Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer remains one of the predominant causes of mortality globally, accounting for over 10 million deaths each year. Despite advancements in medical treatments, the challenge of resistance and treatment failure persists, necessitating innovative approaches. Traditional cancer treatments include surgery, chemotherapy, radiation therapy, and pharmaceutical therapy. In recent years, significant attention has been directed towards plant-derived compounds as potential chemotherapeutic agents and preventive measures against cancer. Vincristine, a distinguished alkaloid derived from plant secondary metabolites, has shown considerable efficacy in cancer treatment. As a member of the antimitotic class of compounds, vincristine disrupts the cell cycle by causing aberrations in microtubule function, thereby inhibiting cell division and proliferation. Vincristine's mechanism of action makes it a powerful agent in combating a range of malignancies. Its role in combination therapy is crucial, as it is often administered in low doses alongside other chemotherapeutic agents to enhance its efficacy and reduce the risk of resistance. In the realm of medicinal chemistry, understanding vincristine's molecular mechanism is paramount. Detailed investigations into its interaction with cellular components can provide insights into its antineoplastic properties. This review aimed to elucidate vincristine's mechanism of action and structure-activity relationship, and summarize current and studies evaluating its efficacy. Moreover, it discusses innovative strategies, including nanotechnology-based delivery systems, designed to optimize vincristine formulations. These advanced delivery systems aim to improve bioavailability, target specificity, and minimize systemic toxicity. This comprehensive analysis underscores the critical role of vincristine in contemporary cancer treatment and highlights future directions for research and development in this field.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319496240911060138
2024-09-23
2025-10-02
Loading full text...

Full text loading...

References

  1. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  3. FerlayJ. ParkinD.M. Steliarova-FoucherE. Estimates of cancer incidence and mortality in Europe in 2008.Eur. J. Cancer201046476578110.1016/j.ejca.2009.12.01420116997
    [Google Scholar]
  4. IslamiF. MarlowE.C. ThomsonB. McCulloughM.L. RumgayH. GapsturS.M. PatelA.V. SoerjomataramI. JemalA. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, 2019.CA Cancer J. Clin.202474540543210.3322/caac.2185838990124
    [Google Scholar]
  5. PatelA. Benign vs. malignant tumors.JAMA Oncol.2020691488148810.1001/jamaoncol.2020.259232729930
    [Google Scholar]
  6. MazingiD. LakhooK. Cancer development and progression and the “Hallmarks of Cancer”,Pediatric Surgical Oncology.Springer2023115
    [Google Scholar]
  7. JonesP.A. BaylinS.B. The epigenomics of cancer.Cell2007128468369210.1016/j.cell.2007.01.02917320506
    [Google Scholar]
  8. FanY. ThongB.K.S. BinshenO. ShenX. YiH. WangC. Non-neoplastic B-cell predominant lymphoid proliferations at the organs exposed to external environment mimicking lymphoma: A potential diagnostic pitfall.Int. J. Immunopathol. Pharmacol.2024380394632024126436910.1177/0394632024126436938886178
    [Google Scholar]
  9. NorthJ.H. PackM.S. Malignant tumors of the small intestine: a review of 144 cases.Am. Surg.2000661465110.1177/00031348000660011010651347
    [Google Scholar]
