar]
  118. VartakT. KumaresanS. BrennanE. Decoding microRNA drivers in atherosclerosis.Biosci. Rep.2022427BSR2021235510.1042/BSR2021235535758143
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673302220240430173404
Loading
/content/journals/cmc/10.2174/0109298673302220240430173404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test