  10. KciukM. GargN. DhankharS. SainiM. MujwarS. DeviS. ChauhanS. SinghT.G. SinghR. MarciniakB. GielecińskaA. KontekR. Exploring the comprehensive neuroprotective and anticancer potential of afzelin.Pharmaceuticals (Basel)202417670110.3390/ph1706070138931368
    [Google Scholar]
  11. SobtiR.C. Types of cancers, epidemiology, and molecular insights.Handbook of Oncobiology: From Basic to Clinical Sciences.Springer2024136
    [Google Scholar]
  12. ReicheE.M.V. NunesS.O.V. MorimotoH.K. Stress, depression, the immune system, and cancer.Lancet Oncol.200451061762510.1016/S1470‑2045(04)01597‑915465465
    [Google Scholar]
  13. BouvardV. BaanR. StraifK. GrosseY. SecretanB. GhissassiF.E. Benbrahim-TallaaL. GuhaN. FreemanC. GalichetL. CoglianoV. WHO International Agency for Research on Cancer Monograph Working Group A review of human carcinogens-Part B: biological agents.Lancet Oncol.200910432132210.1016/S1470‑2045(09)70096‑819350698
    [Google Scholar]
  14. DasA.P. AgarwalS.M. Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches.Mol. Divers.202428290192510.1007/s11030‑022‑10590‑736670282
    [Google Scholar]
  15. GoyalS. GuptaN. ChatterjeeS. NimeshS. Natural plant extracts as potential therapeutic agents for the treatment of cancer.Curr. Top. Med. Chem.20161729610610.2174/156802661666616053015440727237328
    [Google Scholar]
  16. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  17. BohannonR.A. MillerD.G. DiamondH.D. Vincristine in the treatment of lymphomas and leukemias.Cancer Res.1963234_Part_161362113968454
    [Google Scholar]
  18. GomberS. DewanP. ChhonkerD. Vincristine induced neurotoxicity in cancer patients.Indian J. Pediatr.20107719710010.1007/s12098‑009‑0254‑319936661
    [Google Scholar]
  19. ChauhanS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  20. ShahinM. AlzahraniO. AlzhraniM. Current development in vincristine nanoformulations.Int. J. Med. Dev. Ctries202020201292130010.24911/IJMDC.51‑1591859609
    [Google Scholar]
  21. LiG. HuY. LiD. ZhangY. GuoH. LiY. ChenF. XuJ. Vincristine-induced peripheral neuropathy: A mini-review.Neurotoxicology20208116117110.1016/j.neuro.2020.10.00433053366
    [Google Scholar]
  22. GilbertE.M. RenlundD.G. O’ConnellJ.B. EiswirthC.C. RothsteinG. GayW.A. BristowM.R. Immunosuppressive efficacy of vincristine in heart transplantation: a preliminary report.J. Heart Transplant.1987663693743320307
    [Google Scholar]
  23. BatesD. EastmanA. Microtubule destabilising agents: far more than just antimitotic anticancer drugs.Br. J. Clin. Pharmacol.201783225526810.1111/bcp.1312627620987
    [Google Scholar]
  24. Velasquez-CarvajalD. GaramponF. BesnardeauL. LeméeR. SchaubS. CastagnettiS. Microtubule reorganization during mitotic cell division in the dinoflagellate Ostreospis cf. ovata.J. Cell Sci.202413711jcs26173310.1242/jcs.26173338770570
    [Google Scholar]
  25. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑935655306
    [Google Scholar]
  26. DanzigerM. Microtubule-targeting agents: Disruption of the cellular cytoskeleton as a backbone of ovarian cancer therapy.Adv. Exp. Med. Biol.2024145211910.1007/978‑3‑031‑58311‑7_1
    [Google Scholar]
  27. DeepaD. ThiruvalluvaraM. ParandhamanM.N. KavithaV. Potentials of anti cancer activity of some medicinal plants-an update..World J. Pharm. Res.2021101063966610.20959/wjpr202110‑21267
    [Google Scholar]
  28. StueltenC.H. ParentC.A. MontellD.J. Cell motility in cancer invasion and metastasis: insights from simple model organisms.Nat. Rev. Cancer201818529631210.1038/nrc.2018.1529546880
    [Google Scholar]
  29. VossM.E. RalphJ.M. XieD. ManningD.D. ChenX. FrankA.J. LeyhaneA.J. LiuL. StevensJ.M. BuddeC. SurmanM.D. FriedrichT. PeaceD. ScottI.L. WolfM. JohnsonR. Synthesis and SAR of vinca alkaloid analogues.Bioorg. Med. Chem. Lett.20091941245124910.1016/j.bmcl.2008.12.07719147348
    [Google Scholar]
  30. DeMarsM.D.II O’ConnorS.E. Evolution and diversification of carboxylesterase-like [4+2] cyclases in aspidosperma and iboga alkaloid biosynthesis.Proc. Natl. Acad. Sci. USA20241217e231858612110.1073/pnas.231858612138319969
    [Google Scholar]
  31. FerencziE. KeglevichP. TayebB.A. MinoricsR. PappD. SchlosserG. ZupkóI. HazaiL. CsámpaiA. Synthesis and antiproliferative effect of new alkyne-tethered vindoline hybrids containing pharmacophoric fragments.Int. J. Mol. Sci.20242513742810.3390/ijms2513742839000534
    [Google Scholar]
  32. LingG. ZhangP. ZhangW. SunJ. MengX. QinY. DengY. HeZ. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition.J. Control. Release2010148224124810.1016/j.jconrel.2010.08.01020727928
    [Google Scholar]
  33. ParneyI.F. ChangS.M. Current chemotherapy for glioblastoma.Cancer J.20039314915610.1097/00130404‑200305000‑0000312952300
    [Google Scholar]
  34. NewtonK. StrasserA. KayagakiN. DixitV.M. Cell death.Cell2024187223525610.1016/j.cell.2023.11.04438242081
    [Google Scholar]
  35. TriaricoS. RomanoA. AttinàG. CapozzaM.A. MauriziP. MastrangeloS. RuggieroA. Vincristine-induced peripheral neuropathy (VIPN) in pediatric tumors: Mechanisms, risk factors, strategies of prevention and treatment.Int. J. Mol. Sci.2021228411210.3390/ijms2208411233923421
    [Google Scholar]
  36. VorherrH. Adjuvant chemotherapy of breast cancer: Hope - Reality - Hazard?Klin. Wochenschr.198462414916110.1007/BF017316376708398
    [Google Scholar]
  37. MooreA. PinkertonR. Vincristine: Can its therapeutic index be enhanced?Pediatr. Blood Cancer20095371180118710.1002/pbc.2216119588521
    [Google Scholar]
  38. McEvoyG. SnowE. American Society of Health-System Pharmacists. AHFS drug information 2018.Bethesda, MD2018
    [Google Scholar]
  39. HuY. GirdenytéM. RoestL. LiukkonenI. SiskouM. BällgrenF. Hammarlund-UdenaesM. LoryanI. Analysis of the contributing role of drug transport across biological barriers in the development and treatment of chemotherapy-induced peripheral neuropathy.Fluids Barriers CNS20242111310.1186/s12987‑024‑00519‑738331886
    [Google Scholar]
  40. KorenG. BeattyK. SetoA. EinarsonT.R. LishnerM. The effects of impaired liver function on the elimination of antineoplastic agents.Ann. Pharmacother.199226336337110.1177/1060028092026003111554959
    [Google Scholar]
  41. CorsiniA. BortoliniM. Drug-induced liver injury: the role of drug metabolism and transport.J. Clin. Pharmacol.201353546347410.1002/jcph.2323436293
    [Google Scholar]
  42. ShuklaR. SinghA. SinghK.K. Vincristine-based nanoformulations: a preclinical and clinical studies overview.Drug Deliv. Transl. Res.202414111610.1007/s13346‑023‑01389‑637552393
    [Google Scholar]
  43. MoraE. SmithE.M. DonohoeC. HertzD.L. Vincristine-induced peripheral neuropathy in pediatric cancer patients.Am. J. Cancer Res.20166112416243027904761
    [Google Scholar]
  44. IslamB. LustbergM. StaffN.P. KolbN. AlbertiP. ArgyriouA.A. Vinca alkaloids, thalidomide and eribulin-induced peripheral neurotoxicity: From pathogenesis to treatment.J. Peripher. Nerv. Syst.201924S2S63S7310.1111/jns.1233431647152
    [Google Scholar]
  45. MoudiM. GoR. YienC.Y. NazreM. Vinca alkaloids.Int. J. Prev. Med.20134111231123524404355
    [Google Scholar]
  46. TosoC. LindleyC. Vinorelbine: A novel vinca alkaloid.Am. J. Health Syst. Pharm.1995521212871304, 1340-134110.1093/ajhp/52.12.12877656116
    [Google Scholar]
  47. PanahiY. SaadatA. ShadboorestanA. AhmadiA. An updated review of natural products intended to prevent or treat oral mucositis in patients undergoing radio-chemotherapy.Curr. Pharm. Biotechnol.2016171194996110.2174/138920101766616080809400827640644
    [Google Scholar]
  48. ChaL.M-J. HuhM. LimJ.Y. HahnS.M. LyuC.J. HanJ.W. Additive effect of vinca alkaloids as the risk factor for hearing impairments in the childhood cancer survivors.Ann. Oncol.201728v56310.1093/annonc/mdx388.059
    [Google Scholar]
  49. UpmanyuR. DvivediJ. SaxenaY. Hepatotoxic effects of vincristine: an experimental study on albino rats.Indian J. Physiol. Pharmacol.200953326527020329374
    [Google Scholar]
  50. CoufalN. FarnaesL. The vinca alkaloids.Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting MeasuresSpringer20102537
    [Google Scholar]
  51. BoikoN. MedranoG. MontanoE. JiangN. WilliamsC.R. MadungweN.B. BopassaJ.C. KimC.C. ParrishJ.Z. HargreavesK.M. StockandJ.D. EatonB.A. TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids.PLoS One20171210e018688810.1371/journal.pone.018688829084244
    [Google Scholar]
  52. KhouriC. BlaiseS. CarpentierP. VillierC. CracowskiJ.L. RoustitM. Drug-induced Raynaud’s phenomenon: beyond β-adrenoceptor blockers.Br. J. Clin. Pharmacol.201682161610.1111/bcp.1291226949933
    [Google Scholar]
  53. ReiserM. BrunsC. HartmannP. SalzbergerB. DiehlV. FätkenheuerG. Raynaud’s phenomenon and acral necrosis after chemotherapy for AIDS-related Kaposi’s sarcoma.Eur. J. Clin. Microbiol. Infect. Dis.1998171586010.1007/BF015843689512187
    [Google Scholar]
  54. SinglaA. BardiaA. ChaudhryV. Neurologic complications of cancer and its treatment.Curr. Oncol. Rep.2011121505910.1007/s11912‑009‑0071‑x
    [Google Scholar]
  55. GeldofA.A. MinnebooA. HeimansJ.J. Vinca-alkaloid neurotoxicity measured using an in vitro model.J. Neurooncol.199837210911310.1023/A:10058486237719524088
    [Google Scholar]
  56. KamalN. AbdallahM.S. Abdel WahedE. SabriN.A. FahmyS.F. Evaluation of the effect of loratadine versus diosmin/hesperidin combination on vinca alkaloids-induced neuropathy: A randomized controlled clinical trial.Pharmaceuticals (Basel)202417560910.3390/ph1705060938794179
    [Google Scholar]
  57. LiY. GongY.H. ZhaoM.F. XiaoX. WeiX.C. Ileus induced by the combination of vinca alkaloids and posaconazole in a patient with acute lymphoblastic leukemia: a case report and literature review.J. Int. Med. Res.20235180300060523119382310.1177/0300060523119382337622457
    [Google Scholar]
  58. AroraR.D. MenezesR.G. Vinca alkaloid toxicity. StatPearls.StatPearls Publishing2023
    [Google Scholar]
  59. JooJ-H. Effects and Pharmacological Use of Alkaloids on the Eyes.Drug Repurposing-Advances, Scopes and Opportunities in Drug DiscoveryIntechOpen202310.5772/intechopen.110257
    [Google Scholar]
  60. PetricZ. PaixãoP. FilipeA. Guimarães MoraisJ. Clinical pharmacology of vinpocetine: Properties revisited and introduction of a population pharmacokinetic model for its metabolite, apovincaminic acid (AVA).Pharmaceutics20231510250210.3390/pharmaceutics1510250237896263
    [Google Scholar]
  61. NaplesJ.G. Rice-NaruschW. WatsonN.W. Ghulam- SmithM. HolmesS. LiD. JalisiS. Ototoxicity review: A growing number of non–platinum-based chemo- and immunotherapies.Otolaryngol. Head Neck Surg.2023168465866810.1177/0194599822109445735439087
    [Google Scholar]
  62. ParkS.B. KiernanM.C. Chemotherapy-Induced Cranial Nerve Damage.The Cranial Nerves in Neurology: A comprehensive and systematic evaluation of cranial nerves, pathology and specific conditions.Springer202318919310.1007/978‑3‑031‑43081‑7_23
    [Google Scholar]
  63. PatilM.A. Alkaloids as potential anticancer agent.Recent Frontiers of Phytochemicals.Elsevier202320322410.1016/B978‑0‑443‑19143‑5.00034‑7
    [Google Scholar]
  64. SalahS. Skin adverse events of anti-cancer treatments: An examination of drug-AE associations.American Society of Clinical Oncology2023e. 18885e. 18886
    [Google Scholar]
  65. KeF. Enhancement of vincristine sensitivity in retinoblastoma through Janus kinase inhibition by ruxolitinib.Anticancer Drugs.202435761562210.1097/CAD.0000000000001615
    [Google Scholar]
  66. GoswamiS. AliA. PrasadM.E. SinghP. Pharmacological significance of Catharanthus roseus in cancer management: A review.Pharmacol. Res. Modern Chinese Med.20241110044410.1016/j.prmcm.2024.100444
    [Google Scholar]
  67. MolinskiT.F. DalisayD.S. LievensS.L. SaludesJ.P. Drug development from marine natural products.Nat. Rev. Drug Discov.200981698510.1038/nrd248719096380
    [Google Scholar]
  68. BanerjiN. LiX. KlausnerJ.S. KapurV. KanjilalS. Evaluation of in vitro chemosensitivity of vaccine-associated feline sarcoma cell lines to vincristine and paclitaxel.Am. J. Vet. Res.200263572873210.2460/ajvr.2002.63.72812013475
    [Google Scholar]
  69. Shirazi-TehraniE. VafadarA. KeshavarziM. FirouzabadiN. Anticancer properties of vincristine is modulated by microRNAs in acute lymphoblastic leukemia Nalm6 cell line.Anticancer Drugs2022331e680e68510.1097/CAD.000000000000123434459460
    [Google Scholar]
  70. ZhouC. ZhuY. LuB. ZhaoW. ZhaoX. Survivin expression modulates the sensitivity of A549 lung cancer cells resistance to vincristine.Oncol. Lett.20181645466547210.3892/ol.2018.927730250619
    [Google Scholar]
  71. XinH. KongY. WangY. ZhouY. ZhuY. LiD. TanW. Lignans extracted from Vitex negundo possess cytotoxic activity by G2/M phase cell cycle arrest and apoptosis induction.Phytomedicine201320764064710.1016/j.phymed.2013.02.00223562365
    [Google Scholar]
  72. HimesR.H. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules.Pharmacol. Ther.199151225726710.1016/0163‑7258(91)90081‑V1784631
    [Google Scholar]
  73. ZhangP. LingG. SunJ. ZhangT. YuanY. SunY. WangZ. HeZ. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux.Biomaterials201132235524553310.1016/j.biomaterials.2011.04.02221546082
    [Google Scholar]
  74. Groth-PedersenL. OstenfeldM.S. Høyer-HansenM. NylandstedJ. JäätteläM. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine.Cancer Res.20076752217222510.1158/0008‑5472.CAN‑06‑352017332352
    [Google Scholar]
  75. ThomadakiH. FlorosK.V. ScorilasA. Molecular response of HL-60 cells to mitotic inhibitors vincristine and taxol visualized with apoptosis-related gene expressions, including the new member BCL2L12.Ann. N. Y. Acad. Sci.20091171127628310.1111/j.1749‑6632.2009.04912.x19723066
    [Google Scholar]
  76. KarsM.D. IşeriÖ.D. GündüzU. A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells.Eur. J. Pharmacol.20116571-34910.1016/j.ejphar.2011.02.00121320484
    [Google Scholar]
  77. MutohK. TsukaharaS. MitsuhashiJ. KatayamaK. SugimotoY. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1 -transduced human breast cancer cells.Cancer Sci.200697111198120410.1111/j.1349‑7006.2006.00300.x16925584
    [Google Scholar]
  78. ZhongY. ShiF. ZhengX. WangQ. YangL. SunH. HeF. ZhangL. LinY. QinY. LiaoL. WangX. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms.Acta Pharmacol. Sin.201132121529153610.1038/aps.2011.10921986580
    [Google Scholar]
  79. ShiZ. JainS. KimI.W. PengX.X. AbrahamI. YoussefD.T.A. FuL.W. El SayedK. AmbudkarS.V. ChenZ.S. Sipholenol A, a marine-derived sipholane triterpene, potently reverses P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells.Cancer Sci.20079891373138010.1111/j.1349‑7006.2007.00554.x17640301
    [Google Scholar]
  80. StarobovaH. MuellerA. AllavenaR. LohmanR.J. SweetM.J. VetterI. Minocycline prevents the development of mechanical allodynia in mouse models of vincristine-induced peripheral neuropathy.Front. Neurosci.20191365310.3389/fnins.2019.0065331316337
    [Google Scholar]
  81. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A review on natural antioxidants for their role in the treatment of Parkinson’s disease.Pharmaceuticals (Basel)202316790810.3390/ph1607090837513820
    [Google Scholar]
  82. KhanH. UllahH. KhattakS. AschnerM. AguilarC.N. HalimiS.M.A. CauliO. ShahS.M.M. Therapeutic potential of alkaloids in autoimmune diseases: Promising candidates for clinical trials.Phytother. Res.2021351506210.1002/ptr.676332667693
    [Google Scholar]
  83. ChauhanS. Pharmacological evaluation of anti-inflammatory and analgesic potential of Litchi chinensis gaertn. (sonn.).Group201410100
    [Google Scholar]
  84. DhankharS. ChauhanS. MehtaD.K. Nitika SainiK. SainiM. DasR. GuptaS. GautamV. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑536782201
    [Google Scholar]
  85. RohillaS. SharmaP. KambojS. DhankharS. GargN. ChauhanS. RaniN. Anabolic androgenic steroids: A review.Emir. Med. J.20245e0250688225370610.2174/0102506882253706240104073440
    [Google Scholar]
  86. SharmaP. A review on phytochemical constituents and pharmacological properties of Catharanthus roseus (L.) G. Don.JMPS202412313115610.22271/plants.2024.v12.i3b.1675
    [Google Scholar]
  87. ŠkubníkJ. PavlíčkováV.S. RumlT. RimpelováS. Vincristine in combination therapy of cancer: emerging trends in clinics.Biology (Basel)202110984910.3390/biology1009084934571726
    [Google Scholar]
  88. FisherR.I. GaynorE.R. DahlbergS. OkenM.M. GroganT.M. MizeE.M. GlickJ.H. ColtmanC.A.Jr MillerT.P. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma.N. Engl. J. Med.1993328141002100610.1056/NEJM1993040832814047680764
    [Google Scholar]
  89. LinschotenM. KamphuisJ.A.M. van RhenenA. BosmanL.P. CramerM.J. DoevendansP.A. TeskeA.J. AsselbergsF.W. Cardiovascular adverse events in patients with non-Hodgkin lymphoma treated with first-line cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP with rituximab (R-CHOP): a systematic review and meta-analysis.Lancet Haematol.202074e295e30810.1016/S2352‑3026(20)30031‑432135128
    [Google Scholar]
  90. CeppiF. Langlois-PelletierC. GagnéV. RousseauJ. CiolinoC. LorenzoS.D. KevinK.M. CijovD. SallanS.E. SilvermanL.B. NeubergD. KutokJ.L. SinnettD. LaverdièreC. KrajinovicM. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia.Pharmacogenomics20141581105111610.2217/pgs.14.6825084203
    [Google Scholar]
  91. ZhangY. HuiF. YangY. ChuH. QinX. ZhaoM. ZhaoQ. Can Kushen injection combined with TACE improve therapeutic efficacy and safety in patients with advanced HCC? a systematic review and network meta-analysis.Oncotarget201786310725810727210.18632/oncotarget.2092129291026
    [Google Scholar]
  92. LadasE.J. KrollD.J. OberliesN.H. ChengB. NdaoD.H. RheingoldS.R. KellyK.M. A randomized, controlled, double-blind, pilot study of milk thistle for the treatment of hepatotoxicity in childhood acute lymphoblastic leukemia (ALL).Cancer2010116250651310.1002/cncr.2472320014183
    [Google Scholar]
  93. KimH. KangH.J. LeeJ.W. ParkJ.D. ParkK.D. ShinH.Y. AhnH.S. Irinotecan, vincristine, cisplatin, cyclophosphamide, and etoposide for refractory or relapsed medulloblastoma/PNET in pediatric patients.Childs Nerv. Syst.201329101851185810.1007/s00381‑013‑2163‑z23748464
    [Google Scholar]
  94. QiuK. WangJ. HuangL. LiC. XuL. LiuR. ChenH. RuanY. ZhenZ. LiC. FangJ. Vincristine and dexamethasone pulses in addition to maintenance therapy among pediatric acute lymphoblastic leukemia ( GD-ALL -2008): An open-label, multicentre, randomized, phase III clinical trial.Am. J. Hematol.202398686988010.1002/ajh.2691036877527
    [Google Scholar]
  95. MedinaE.A.G. ÁvilaD.R.M. MadrugaT.G. CaballeroB.B. OteroD.C. GalainenaJ.J. DurruthyL.S.P. EspinosaL.Y.M. EstévezD.A. PérezD.S. OlazabalE.V. Diffuse large b-cell lymphoma: Real-world clinical experience with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisolone in cuba.Hematol. Oncol.202341S271071110.1002/hon.3165_564
    [Google Scholar]
  96. ChouS.W. ChangH.H. Evolution and contemporary role of metronomic chemotherapy in the treatment of neuroblastoma.Cancer Lett.202458821661710.1016/j.canlet.2024.21661738311055
    [Google Scholar]
  97. WeilB.R. MurphyA.J. LiuQ. HowellR.M. SmithS.A. WeldonC.B. MullenE.A. MadenciA.L. LeisenringW.M. NegliaJ.P. TurcotteL.M. OeffingerK.C. TermuhlenA.M. Mostoufi-MoabS. LevineJ.M. KrullK.R. YasuiY. RobisonL.L. ArmstrongG.T. ChowE.J. ArmenianS.H. Late health outcomes among survivors of Wilms tumor diagnosed over three decades: A report from the childhood cancer survivor study.J. Clin. Oncol.202341142638265010.1200/JCO.22.0211136693221
    [Google Scholar]
  98. ChaoM.W. LaiM.J. LiouJ.P. ChangY.L. WangJ.C. PanS.L. TengC.M. The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo.J. Hematol. Oncol.2015818210.1186/s13045‑015‑0176‑726156322
    [Google Scholar]
  99. ZhuB. YuL. YueQ. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy.Biomed. Pharmacother.20179128729410.1016/j.biopha.2017.02.11228463792
    [Google Scholar]
  100. ZhangJ. XiaoX. ZhuJ. GaoZ. LaiX. ZhuX. MaoG. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy.Int. J. Nanomedicine2018133039305110.2147/IJN.S16116329861635
    [Google Scholar]
  101. TakahashiT. HonmaY. MiyakeT. AdachiK. TakamiS. OkadaM. KumanomidouS. IkejiriF. JoY. OnishiC. KawakamiK. MoriyamaI. InoueM. TanakaJ. SuzumiyaJ. Synergistic combination therapy with cotylenin A and vincristine in multiple myeloma models.Int. J. Oncol.20154641801180910.3892/ijo.2015.288225672400
    [Google Scholar]
  102. ThompsonJ. GeorgeE.O. PoquetteC.A. CheshireP.J. RichmondL.B. de GraafS.S. MaM. StewartC.F. HoughtonP.J. Synergy of topotecan in combination with vincristine for treatment of pediatric solid tumor xenografts.Clin. Cancer Res.19995113617363110589779
    [Google Scholar]
  103. MukaratirwaS. ChitangaS. ChimatiraT. MakulekeC. SayiS.T. BhebheE. Combination therapy using intratumoral bacillus Calmette-Guerin (BCG) and vincristine in dogs with transmissible venereal tumours : therapeutic efficacy and histological changes : article.J. S. Afr. Vet. Assoc.2009802929610.4102/jsava.v80i2.17819831270
    [Google Scholar]
  104. TsuruoT. IidaH. TsukagoshiS. SakuraiY. Potentiation of vincristine and Adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors.Cancer Res.1983435226722726831450
    [Google Scholar]
  105. TsuruoT. IidaH. NaganumaK. TsukagoshiS. SakuraiY. Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug.Cancer Res.19834328088136848194
    [Google Scholar]
  106. RajabalianS. Methanolic extract of Teucrium polium L. potentiates the cytotoxic and apoptotic effects of anticancer drugs of vincristine, vinblastine and doxorubicin against a panel of cancerous cell lines.Exp. Oncol.200830213313818566577
    [Google Scholar]
  107. JoanittiG. SilvaL. The emerging potential of by-products as platforms for drug delivery systems.Curr. Drug Targets201415547848510.2174/1389450111314999017124712518
    [Google Scholar]
  108. KumarA. BehlT. ChadhaS. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects.Int. J. Biol. Macromol.20201491262127410.1016/j.ijbiomac.2020.02.04832044364
    [Google Scholar]
  109. AliE.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Seminars in cancer biology.Elsevier202169526810.1016/j.semcancer.2020.01.011
    [Google Scholar]
  110. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials (Basel)202215380410.3390/ma1503080435160749
    [Google Scholar]
  111. MudgilM. PawarP.K. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application.Sci. Pharm.201381259160610.3797/scipharm.1204‑1623833723
    [Google Scholar]
  112. Pérez-HerreroE. Fernández-MedardeA. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.Eur. J. Pharm. Biopharm.201593527910.1016/j.ejpb.2015.03.01825813885
    [Google Scholar]
  113. DhankarS. GargN. ChauhanS. SainiM. A bird view on the role of graphene oxide nanosystems in therapeutic delivery.Curr. Nanosci.20242011110.2174/0115734137299120240312044808
    [Google Scholar]
  114. DeR. MahataM.K. KimK.T. Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles.Adv. Sci. (Weinh.)2022910210537310.1002/advs.20210537335112798
    [Google Scholar]
  115. WelderfaelT. YadavO.P. TaddesseA.M. KaushalJ. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red.Bull. Chem. Soc. Ethiop.201327222123210.4314/bcse.v27i2.7
    [Google Scholar]
  116. ChenthamaraD. SubramaniamS. RamakrishnanS.G. KrishnaswamyS. EssaM.M. LinF.H. QoronflehM.W. Therapeutic efficacy of nanoparticles and routes of administration.Biomater. Res.20192312010.1186/s40824‑019‑0166‑x31832232
    [Google Scholar]
  117. DarbariD.S. SheehanV.A. BallasS.K. The vaso-occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management.Eur. J. Haematol.2020105323724610.1111/ejh.1343032301178
    [Google Scholar]
  118. SmaropoulosE. CremersN.A.J. NewberryD.M. Medical-grade honey for the treatment of extravasation-induced injuries in preterm neonates: a case series.Adv. Neonatal Care202121212213210.1097/ANC.000000000000078132675576
    [Google Scholar]
  119. DhankharS. MujwarS. GargN. ChauhanS. SainiM. SharmaP. KumarS. Kumar SharmaS. KamalM.A. RaniN. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202423893194010.2174/011871527326609523100909260337861051
    [Google Scholar]
  120. VilholmO.J. Drug-induced peripheral neuropathy.Basic. Clinic. Pharmacol. Toxicol.2021115218519210.1111/bcpt.12261
    [Google Scholar]
  121. ChanE.D. Mitomycin pulmonary toxicity.2000Available from: https://medilib.ir/uptodate/show/4350 (accessed on 31-8-2024)
    [Google Scholar]
  122. DhankharS. SharmaP. ChauhanS. SainiM. GargN. SinghR. KamalM.A. Kumar SharmaS. RaniN. Cognitive rehabilitation for early-stage dementia: A review.Curr. Psych. Res. Rev.20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  123. WilliamsS.M. KilleenA.A. Tumor lysis syndrome.Arch. Pathol. Lab. Med.2019143338639310.5858/arpa.2017‑0278‑RS30499695
    [Google Scholar]
  124. ScottK.A. DalgleishA.G. LiuW.M. Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.Int. J. Oncol.201751136937710.3892/ijo.2017.402228560402
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319496240911060138
Loading
/content/journals/cmc/10.2174/0109298673319496240911060138
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; cancer therapy; chemotherapy; drug formulation; targeted delivery; vincristine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test